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Abstract 

The asymptotic expansions for the Kummer function obtained in the study 

of the linear response of magnetised Bose plasmas at T — 0 K are presented 

for large and small values of its parameter, thereby displaying the function's 

asymptotic non-uniformity. The large parameter expansion plays a determin

ing role in the behaviour of these Bose systems in the iimit that the external 

magnetic field B —>• 0. This particular expansion is generalised herein and its 

validity tested by determining the asymptotic expansion for the Hurwitz zeta 

function. 
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I. INTRODUCTION 

Series of the form. S(a.b.x) — J2™=oxn/T(n + l)(a + bn). arise in the study of the linear 

response of both the charged Bose gas and the relativistic boson-anti-boson (pair boson) 

plasma when these systems are immersed in an external magnetic field at T — 0 K. Hore 

and Frankel. hereafter referred to as HF [1], found that the longitudinal dielectric response 

function for the charged Bose system could be written as 

6*R(k,u,T = 0) = 1 + ^(H(x,h2k2j2m + ftu;,ftu;c) 

- H(x,-h2k2j2m + hu},hu;c)) , (1) 

where x = hk2

L/2mu}c, k\ — k2 + k2, and 
0 0 xn 

H(x.a,b) = e-XT— — . (2) 
„=o"!(« + M 

In the above u;c = \e\B/mc and ujp are respectively the cyclotron frequency for the charged 

Bose gas in a uniform magnetic field of magnitude B and the plasma frequency while JJ and 

k are respectively the frequency and wave number of a small oscillation of the system about 

equilibrium. In a more recent paper, Witte, Kowalenko and Hines, VVKH [2], found that 

the longitudinal dielectric response function for the relativistic pair boson plasma at T = 0 

K in an external magnetic field assumed the following form 

*»(*n,T = o) = I + £|(2 - {Q'2Eo)\(h i - u/n -z) 
lq* u 

V 

where u = -y - 2£ 0ft, v = -y + 2E0ft, El = 1 + 0/2, q2 = (hk/mc)2, y = q\ - ft2, 

ft = h^/mc2, and z = n\/2. In addition, n\ = hkl/eB, f3 = 2b2 = 2ehB/m2c2 and 

ftp is the dimensionless form of the plasma frequency, whilst the ^-functions are known as 

Kummcr or confluent hypergeometric functions. For those with the specific parameters in 

Kq. 3. however, we can write 

$(1.1 + .r; -z) = xe.-!Y, 
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and once again, we have a similar series to Eq. 2. Hence, although not unexpected, both 

systems have a common mathematical structure. 

In this paper, we aim to develop the asyr ototic expansion for the related series in Eqs. 

2 and 4 in the limit as B(3) —• 0. In so doing, we shall extend a well-known theorem 

in Laplace integrals to discuss the case when either 6 in Eq. 2 or x in Eq. 4 is negative. 

Although we shall utilise standard techniques, we shall present s. new asymptotic expansion 

for the above confluent hypergeometric functions, which do not appear in the standard texts 

[3.4]. To establish the validity of our main result, we shall generalise it in order to develop 

the asymptotic expansion of the Hurwitz zeta function, which we will then show agrees with 

the asymptotic expansion obtained via Mellin transform techniques. In a future publication 

our main result will be used to obtain asymptotic expansions for more complicated but, 

nevertheless, related s?ries and special functions. In this publication we shall also derive 

asymptotic expansions for other confluent hypergeometric functions based again on the 

main result presented here. 

The need to develop the asymptotic expansions mentioned above is required in order 

to study the small B behaviour of the two systems at T = 0 K. Specifically, the small B-

asymptotic expansions are required for the evaluation of the longitudinal modes of oscillation 

and the screening potentials of test particles immersed in the systems. In addition, the 

transverse response functions should possess similar confluent hypergeometric functions and 

thus the asymptotic expansions displayed here should be applicable to the study of the 

transverse oscillations of the two systems. We should also see that as B —> 0, we recover the 

B = 0 results given in HF, WKH and Kowalenko, Frankel and Hines (KFH) [5], which both 

HF and WKH were unable to do correctly. As a consequence, the studies of the physical 

properties of both systems will follow in separate publications. As an aside, we mention 

the recent work of Daicic and Frankel [6], who have shown that WKH and KFH introduced 

spurious modes in their studies of the plasmon oscillations of the relativistic pair boson gas. 

The task at hand in this paper, therefore, is not to consider the interesting physical 

properties which these systems display but to establish the mathematical machinery for 
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such studies to fallow. We should mention that whilst our task does not require intricate 

mathematical techniques, it is not by any means a trivial assignment. The reader should 

observe that both the response functions in Eqs. 1 and 3 are highly anisotropic in form and 

as a consequence, the passage to the B = 0 isotropic result must somehow transform the 

exponential dependence and powers of k\ in the numerator and k^ in the denominator of 

the //- or ^-functions into a function dependent on the variable k2. It is. therefore, because 

of the requirement to establish isotropy as B —• 0, that we have been able to produce a 

different asymptotic behaviour for the above confluent hypergeometric functions. 

This paper is organised as follows. In Sec. 2, we develop asymptotic expansions for 

\(i/b\ > 1 for the series in Eqs. 2 and 4 by utilising the method of expanding the exponential 

after we have written both series as Laplace integrals. Initially, our result will only be valid 

for Re a and Re 6 both greater than or less than zero in Eq. 2 but by using the technique 

of analytic continuation, we shall extend our result to the case where either Re a or Rei is 

less than zero. We shall show that series given in Eqs. 2 and 4 is a meromorphic function 

in a and b with simple poles occurring whenever a/b is equal to a negative integer or to 

zero, which is not very surprising since the series can be related to an incomplete gamma 

function. We also make contact with existing literature on the asymptotic expansions of 

incomplete gamma functions and show that the unwieldy expansion given for 7(0, ,r) in 

these papers can be reduced to the main result presented in this section. W'e conclude 

the section by presenting the small l?-asymptotic expansions for the longitudinal dielectric 

response functions for both relativistic and non-relativistic Bose systems, which will be used 

in future publications to study the physical properties of these systems. In Sec. 3 we 

consider the case where \a/b\ < 1, thereby revealing the non-uniformity in developing an 

asymptotic expansion for S(a, 6, x). However, we shall show that this asymptotic expansion 

is only significant either for extremely large magnetic fields or for a very narrow region 

of wavenumber space and hence, this asymptotic expansion is of very limited use when 

determining the physical properties of Bose systems. In the conclusion we present a brief 

summary and discuss the applicability of the main result. 
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II. ASYMPTOTICS FOR LARGE a/6 

As can be inferred from the introduction, in the non-relativistic case a would correspond 

to hk2J'2m ± h^: while b would be equal to /L.L-. Therefore, as long as the denominator dees 

not vanish identically, we can see immediately that the ratio of a/b becomes very large in the 

limit as the magnetic field goes to zero. A similar scenario can be inferred for the relativistic 

system. Since our ultimate goal is to study the small fl-behaviour of both systems in future 

publications, we require the asymptotic expansion of the series S(a,b,x) for a/b ^> 1 where 

b may be either positive or negative. The expansion that we present will be valid for all 

values of x. which equals hk\/2rmjjc for the non-relativistic system and z for the relativistic 

case. By utilising this asymptotic expansion, we conclude the section by presenting the 

small magnetic field expansions of the longitudinal dielectric response functions for both the 

relativistic and non-relativistic charged Bose gases. 

