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In this note, we prove that the Riemann hypothesis for the Dedekind zeta
function is equivalent to the nonnegativity of a sequence of real numbers.
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1. THE RIEMANN ZETA FUNCTION

Let [*n] be a sequence of numbers given by

(n&1)! *n=
dn

dsn [sn&1 log !(s)]s=1 (1.1)

for all positive integers n, where

!(s)=s(s&1) ?&s�21 \ s
2+ `(s)

with `(s) being the Riemann zeta function.

Theorem 1. A necessary and sufficient condition for the nontrivial zeros
of the Riemann zeta function to lie on the critical line is that *n is non-
negative for every positive integer n.

Proof. Define

.(z)=! \ 1
1&z+=4 |

�

1
[x3�2�$(x)]$ (x&1�2x1�2(1&z)+x&1�2(1&z)) dx (1.2)
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for z in the unit disk, where

�(x)= :
�

n=1

e&?n 2x.

Write

!(s)=`
\ \1&

s
\+ (1.3)

where the product is taken over all nontrivial zeros of the Riemann zeta
function with \ and 1&\ being paired together. It follows that

.(z)=`
\

1&(1&(1�\))z
1&z

.

A necessary and sufficient condition for the nontrivial zeros of the Riemann
zeta function to lie on the critical line is that .$(z)�.(z) is analytic in the
unit disk. Put

.$(z)

.(z)
= :

�

n=0

*n+1zn

for |z|< 1
4 , where

*n=:
\ _1&\1&

1
\+

n

& (1.4)

for every positive integer n. On the other hand, by (1.3) we have

1
(n&1)!

d n

dsn [sn&1 log !(s)]s=1=&:
\

:
n&1

k=0
\n

k+ (\&1)k&n

=:
\ _1&\1&

1
\+

n

& ,

and hence *n is also given by the expression (1.1). Let

.(z)=1+ :
�

j=1

aj z j. (1.5)

We find that

*n=n :
n

l=1

(&1) l&1

l
:

k1+ } } } +kl=n
1�k1 , ..., kl�n

ak1
} } } akl
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for every positive integer n. Expanding the right side of (1.2) in power
series (1.5), we find that

aj=2 :
�

n=0

( j+n) } } } ( j+1)
n! (n+1)! 2n |

�

1
[x3�2�$(x)]$ (x&1�2+(&1)n+1)(log x)n+1 dx

(1.6)

for every positive integer j. By (1.6) we can write

aj=4 :
�

n=0

(n+j ) } } } (n+1)
j! (n+1)! 2n+1 |

�

1
[x3�2�$(x)]$ (x&1�2+(&1)n+1)(log x)n+1 dx

=
4
j!

d j

dt j {t j&1 :
�

n=0

(t�2)n+1

(n+1)! |
�

1
[x3�2�$(x)]$

_(x&1�2+(&1)n+1)(log x)n+1 dx=t=1

=
4
j!

d j

dt j {t j&1 |
�

1
[x3�2�$(x)]$ (x&1�2[e(t�2) ln x&1]+[e&(t�2) ln x&1])=t=1

=
4
j!

d j

dt j {t j&1 |
�

1
[x3�2�$(x)]$ (x&1�2e(t�2) ln x+e&(t�2) ln x)=t=1

=4 :
j

l=1
\ j&1

j&l+
1
l! |

�

1
[x3�2�$(x)]$ \1

2
log x+

l

[1+(&1)l x&1�2] dx.

This expression implies that aj is a positive real number for every positive
integer j. Since the identity

:
�

n=1

nanzn&1=\ :
�

i=0

aizi+\ :
�

j=0

*j+1 z j +
holds, we have the recurrence relation

*n=nan& :
n&1

j=1

*jan&j

for every positive integer n.
By (1.1), *n is a real number for every positive integer n. If the nontrivial

zeros of `(s) lie on the critical line, then |1&(1�\)|=1 for every nontrivial
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zero \ of `(s). Put 1&(1�\)=exp(i%\) for some real number %\ . Then by
(1.4) we have

*n=:
\

(1&ein%\)=:
\

(1&cos n%\).