For the moment we consider the series in Eq. 2 where Re a and Re 6 are greater than 

zero. The situation where a = 0 is singular for n = 0. If, however, we were to consider the 

sum for n = 1 to oc with a = 0, then we would obtain the series for the exponential integral 

Ei(:). which we need not consider here since it is studied extensively in Ref. [4]. We now 

write the series in Eq. 2 in the following form 

^0T{n + l){a + bn) ~ r ( n + l ) Jo 

Noting that the series in n is absolutely convergent, we can interchange the order of the 

summation and the integration to obtain 

S{a,b,x)= r' dt e-at+x*~ht . (6) 

Jo 

Our concern here is the development of an asymptotic series for 5 in terms of small b. We 

note that for small /, the integrand is 0(e x ) whilst for large t, it is O(e _ 0 ( ) . Hence, we can 

see that the dominant contribution to the asymptotics from b occurs at < = 0. 

The integral in Eq. 6 is of the form studied by Dingle in Ch. V of Ref. [7], where 

/''(') = nt -f- exp(f - 6 i ) and G(t.) = 1. As a result, we can use the method of expanding 
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most of the exponential, whereby we retain only the linear term in F[t) in the original 

exponential and expand the rest in rising powers of /. In general, this method is the least 

satisfactory of the methods discussed by Dingle. However, the method comes into its own 

when additional complicated factors are introduced into the integrand. Nevertheless, the 

method is applicable to Eq. 6 and we find 

r » , A f c „ / *Pt2 xb3t3 xb4t4 

S(a.b.x) = e*JQ dt e -<"") . ( l + _ - _ + _ + 

x 2 6 4 / 4 xfr'r5 x 2 6 5 * 5 _ „ . x 6 x \ 

All the integrals in Eq. 7 yield T-functions and hence, we find directly 

c x / x6 2 xft 3 x&4 3x 2 6 4 

b(a.b.x)~ a + b x y i + (a + bx)2 (a + bx)3 * (a + bx)* + (a + bx)* 

X f r 5 1 0 j 2 6 5 I Off b f)) (8) 
(a + 6x)5 (a + 6x) 5 ^ a + 6 x ' V ' l ' 

In Appendix A we describe the methodology for determining the coefficients of the higher 

order terms for this asymptotic series. Since the method employed to obtain the above 

expansion only requires that a/b 3> 0 and thus is not restricted by the value of x. save 

that it is positive, we stress again that x does not need to be fixed. For the Bose systems 

mentioned in the introduction, this means that as the magnetic field goes to zero, k\ can 

also go to zero much faster than B and Eq. 8 will still be valid. 

We should add at this stage that it is possible to generalise the above result to the 

situation where the factor in the denominator is (a + bn)° and to even more general cases. 

In applying his special technique for handling integrals, Ramanujan [8] also developed the 

asymptotic expansion for (a + 67j)'-case, and as expected, his result for s = 1 agrees with our 

Eq. 8. However, he did not examine the case where a/b < 0, which we require to evaluate 

the physical properties of the Bose systems mentioned earlier. In Appendix B we show how 

to extend the above analysis to the series considered by Ramanujan and as a consequence. 

i develop the asymptotic expansion of this series for large a/b. 

We can see immediately that the above asymptotic series is only valid for a/b 3> 1. If we 

put a = 0 into the series of Eq. 5. then the series is divergent whereas no such singularity 
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arises wh *n <i = 0 in Eq. S. Hence, e :r asymptotic series is non-uniformly valid for different 

values of a/b. In the next section we shall derive the asymptotic expansion for the case where 

tijb < 1 . As we shall see. this expansion will only become of use in Bose plasmas when the 

magnetic field is extremely large which is not the concern of this paper. Furthermore, we 

should mention that the series expansion in Eq. 5 could also be used in studying magnetised 

Bose plasmas but because it is only valid in an extremely small region of wavenumber-space. 

i.e. \qL\ <C 1 and \qz\ <C |<fi| for small magnetic fields, it is of limited value when evaluating 

the physical properties of weakly-magnetised Bose systems. It is, however, useful when 

evaluating the physical properties of Bose systems in the strong field limit. 

Although Eq. 8 has been determined for complex a and b with both Re a and Re 6 > O.we 

can extend the method to the case where one of a and b is real and not necessarily positive 

and the other is imaginary. For the case of a real and positive and b imaginary, the series 

given in Eq. 5 can also be written in the form of Eq. 6 and hence the result given by Eq. 

8 once again holds except that b is now complex. For the case of a real and negative and b 

imaginary, all that is required is to take a factor of —1 from the denominator and then to 

apply the same method used to derive Eq. 8. When this is done, we get 

S(a,b,x)~ 1+ + + 
\a\ — bx \\a\~bxY (\a\ — bxy* 

xb4 3:r2ft4 _ 
{\a\-kx)4+ (\a\-bx)* ' ' U 

which is identical to Eq. 8. The cases of b real and positive with a imaginary and b real and 

negative with a imaginary will be covered by the following extension of Eq. 8 into complex 

plane. 

Before we can go any further, we need to consider the case where the real part of either 

a or b is negative for S(a,b, x). To examine this case we need to extend Thm. 1 on p. 383 

of Ref. [9]. For the sake of simplicity we shall consider e~*S(a, b, x). which is the expression 

that appears in the response theory of the Bose systems described in the introduction. Then 

for the rase of either Rer/ and Reft > 0 or Ren and Reft < 0. we can write 

file:////a/~bxY
file:///a/-bx)*


f - -> ' ( « . 6.r t = 6 - ' /'X

<fte<-»i+*>«+*<'--»+«> . ,10) 

where Oi = a/b. Our aim is now to seek the analytic continuation of the Laplace integral in 

Eq. 10 to negative real values of a t . i.e where | arg(oi + x)| > r / 2 . 