This implies that the number *n is nonnegative for every positive integer n.
Conversely, if the number *n is nonnegative for every positive integer n,

then

*n�nan

for every positive integer n. It follows that

:
�

n=1

|*nzn&1 |� :
�

n=1

nan |z|n&1=.$( |z| )<�

for z in the unit disk. This implies that .$(z)�.(z) is analytic in the unit
disk.

This completes the proof of the theorem.

2. THE DEDEKIND ZETA FUNCTION

Let k be an algebraic number field with r1 real places and r2 imaginary
places. The Dedekind zeta function `k(s) of k is defined by

`k(s)=`
p

(1&Np&s)&1

for Re s>1, where the product is taken over all the finite prime divisors
of k. Put G1(s)=?&s�21(s�2) and G2(s)=(2?)1&s 1(s). Define

Zk(s)=G1(s)r1 G2(s)r2 `k(s).

By Theorem 3 of Chapter VII, Section 6, of [4], the function Zk(s) is
analytic in the complex plane except for simple poles at s=0 and s=1, and
satisfies the functional identity

Zk(s)=|d| (1�2)&s Zk(1&s)

where d is the discriminant of k. Its residues at s=0 and s=1 are respec-
tively &ck and |d|&1�2 ck with ck=2r1 (2?)r2 hR�e, where h, R, and e are
respectively the number of ideal classes of k, the regulator of k, and the
number of roots of unity in k. Let !k(s)=c&1

k s(s&1) |d| s�2 Zk(s). Then
!k(s) is an entire function and !k(0)=1.
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Let [*n] be a sequence of numbers given by

(n&1)! *n=
d n

dsn [sn&1 log !k(s)]s=1

for all positive integers n. The aim now is to prove the following theorem.

Theorem 2. A necessary and sufficient condition for the nontrivial zeros
of the Dedekind zeta function `k(s) to lie on the critical line is that *n is non-
negative for every positive integer n.

3. PROOF OF THE THEOREM 2

Lemma 3.1. The identity

*n=:
\ \1&\1&

1
\+

n

+
holds for every positive integer n, where summation is taken over all non-
trivial zeros of the Dedekind zeta function `k(s) with \ and 1&\ being paired
together.

Proof. By Theorem 2 of Barner [1], we have the formula (cf. Chapter 2
of [2])

!k(s)=`
\ \1&

s
\+ , (3.1)

where the product is taken over all zeros of !k(s) with \ and 1&\ being
always paired together. An argument similar to that made for the Riemann
zeta function in Chapter 2 of [2] shows that the convergence of the
product (3.1) is uniform on compact subsets of the complex plane.

Since !k(s)=!k(1&s), we have

d n

dsn [sn&1 log !k(s)]s=1=(&1)n d n

dsn [(1&s)n&1 log !k(s)]s=0 . (3.2)

Since `k(s) does not vanish at s=0, we can write

log !k(s)=&:
\

:
�

m=1

\&m

m
sm (3.3)

where |s|<= for a sufficiently small positive number =, where \ and 1&\
are paired together in the summation over \. Since the product (3.1)
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converges uniformly, the series (3.3) converges uniformly for |s|<=. It
follows that

1
(n&1)!

d n

dsn [(1&s)n&1 log !k(s)]s=0=&:
\

:
n

m=1

(&1)n&m \ n
m+ \&m.

This formula together with (3.2) implies the stated identity. K

Define

.(z)=!k \ 1
1&z+

for z in the unit disk. Since the function !k(s) is analytic in the complex
plane of s, the function .(z) is analytic in the unit disk.

Lemma 3.2. Let

.(z)=1+ :
�

j=1

aj z j.

Then the coefficient aj is a positive real number for every positive integer j.