To apply the theorem given on p. 383 of Nikiforov and Uvarov [9]. let / ( / ) = e*'* -•+')_ 

For / — 0. 

f(t) = 1 + xr 2 /2! - x t 3 /3 ! + xf 4/4! + x 2 r 2 / 8 + -.. (11) 

hut for t —• DC. / ( / ) ~ ert. The theorem states explicitly that / ( / ) must be 0 ( r J ) as f —• oc. 

where 3 is a constant. However, we shall see that the extra factor of exp(—xt) in Eq. 10 

will counter the exponential growth of f(t). So. if we put a i = re'*, then the integral in Eq. 

10 becomes 

/ = f~ dtt^Tt'*+l)tf{t) . (12) 
Jo 

and to ensure that it is always analytic, \<t>\ < 7r/2, provided x > 0. Otherwise, the integral 

will only be analytic for cos<i> > |x | / r . 

Now consider / as a complex integral, i.e. 

I=fdt e - ( o , + x > 7 ( 0 . (13) 

Following Nikiforov and Uvarov. we evaluate Eq. 13 along the ray given by t — pc'6. so that 

1(9) = e~T r dp exp(i0-alpe'6 + xe->e") . (14) 
Jo 

Kq. 14 is analytic for |arg(oie'*)| = \o + 9\ < TT/2 and for Recipe'8 > xt'"™*6 as p -> 

x. The latter condition is satisfied by |arg(9| < JT/2. To prove that 1(9) is the analytic 

continuation of / . we must show that the two forms are equal along the ray 0 = -0/2. This 

is done by letting the contour C in Eq. 13 consist of the line from the origin along the real 

axis, a semi-circular arc rotated by an angle 0 and the line from infinity to the origin with 

arg/ = 0 . Then by Cauchy's theorem, we obtain 
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I+hTC = I(0) . (15) 

where o = —9/2 for / and 1(9) and the contribution along the arc is given by 

hTC = lim e~T r d3 iRexp(i3 - rRe'{3-*/2) + xe~Hr'3) . (16) 
ft— TC JO 

Since J € [0.0]. 13-$/2\ < \0/2\ < JT/2. Thus, cos(3-0/2) > cos0/2 > 0. As a consequence. 

/ r i r . tends to zero as R ^ oc. and hence, / = 1(0) for 6 = -9/2. 

We note that f(t) is analytic in the region | a rg i | < jr. Since |o + 0| < r / 2 for 1(0). 1(0) 

is the analytic continuation of / into the region —JT < p < JT. Thus, we can expand f(pr'6) 

as follows 

f(pe'9) « 1 + ip2e™/2\ - xp3e3'6/3! + . . . . (17) 

Hence. 1(0) becomes 

1 e \ ( Q + x)t'e 2!(a + x) 3 e 3 '* 3!(o + j ) 4 e 4 ' * 4!(t» + * ) V W 

r 2 r ( 5 V ' * \ 

which yields the same result as Eq. 8 with ct\ = a/b and 6 = 1 for \<i>\ < n. 

To show that Eq. 8 is also valid for p = ir except when a/b is a negative integer, we 

need firstly to prove that S(a,b,x) or b~1S(oi, l,x) can be analytically continued into the 

negative real half of the complex plane. This can be done by integrating Eq. 6 by parts to 

establish 

(c/b-\)S(c/b-\,l1x)=ex -b~xcxS(c/bA,x) . (19) 

As a consequence of Eq. 19, we can analytically continue S(c/b,l,x) into the negative 

real half of the complex plane whereupon we notice that simple poles occur at the origin 

and for negative integers. Since S(c/b, l ,x) is defined for all values in the complex plane 

except at the origin and for negative integers, it is, therefore, continuous for all points along 

the negative rea! axis except for negative integers and the origin. Thus, the asymptotic 
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expansion given by Kq. 8 must be valid for values along the negative real axis except for 

negative integers and the origin, or else S(cjb.l.x) would be discontinuous, which would 

contradict our earlier remarks about the continuity of Eq. 19. It should also be mentioned 

that for a /6 < 0 Eq. 8 must have a removable singularity when x = |a /6 | since the series 

representation for S(a.b.x) given in Eq. 5 is always defined provided a /6 is not equal to a 

negative integer. 

At this point we should mention that S(a.b.x) can also be expressed in terms of the 

incomplete gamma function by making the substitution y = —xexp(—6f) so that 5 ( a . 6 . x) = 

6 - I x~ a / *exp ( —iira/b)~;(a/b. xc , ! r ) . As a consequence, we now turn our attention to the work 

of Temme. who has evaluated asymptotic expansions for the incomplete gamma functions 

in Refs. [10] to [12] by using the method of steepest descent. Temme [12] gives the following 

asymptotic expansion for ~.(a.x). valid only for a —• oo 

l ( a . x ) = - erfc(-riy/a/2) - / ^ ( T / ) 20) 

where erfc(z) is the complementary error function, the real parameter ^ 2 / 2 = A — 1 — ln\. 

A = x/a and 

Ra{11)^-/==Y.C^)a-n . (21) 

The coefficient CO(TJ) equals l/( A - 1) - 1/77 while the other coefficients are obtained via the 

following recursion relation 

lCn(7i)=-^Cn.Av) + j ^ % , (22) 

where the numbers -) n are related to ->„, which appear in the asymptotic expansion of the 

jT gamma function. The 7„ are given by 

T(a) = v^r" a"-1'2 e~a £ 7 n a~n . (23) 
71 = 0 

Thus "!n = ( - 1 )n"tn And using No. 8.327 from Gradshteyn and Ryzhik [13]. wr find that the 

first few -/ ar- % = I. ->J = - 1 / 1 2 . -,'2 = 1/288 and % = 139/51840. 
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We should make the following remark concerning the above result. It has been deter

mined by taking the limit asf l -» x o f a n integral representation for the incomplete gamma 

function given in Dingles book [7j. The complementary error function arises after tak

ing the path of steepest descent. Therefore, to be consistent. Temme should express the 

complementary error function in terms of its large a-asymptotic expansion. 

We now show that although Temme's result is extremely unwieldy, it can be simplified 

to yield our result for S(a.b.x). First we note that Temme's a corresponds to a/b in our 

result, so that A above corresponds to our bit'*[a. Then we note that the Cn in Temme's 

result consist of a term dependent only on powers of I J - 1 and a term dependent only on 

; >wers of (A — l ) - 1 . If we isolate the q~l term of Cn(*l) and denote it by Cn(q). then by 

using Temme's recursion relation we find that • o 

C;(7) = ( - D " + , ( 2 n - I ) » / i , 2 - + 1 . (2-1) 

where n > 1. Hence. 