Proof. Define =v to be one when v is a real place of k and to be two
when v is an imaginary place of k. Let x=> xv be the variable in the half
space Rr1+r2

+ . Denote by |x| the product > x=v
v , which is taken over all

infinite places of k. If N=r1+2r2 , then the Hecke theta function 3k(x) is
defined by

3k(x)=:
b

exp \&? |d| &1�N (Nb)2�N :
v

=vxv+
where the summation over b is taken over all nonzero integral ideals of k
and where the summation over v is taken over all infinite places of k. Put
dx=> dxv . It follows from Theorem 3 of Chapter XIII, Section 3, in [3]
that

!k(s)=1+c&1
k s(s&1) |

|x|�1
3k(x)( |x| s�2+|x| (1&s)�2)

dx
x

. (3.4)

Let

|
|x|�1

3k(x)( |x| 1�2(1&z)+|x| 1�2 |x|&1�2(1&z))
dx
x

= :
�

m=0

bmzm. (3.5)
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It is clear that b0 is a positive number. We have

bm= :
�

n=0

(m+n) } } } (m+1)
n! (n+1)! 2n+1 |

|x|�1
3k(x)(1+|x| 1�2 (&1)n+1)(log |x| )n+1 dx

x

for every positive integer m. By computation, we find that

bm=
1

m!
:
�

n=0

(n+m) } } } (n+1)
(n+1)! 2n+1

_|
|x| �1

3k(x)(1+|x| 1�2 (&1)n+1)(log |x| )n+1 dx
x

=
1

m!
d m

dtm \tm&1 |
|x|�1

3k(x)(e(t�2) log |x|+|x| 1�2 e&(t�2) log |x| )
dx
x + t=1

.

It follows that

bm= :
m

l=1
\m&1

m&l +
1
l ! ||x|�1

3k(x) \1
2

log |x|+
l

( |x| 1�2+(&1) l )
dx
x

(3.6)

for every positive integer m. Since 3k(x) is positive for every x in Rr1+r2
+ ,

it follows from (3.6) that the coefficients bm are positive real numbers for
all nonnegative integers m.

The identity

z
(1&z)2= :

�

q=1

qzq

holds for z in the unit disk. It follows from (3.4) and (3.5) that

ckaj= :
j&1

m=0

( j&m)bm (3.7)

for every positive integer j. Since bm are positive numbers for all non-
negative integers m, we see that aj is a positive real number for every
positive integer j. K

Proof of the Theorem. Since !k(1)=1 and !k(s)=!k(1&s), it follows
from the product formula (3.1) that

.(z)=`
\

1&(1&(1�\))z
1&z

. (3.8)
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Since !k(s) does not vanish at s=1, we can write

.$(z)�.(z)= :
�

n=0

*n+1zn (3.9)

by using the formula (3.8) when |z|<= for a sufficiently small positive
number =. Since

:
�

n=1

nanzn&1=\ :
�

i=0

aizi+\ :
�

j=0

*j+1z j + ,

we have

*n=nan& :
n&1

j=1

*jan&j (3.10)

for n=2, 3, ..., where *1=a1 and a0=1.
If the nontrivial zeros of `k(s) lie on the critical line, it follows from

Lemma 3.1 that the numbers *n are nonnegative for all positive integers n.
Conversely, assume that the number *n is nonnegative for every positive

integer n. It follows from (3.10) and Lemma 3.2 that

*n�nan

for every positive integer n. This inequality together with Lemma 3.2
implies that

:
�

n=1

|*nzn&1 |� :
�

n=1

nan |z|n&1=.$( |z| ) (3.11)

for z in the unit disk. Since .$(z) is analytic in the unit disk, .$( |z| ) is finite
for z in the unit disk. It follows from (3.9) and (3.11) that .$(z)�.(z) is
analytic in the unit disk. It is clear that a necessary and sufficient condition
for the nontrivial zeros of the Dedekind zeta function `k(s) to lie on the
critical line is that .$(z)�.(z) is analytic in the unit disk. Therefore, the
nontrivial zeros of the Dedekind zeta function `k(s) lie on the critical line.

This completes the proof of the theorem. K

Remark. We know from the proof of Theorem 2 that *1=a1 , which is
a positive number by Lemma 3.2. An explicit expression for *n is implicit
in the recurrence relation (3.10) together with formulas (3.6) and (3.7).
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