- 0 7 ) 2 / 2 OC 

RAn) = —nr= 0 + E ( - 1 ) n ( 2 n - 1)!! ( « 7 2 P ) = 

(1/2) erf c(-r,yfi/2\ (25) 

where we have utilised No. 7.1.23 from Abramowitz and Stegun [4]. Hence, the r/ - ' part 

of Temme's Cn cancels the complementary error function and we are left with a result that 

depends only on inverse powers of A — 1 or bxe.'r /a — 1 in our terms. 

Since the TJ~] terms occurring in all Cn can be removrd. the recursion relation reduces 

to 

Now by substituting a by a/b and A by bte'*/a in Temme's result, we find that 

r(f) (iy'^'V*)-" 
V2ff [a + b,r) 

arr+«h £ Cn(n)(n/b)-n . (27) 
71=0 
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where the (", are now given by Eq. 26. If we introduce the large a/6-expansion for the 

gamma function into Eq. 27 and use the relationship between -{alb.X('~) and > ' (« .6 .J - ) 

given above, then we find that according to Temme 

>-,..fc,>-^£^,./t,-£>/»r£(^)~'(<^) . m 

Thus we need to shew that the product of the sums yields the result given by Eq. S. After 

••valuation of some of the terms in the second sum in Eq. 28, S{a.b.x) becomes 

>••..».,) = (-f.-)(t %c/»)-)[i + r^h + rrrs - r^b + 

« + W" „TJ / l [a-t-bxr (a + bx)* (a 4- bx)3 

156V' 10&V b4x b-:i b2^ b3x':i 

+ — + —f- + \a -f M * (a + 6x) 5 (n + 6 T ) 4 a a2 a(a + bx)2 

b4x-i xbh 36 5 J- 2 : . , b*x-!2 63->, i 
rt(n -f bx)* {n + 6JT)5 a(« -t- fix)4 n 2(n + bx)2 a3 

It can be clearly seen that our main result given by Eq. 8 appears in Temmesexpansion 

directly above but there are also additional terms, not appearing in our result. We must, 

therefore, show that these additional terms cancel one another. The terms in Eq. 2°. which 

appear in our Eq. 8. all come from the part of Cn related to C'0. That is Eq. 8 can be 

written as 

-"-«*••->-S(iHx^a)"irr • 
llence. to show that the remaining terms in Temme's expansion cancel, we need to prove 

that 

E -<r tar n A ir"{^=tar (A ir h ' n h ' „ V A - I r f V A - l „ W U - l r f A ' A - l (31] 

By isolating powers of h/a it can be shown that the above holds for small powers and thus 

by induction, it can be shown that the above statement is equivalent to proving 

n 

£ ( - I ) B " m ' > m ' > n - m = 0 . 112 I 
m = 0 

Eq. 32 ran be shown quitr easily for odd values of n and holds for n — 2 and n = \ using 

the values of -;r; given by No. 6.1.37 in Abramowitz and Stegun [I]. Higher values of -;„ are 

12 
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difficult to evaluate as demonstrated on p. 414 of Morse and Feshbach [14], so we shall use 

the following result to prove Eq. 32 for large n/b 

n=U 

Multiplying Eq. 33 by Eq. 23 with a set equal to a/b we get 

n=0 " n=0 U 

Since 7„ = 1, we see that all powers of (a/b)~n must vanish and thus we finally arrive at 

Eq. 32. 

We should add that if the additional terms appearing in Temme's expansion, as given 

by Eq. 29, did not cancel, and that since a is equal to ±h2k*/2m + hu for the magnetised 

charged Bose and a/b equals —y ± 2Eoil for its relativistic analogue, then S(a,b,x) would 

become anisotropic, which, in turn, would defeat the aim of this paper as we have outlined 

in the introduction. In addition, in Appendix B we have shown how to generalise S(a,b,x) 

to the series S3(a,b,x) considered by Ramanujan [8]. We could take Temme's expansion 

above and obtain the equivalent of S,(a, b, x). If the additional terms remain, then Temme's 

expansion would not yield Ramanujan's result and furthermore, we would not recover the 

asymptotic expansion for the Hurwitz zeta function, which we have done in Appendix C by 

using the Ramanujan generalisation of our Eq. 8. 

In Appendix A we have presented the methodology for determining the coefficients C). 

in the asymptotic expansion given by Eq. 8. Denoting c£ as the coefficient of x3bk HI i'ne 

accompanying table, we can use our analysis of Temme's expansion to arrive at the following 

interesting identity 

\X-ldX> A - l ; t i ( A - l ) > + * + I ' ( ' 

In Appendix C we have shown that combinations of Cj. are related to the Bernoulli numbers. 

Hence, utilising the above and Eq. 73, we find that 

( A _ 1 ) ( A T T ^ ) \~—\ ~ IWTT) • ( 3 f i ) 
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The analysis presented in this section shows that the asymptotic expansion of S(a. b, x) or 

b~~' 5( oi . 1. x) given by Eq. 8 is valid for all complex values of a and 6 provided Qj ^ Z~ U {0}. 

For Q, = -k. where k = 0.1,2 5(c*i,l,x) has a simple pole with residue xk/T{k + 1). 

These poles, however, do not arise when evaluating the response functions given by Eqs. 1 

and 3 because the introduction of a Landau infinitesimal in the denominators to ensure that 

fluctuations vanish as t —• —oc means that only the principal values of the integrals leading 

to Eqs. 1 and 3 need be considered. 

To conclude this section we now give the small B-expansions for both response functions 

using Eq. 8. For the non-relativistic case, consider H(x,hu; — h2k2,/2m,—huc) with x given 

immediately after Eq. 1. For the situation where h2k2/2m > hu, we can factor out the 

minus sign and then use Eq. 8 directly. For h2k2/2m < hui, the H-function becomes 

H (x,huj - h2k2J2m,-huc) = -{h^y'e'S ((h2k2J2m - u)u;;\l,x) , (37) 

where S is now given by Eq. 18 and u; cannot equal hk2/2m. Then we can use Eq. 18 to 

obtain the asymptotic expansions for the //-functions, which will ultimately yield the result 

given by Eq. 8. Hence, we find 

H (x, huj - fi2k2

zj2m, -huc) ~ -
i *i«c 

h2k2j2m-hui 2m(ftfc2/2m - w) 3 

2 kM + ^ i ^ + 0(u,3) 
2m{hky2m - u)4 4m2(ftifc2/2m - u>)5 V c > 

(38) 

where we have ordered the H-function in powers of uc since we are interested in the small 

field behaviour. For H(x, hu + h2k2j2m, —hujc) one obtains the same results except that —u; 

is replaced by u and there is no minus sign outside of the corresponding square-bracketed 

expression. Combining the expansions, we get the following results for the longitudinal 

dielectric response function 
W P A hk{u;c(h2k4 + l2m2u2) 

eN*(i,u,T = 0) ~ 1 + , . " P

2 ^ ( l + 
(ft K 4/4m z - ur) \ (ft2ifc4/4m2 - w 2) V ' 8m 3(ft 2fc 4/4m 2 - u>2)2 

fc2 u;2(ft4fc8/16m4 + 3ft 2 fcV/m 2 + u>4) 
J t 2 (f t 2 )b 4 /4m 2 -u; 2 ) 3 

, mWr(h*ki°/nm> + oh*k*J>/2m>+Ji) , n i 3 \ ...... 
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Finally, using our asymptotic results for S(a, b, x) we can give the asymptotic expansions 

for the specific confluent hypergeometric functions appearing in the longitudinal dielectric 

response function for the relativistic pair boson plasma given by Eq. 3. Utilising Eq. 4. we 

can write 

• ,M + K -„ = „-5(x,,,«)~-£-(, + i -i- j j- ? -i_ + 

+ ( ^ + 0 «* + 2 > - 5 ) ) ' ( 4 0 ) 

i + : \ (x + z) 2 (x+zf (x + z)4 

(x + zf 

As a consequence, we can utilise the above result to produce a small B(/3)-expansion for 

the longitudinal dielectric response function for the relativistic pair boson system, which is 

given by 

cfl(<f,fi,r = 0 ) ~ l + -£ x XA + 2K 2 0ql ( X ( A 3 + 3/c2A) + 2/c2(/c2 + 3A 2)) 

q n A 2 - K2 ( A 2 - K 2 ) 3 

I32ql (x(A 4 + 6/c2A2 + K 4 ) + 8/c2A( A 2 + K 2 ) ) 
(A 2 - K 2 ) 4 

3/3 2 g 4 (x(A 5 + 10A3/c2 + 5A« 4) + 5 K 2 ( X 4 + 2x 2 « 2 )) 
( A 2 - r 2 ) 5 ' \ 2 t-2 \5 

(41) 

where A = q2 - ft2, K = 2E0fl and \ = ft2 + 4E%. Noting that El = 1 -f /?/2, we see that 

the relativistic result given by Eq. 41 possesses considerably more intricate magnetic field 

behaviour than the non-relativistic longitudinal dielectric response function given by Eq. 38 

since both the numerators and denominators of all the terms in the former possess a more 

complex dependence on the magnetic field, especially when ft ̂  0. 

In future publications, we shall utilise the results presented in this section to study the 

modes and screening potentials of both systems for small/weak magnetic fields in addition 

to developing expressions for the transverse dielectric response functions of both systems for 

electromagnetic propagation parallel and perpendicular to the magnetic field. Using these 

results we shall derive the dispersion relationships for the transverse modes supported by 

both systems. We should also mention that Bardos et al. [15] have utilised the asymptotic 

expansions presented here in their study of the dielectric response of a planar Bose plasma 

in the presence of a constant external magnetic field. 

15 
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III. ASYMPTOTICS FOR SMALL a/b 

In this section we demonstrate the non-uniformity of the asymptotic expansion for 

>'(«. b. x) by considering the small a/b limit which, in turn, corresponds to the large magnetic 

field limit (B —> oc) for the Bose systems mentioned in the introduction. The expression 

that we derive here will once again be valid for all values of x. However, for small values of 

.r the expansion will not be much better than the original series for S(a,6, x) and hence, we 

shall concentrate on large values of x after we derive the general expansion. 

As mentioned previously for very small values of a/6, S(a,b, x) becomes singular, which 

is not reflected in the asymptotic expansion given by Eq. 8 since the method of expanding 

most of the exponential was only valid for a/b not equal to zero. Insight into the nature of 

the singularity can be obtained by putting b equal to a positive real number and a equal to 

an imaginary number. Then the series S(a,6, x) can be expressed as a Fourier transform of 

which a part can be identified as the Fourier transform of the step-function. This, in turn, 

yields a delta function. The remaining part yields our expansion given by Eq. 8 for the new 

values of a and b. Since the delta function concerns only the point a/b = 0, we may infer 

that the asymptotic expansion given by Eq. 8 may be valid for not so large values of a/b. 

In fact, Temme [12] has found that his version of the asymptotic expansion for S{a,b,x) is 

accurate to four figures for a/6 = 2 It is, therefore, expected that our asymptotic expansion 

for S(a,b,x) given in the previous section will become inaccurate only for very small values 

of a/b. 

We shall begin our study of the small a/6 case by considering the more general series 

S3(a. 6, / ) as defined in Appendix B but will find that the intractability of the problem will 

force us to consider integer values of s only. By putting s = 1, we shall then be able to 

determine the asymptotic expansion for the Bose systems mentioned in the introduction. 

For a/b < 1, we may write S,(a, b, x) as 

SAa,b,x) = - + Yt-T^—lF0(.rr,-a/nb) . (42) 
a" ^ n! (bny 

I'tilising the series expansion for hypergeometric functions, we can rewrite Eq. 42 as 
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•">(«->>•*)= -, + ^ t (-r)mT-—4r~r, r^^ + m e- ( exp(xe- ' ) . (43) a M*) m^o o ( s + m)I (m + 1) Jo 

where we have used the integral representation of the gamma function and have integrated 

by parts. Making the substitution y = x e _ ( in Eq. 43, we get 

1 h~s ^ l—alh\m rx 

Ss(«,6,x) = ± + — £ l "I \ dy In^x/y) e» . (44) 
a T(s) ^ 0 (5 + m)r(m + 1) Jo 

The integral in Eq. 44 is intractable for real values of s except for positive integer values. 

For * equal to a positive integer the integral can be evaluated by integrating by parts and 

follows from the case of putting s = 1 and evaluating for all values of m. Hence, we need 

only consider the s = 1 case. 

For s = 1 and m = 0 the integral in Eq. 44 can be evaluated exactly to yield 

T d y \n(x/y) ey = Ei(x) -C-lnx , (45) 
Jo 

where Ei\x) is the exponential integral function and C is Euler's constant. For other integer 

values of s + m. we note that 

Qs+m 
Jo dy \n'+m(x/y) ê  = (-l)>+mx e* ^ - ^ j [ ds (1 - s)° 

f)3+m 

( - 1 ) - + m + , S ? ^ ( - X ) " a 7 ( 0 + 1 ' - X ) 
a=0 

o=0 

(46) 

where we have utilised No. 2.3.5.2 from Prudnikov et al [16]. Thus, if we put s = k, where 

k is a positive integer, then Eq. 44 can be rewritten as 

ik{abr)=L+ti¥Lf mi * n (_ , ) -« 7 ( a + i -x ) 
a-0 

• (47) 

Although one can introduce the small x-series expansion for */(a,x) into the above, the 

result would not be more useful than our original series for Ss(a,b,x). Hence, we need 

only concentrate on the large x-expansion for Eq. 47. The asymptotic expansion for the 

incomplete gamma function given on p. 31 of Dingle's book [7] has to be modified according 

to the prescription given in Sec. 1.3 of the same reference since a Stokes discontinuity occurs 

at phx = 7T. Hence, the expansion we will use is 

17 



•••• J s * * - • 

•-r)-a i(a + 1. - x ) = cos'™) x^T(a + 1) - c * f ] ^ ° } , . (48) 

Thus for A- = 1 and m = 0. we obtain 

8 
da {~x)-a*,(a + l,-x) 

c = 0 
(49) 

/ = i 

which is just the large x-asymptotic expansion of Eq. 45. For k = 1 and m = 1, we get 

d2 

da' 
( - X ) - ° 7 ( Q + 1 , - X ) = ln 2 x + 2Clnx-2C(2) + C 2 -

o=0 

2e^[—j± (»(/) + C) , (50) 
(=2 

while for k — 1 and m = 2, we get 

1 L ( - X ) - 7 ( Q + 1,-X) = - l n 3 x - 3 C l n 2 x + 3 7 r 2 l n x - 3 C 2 l n x - 2 C ( 3 ) + 
a = 0 

oo (] _ \\\ ' - 1 1 
3JT2C - C3 - 3CC(2) + 3e* £ {-L-±t ((#(/) + C)2 - £ 1) . 

:=2 J }=\ J 
(5i; 

In the above equations $(x) represents the digamma function and £(x) is the Riemann zeta 

function. 

If we introduce Eqs. 49 to 51 into Eq. 47, then we obtain the following small a/b-

expansion 

S(a.b.x) = - + U ezY {J—^ _ l n x - C + 4- ( V x + 2C lnx - TT2/3 + C 2 -
a fev f~ xl 2b ^ 

•2f-vllzJi:(*(/) + C)) + ^ - ( - l n 3 x - 3 C * l n 2 x + 3 ^ 2 In x - 3C 2 In x - 2((3) + 
T ^ X 1 ' OCT v 

tfC - C3 - 3C<(2) + 3e*£ [-!-±L ((»(/) + C)2 - £ 4)) + 0(1) ) . (52) 
1=2 X j=\ 3 ^ 

1=2 

The divergences due to the late terms for the series in inverse powers of x in the above 

equation can be removed by applying Dingle's theory of terminants [7] in a similar manner 

as carried out in Appendix A. 

For very large x. which corresponds either to the small field limit or very large values of 

the perpendicular wavenumbcr for magnetised Bose systems, Eq. 52 can be written as 
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5 ( a . 6 . j ) % a - 1 + ( e 7 6 ) ( l / x + l / x 2 + 2 / j 3 + . . . ) - {aer/b2)(l/x2 + 

3 / x 3 + . . . ) + ( a V / 6 3 ) ( l / x 3 + . . . ) + . . . , (53) 

where the a - 1 - term may be dropped if a is not too small. If we were to carry out a large 

^-expansion of Eq. 8. then we would find that the ensuing result would agree with the large x-

expansion given above. Hence, we can see that the asymptotic expansion for $(1,1 +a/6: —x) 

becomes uniform when x is very large irrespective of the value of a/6. In addition, since 

S(a.b.x) — a - 1 $ ( a / 6 , a / 6 + l ;x), we can see that the above expansion corresponds to the 

dominant contribution of the complete asymptotic expansion given on p. 60 of Slater [3] or 

as No. 13.5.1 in Abramowitz and Stegun [4]. For very small values of x, which corresponds 

to the strong field limit or to small values of the perpendicular wavenumber of magnetised 

Bose systems, the series expansion given in Eq. 5 is sufficient but as x increases, a cross

over into the non-uniform region eventually occurs where depending on the size of a/6, the 

asymptotic expansion for $(1,1 + a/6; —x) is determined either by Eq. 8 or Eq. 52. 

In this section we have been primarily concerned with displaying the important, mathe

matical property of non-uniformity in the asymptotic expansion for S(a,b, x). In so doing, 

we arrived at the hitherto unknown expansion for small a/6 given by Eq. 52. We will require 

this new expansion for our future studies of the screening potentials and modes of oscillation 

of the Bose plasmas in a very strong magnetic field. 

IV. CONCLUSION 

In this paper we have derived asymptotic expansions for the specific confluent hypergeo-

mctric function, $(1, l + a / 6 ; - x ) , encountered in the study of the dielectric response of both 

relativistic and non-relativistic charged Bose plasmas in an external magnetic field. This 

function, which can be expressed alternatively in terms of an incomplete gamma function, 

also arises in the study of the dielectric response of fermion systems. We were able to derive 

expansions for both large and small vaiues of the parameter a/6, thereby displaying the 

function's asymptotic non-uniformity. For large a/6 the asymptotic expansion was derived 
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by first expressing the generic series. S(a,b,x) given by Eq. 5, as a Laplace integral under 

the condition that the real parts of the parameters « and b were positive. Then we utilised 

the method of expanding most of the exponential as described in Dingle [7] to obtain the 

small fr-asymptotic expansion given by Eq. 8. By analytical continuation, we were able to 

show that this expansion was valid when the real part of one of the parameters was negative. 

The expansion, however, is not valid when the ratio of the parameters is equal to a nega

tive integer or zero, where there are simple poles. The expansion also breaks down when 

a = — bx, which corresponds to a turning point for this confluent hypergeometric function. 

As a consequence of Eq. 8, we were able to give the small magnetic field expansions 

for the longitudinal dielectric response of both charged Bose systems mentioned above. 

The non-relativistic and relativistic versions appear respectively as Eqs. 39 and 41. the 

latter displaying considerably more intricate magnetic field behaviour. We shall study the 

physical properties such as the screening potential and modes of oscillation for both systems 

separately in the future. In addition, the transverse response functions for both systems 

will also be shown to be dependent on the same confluent hypergeometric functions after 

we evaluate them by using the gauge invariant approach adopted by WKH to evaluate 

the polarisation tensor for the relativistic boson pair plasma. By presenting asymptotic 

expansions for all response functions, we shall be able to observe the transition to the free-

field behaviour of these systems in the limit cs the magnetic field tends to zero. We should 

also mention that the series studied in this paper arises when studying the linear response 

of charged and neutral semions as discussed in the recent work of Chakravarty [17]. Hence, 

the results presented here should be relevant to these systems, and what is more, to studies 

of all quantum plasmas regardless of the statistics. 
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VI. APPENDIX A 

In this appendix we describe the methodology for determining the higher order terms in 

the asymptotic expansion given by Eq. 8. To do so, we need to return to Eq. 6 and write 

it in the following form 

/•CO °° 
S(a,b,x) = ex dte~{a+bl)t Y[exp{(-bt)kx/k\) . (54) 

To develop the asymptotic series given by Eq. (8), we utilised the method of expanding the 

product term in Eq. 54 into a power series so that S(a,6, x) could be expressed as 

oo 

S{a,b,x) = exp(x) ]jr cfc h(a,b,x) , (55) 
k=0 

where the cjt are not to be confused with the C„ of Temme and the integrals Ik(a,b,x) are 

given by 

In developing a methodology for determining the coefficients of higher order terms in 

S(a,b, x) we need to be able to produce a power series in t from the product in Eq. 54. 

Since each exponential in this product can be expressed as a power series, we shall refer to 

each exponential with tk in it as a Ar-series. For example, exp(xb2t2/2\) will referred to as a 

2-series while exp(—xb9t9/9\) will be referred to as a 9-series. 

We begin our study of the coefficients by examining the terms in the product of Kq. 

54 that contribute to I2, h and/4. These are very simple since only the 2-series produces 
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a power of r 2 and the 3-series produces a power of r 3. On the other hand, the power of 

f* is produced by contributions from the 4-series and from the 2-series. We can represent 

these contributions by using tree diagrams as shown in Fig. 1. The leftmost number in 

these diagrams represents the power of tk in Ik(a,b,x). For the case of t2 we see that the 

tree diagram terminates at the ordered pair (0.2). Whenever zero appears in an ordered 

pair such as in (0. A-)- it will mean that the contributions along a particular path of the tree 

have terminated. Thus. (0,k) means that the contribution to /jt, has terminated with a 

contribution from the A--series where k < k\. For / 4 (a ,6 , x) we see that there are two paths 

in our diagram, one terminating at (0,4). i.e. a contribution from the 4- series and the other 

going through (2,2) and ultimately terminating at (0.2). Whenever a number other than 

zero appears as the left element in an ordered pair such as (2.2). it will not only mean that 

more contributions exist to produce the required power in 7t(a,6.x) but that the problem 

has reduced to one of finding all the contributions to the right element of the ordered pair. 

That is in the case of (2.2) we not only have a contribution from the 2-series but also must 

find all the contributions yielding t2. Thus we continue the path till it ends at (0.2) since 

only the 2-series can contribute to 7 2(a,6.x). Hence, the coefficient of 7 4(a,6. .r) consists 

of two paths, one coming from the 4-series and the other coming from the second order 

term of the 2-series. Whenever there is more than one contribution from a particular series 

such as the two contributions from the 2-series for 7 4(a,6, x), we evaluate the contribution 

to the coefficient from this path by taking the power of the first order contribution of the 

series to the number of times the series appears in the path divided by the factorial of this 

number. Hence the contribution to the coefficient coming from the second path for f.t(a. b.x) 

is (.r(-6) 2/2!) a/2! while that from the first path yields (x(-fc) 4/4!. 

We can see the recursive nature of the coefficients by considering higher order contribu

tions in our asymptotic expansion for S(a,b,x). The coefficient for I$(a,b,x) is determined 

from two paths, one coming from (0,5) directly and the other consisting of a path with (2. •'}) 

and (0.3). Recursion is visible whenever we consider paths not terminating immediately, 

e.g. the path with (2,'i) for /-,(«./;. .r). In such cases all we need to do is to introduce the 
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tree diagram for the right element to complete the tree diagram. For example, to complete 

the diagram for the coefficient of 7s(a.6.x) we introduce the tree diagram for k = 3 along 

the path with 12.3). Thus the coefficient of I${a.b.x) is given by 

,, , (-6) 5 J , {-bj2x(-b)3x 

We are now in a position to describe the construction of the tree diagrams for the 

higher order coefficients of our asymptotic expansion for S(a.b.x). We shall consider the 

contruction of the tree diagram for k = 7. The first step is to consider all the ordered pairs 

{i.j) where J < j and i+j = 7 excluding the pair with i = 1. Then along the path containing 

(2.5) we place the tree diagram for k = 5 while we place the tree diagram for k — 4 along 

the path containing (3.4) as in Fig. 2. One problem, however, arises: duplication of paths 

occurs. For example, the path with (2.5), (2,3) and (0.3) yields the same contribution to 

the coefficient for Ik{a.b.x) as the path with (3,4), (2,2) and (0.2). In such cases we simply 

disregard the second path since all paths in the final tree diagram should yield a distinct 

contribution to each coefficient. 

As a consequence of the above, we present the values for the coefficients in Eq. 55 up 

to c 1 0 in the table. Higher order coefficients are perhaps better evaluated by constructing a 

computer code based on the above algorithm either in Pascal. C or some other language with 

pointers. As can be seen, the coefficients are essentially polynomials in x, whose coefficients 

become more complicated as k increases. This makes the evaluation of the remainder in the 

asymptotic expansion given by Eq. 55 a difficult exercise except in the limits of -r C 1 and 

.r > 1. For x < 1 we find that ck w {-b)kx/k\ while for x > 1, c2k « {xP^/'lH-l and 

r2k+l*-{Tl?/2)k-lTp;y.[k-l)l. 

For x < I wr can estimate the remainder of the asymptotic expansion for Eq. 55 by 

writing it as 

5, . . M .^£sLm+n + B , , ,W ) 

£?0{a + fr.r)*+I 

where the remainder. H\. is approximately given by 
25 



JU 

(61) 

(62) 

H—irY *"*'* = <-ft|- vxe x . . 

I hi- above result raj' be expanded further since J < I and a » bx. Hence, we find that 

U _ V J S < Z ! £ J L _ . ((jo) 
a*+l 

Kor the case where x > 1 we can use Dingles theory of terminants [7] to evaluate the 

remainder. In utilising this theory we shall assume that .V is an even integer, leaving it to 

the reader to consider odd integer values. Then the remainder becomes 

R ~ f * f ( ** \k( n a + i? *r(2» + 2) x 
N ~~ ^2{a + bi)2' \r(k+l)(a + bx) 3(d + fa)2r(t)' ' 

I sing the duplication formula for the gamma function, we can write Eq. 61 as 

*.v=* - /(*) ( f H* + 1/2)--* - ^ T ^ j 1 1 H* + 3/2)=*) • 
where c = 2xb2f{p + bx)2 and f(x) = ex/y/x(a + bx). By using the technique of Borel 

summation Eq. 62 becomes 

ff.v *f[x)[z'l[p- 1/2) - -JL—((l-p- - - I ) c " - , r ( p + 1/2) + 
1 3(a + or) v 

( r ' - 2 - 3 r ' - ' / 2 ) / ( p - l / 2 ) ) ] . (63) 

where the integral /(p— 1/2) = T(p+ l/2)A p_i/ 2(—z~ l) and the terminant A s ( -x ) is given 

*>y 

• M - * ) = r 7 - — T T P / ^ 7 — 7 7 - • (W) 
rij* + 1) Jo 1 — r/x 

The fact that the remainder term involves a principal value integral is an indication that 

the real axis for complex values of x. i.e. ph x — 0. is a Stokes line. Thus if we move above 

or below the real axis, then the asymptotic expansion for ${a.b.x) will change as a result 

of the Stokes phenomenon. 

Dingle shows that the above integral can be expressed in terms of the incomplete gamma 

fund ion on p III of his book [7]. He also provides asymptotic expansions as well as tables of 

values for A,(— x). Hence, by terminating the asymptotic expansion at a particular />-value 

for known values of n. h and x. one ran obtain an estimate of the remainde- by using Eq. 

63 which will be quite accurate for large values of p and .r. 
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VII. APPENDIX B 

In this appendix we develop the large a/fe-asymptotic expansion for the series considered 

by Ramanujan [8], which is a generalisation of the series, S(a,b, x), and is given by 

0 0 x n 

S3(a,b,x) = ]T , (65) 
^ n! (a + 6n)' 

where Re a, Re 6 and Res are initially all greater man zero. To evaluate the asymptotic 

expansion for a/b >• 1, we utilise the following result 

1 TOO 

( a + &„)• = - i _ / A *-V<a+6»)« . (66) 
I (5) Jo 

Introducing Eq. 66 into Eq. 65, we find that 

roo 
S3{a,b,x) = T(s)-1 dt t'-1 exp(-at + xe~bt) . (67) 

Jo 

We can use the method of expanding the exponential once more to obtain a similar result 

to Eq. 7 except that now every power of t is now multiplied by by t'~x. Hence, we finally 

get 

<?r A , e* ^ ckT(k + s) e* , xb'Y(s + 2) 
.,{a,o,x) V { s ) jL { a + b x ) k + , (a + bxyY(S)\(S,+ T(3)(a + bx¥ 

* 6 3 I > + 3) *&«!> + 4 ) x 2 6 4 i js + 4) _ 0 „ _ J _ y u \ r f i 8 v 
r(4)(« + 6 x ) 3 i " T(5)(a + 6x)4 T(3)3(a + 6x)4 U a + fcrj" ' l ' 

where the ck are the same as those in Appendix A. By a similar argument to that presented 

in Sec. 2, the above result is valid for all complex values of a and b except those where a/6 

equals a negative integer or zero. As expected, Eq. 68 reduces to Eq. 8 when s = 1. 

VIII. APPENDIX C 

To demonstrate the validity of our main result given by Eq. 8 and its more general 

counterpart given in Appendix B, we shall use the latter to develop a large (-/-asymptotic 

expansion for the Hurwitz zeta function, ((z,q), which we write as 
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Jo r r n (1+ n/g)T(n + 1 ) Jo n=o v* -r.i/q)!r(n+l 

where Re c > 1. Introducing Eq. 68 into Eq. 69 yields 

c ( ~ ( , ) = l ^ l + < C L _ < r ( ^ ) ^ * ) r(* + 3)g-"*» 
^-<" ~ - i ^ r ( 3 ) y Vr(4) r(3)2^ r(*) 

(£(2)_5r(3) + U 4 ) _ _ 1 ) ( ^ 
vnfn KHM ̂  9T7M is/ w ; 

(70) 
T(6) 6r(5) 2r(5) 16> 

More generally, if we let c[ denote the coefficient of x3bk in the table, then the above result 

can be represented as 

«=••>-£ + £ + £?£^g^r U + » + 4) . , 7 . , 
In their study of the statistical mechanics of the relativistic boson pah plasma in a magnetic 

field Daicic et al [18] have evaluated the large z-expansion of the Hurwitz zeta function by 

using Mellin transform techniques. They found 

where the Bks are the Bernoulli numbers. Since B2 and B4 equal 1/6 and —1/30 respectively, 

we find that Eq. 70 agrees with Eq. 72. Hence, by equating Eq. 71 to Eq. 72, we can see 

the connection between combinations of the cj[. and the Bernoulli numbers, which is 

Ik 
D2k = V(2k + \) YtCJ+2kT(j+2k+l) . (73) 
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TABLES 

TABLE 1. Coefficients for Asymptotic Expansion of S(a.6, x) 

k Ck 

0 1 

1 0 

2 x6 2/2! 

3 -x& 3/3! 

4 (x/4! + x 2 /4 • 2!) 64 

5 - (x /5 !+x 2 / 2 -3 ! )6 5 

6 (x/6! + 5x76-4! + x72-4!)6 6 

7 - (x /7 !+4x73-5 ! + x 3 /2-4!)6 7 

8 (x/8! + 17x78 • 6! + 7x3/24 • 4! + ar4/16 • 4!) 68 

9 -(x/9! + 41x712 • 7! + 137x7216 • 5! + ar4/12 • 4!) 6 9 

10 (x/10! + 167x730 • 8! + 65x748 • 6! + x 4/16 • 4! + x 5/32 • 5!) bxo 
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2 (0,2) 3 (0,3) 4 

(0,4) 

(2,2) (0,2) 

Figure 1: Tree Diagrams for c?, C3 and C4 



Figure 2: Construction of the tree diagram for C7 with duplicated paths. The 
final result has the path ending with (0,2) omitted. 

\ 


