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Abstract

For s # v, v € Z, Riemann‘s meromorphic Zeta function

£(9) =11 (2)n7i® = [T eEke +xE-

2 s(1 —s)

=51 -5s)
is represented in the form

Us) sin(g(l—s))+z(1_5) Si"(gs)

ey — n[3En | _gem ] _ e _ L
E (S) - sin(ms) Zn 0( 1) [Zn s (2n—1)+s] 22n=0b2n(5 2)
with
o log?"(x)] dx _ —mtn2x?
= 7000 [T E and 0(): = Tim(e 2 — e,
The non-trivial zeros { == + it } of the Zeta function are characterized by the identity of two

convergent series representatlons in the form

B~ Dbt = 51" [ ]

(2n- )2+t2

which do not allow negative values t2" < 0. The correspondingly defined entire Zeta function £**(s): =
sin(mts) £*(s) can be represented in the form

£ (s) = ¢'(s)sin(ns) = (1 — )Sm(m)[ _gr(ll——:%)] g(s) .

In the critical stripe the term in bracket is the Mellin transform of a Kummer function

_sr(14 -
112%52) , 0<Re(s) <1,

[ ()] 0

(M error correction in December 2024: the term ")

**)the representation is in line with the concept of ,.a self-adjoint operator with transform &(s)“, (EdH) 10.3. The concept
is also in line with the proposed Kummer function based Zeta function theory and a related alternatively proposed two-
semicircle method to the Hardy-Littewood (major/minor arcs based) circle method in (BrK).

z
*)the Kummer function ;F; G,;,z) is accompanied by the product representation ;F; G,;,z) = gé [ - Zi)ez/Zn
n

with only complex valued zeros with Re(z,) > 1/2 and imaginary parts lying in the horizontal stripes (2n — 1)1t <
|Im(z,)| < 2mn, n € N.



1. Notations and Main Theorem

For the notations we refer to (EdH). The baseline function for the Zeta function theory is given by Y(x): =
Y%, e"™% (EdH) 1.7. It is related to Jacobi’s functional equation of the theta function 9 enabling the
symmetrical form of Riemann’s functional equation in the form, (EdH) 1.7,

£(9) =31 (5) 77306 = [T Wed)e + 111 =E(1-9).

2 s(l s)

Riemann’s related entire Zeta function is given by £(s) = 2(5 —-Dr G) n‘gi(s), (EdH) 1.8. Alternatively to y(x?)
we shall apply the function

D)= P(x) — P(x?): = T Bp(x) == T (e72™X — ™) x> 10,

The main result of our paper is an alternative £*(s) —function representation with three s & (1 —s) symmetric
summands in the form

. U(s) sin(g(l—s))+((1—s) sin(gs) n ((Zn) U(2n) o 1 on
&(s) = pr— _Zn oD 55t Gacnrs) ~ 2 Zn=oban(s —3)

with
log?™(x)] dx

n = floo (I)(X) I:Z;():O (2n)! E .

A correspondingly defined entire Zeta function £*(s) is built by multiplication of £*(s) with @ ™) i.e.

£7(s) = §'(s) sin(rs) = (1 — 5) 22 [ﬂ 2 ()] 3(s).

The term (1 — s) corresponds to the principle term of the Riemann density function J(x) **); the term 320 |

an entire function of order one and order type ¢ = 1/2 with 22" (HS) =12 1( i) = [[,p=% (1 - ;) eS/" (LeB) p.

nZ
32.For 0 < Re(s) < 1 the term in bracket is the Mellin transform of the Kummer function ,F, (— 2, —mx ) (%)
i.e., formally with w(x) == Y5, 1F; ( S —n?x ) the zeta function {(s) can be represented in the form {(s): =

( )f x “J(X)

LX(***)_ For further detalls including the non-negative zeros of the Digamma function we

refer to the concept of , telescoping product representations” in (BrK).

") Note: @, (x) 20 forn=>2,x=1; ®;(x) <0for1<x<2; ®,(2)=0; d,(x)>0forx > 2. Putting @] ,(x) = -, (x), dj,(x) == —D, G)
for1<x <2, d],(x) =@5,(x) = 0forx =2, ®;,(x) = d(x) for x = 2, &3 ,,(x) = 0 for x < 2, the three terms of the sum &g, (x) + @3 ,(x) +
®; ., (x) > 0 have the disjunct domains 0 < x <1,1<x<2,2 < x < o; we note Riemann’s density function connection between {(s) and
the primes given by J(x) = —— [*" " log(s)x® & <, (@ > 1), which is zero for 0 < x < 2, (EdH) 1.11;

2mi Ja—ico

we also note the formula f°° qu)(x); = ‘22‘:' , (Grl) 3.552

Ss

) Riemann built his famous power series representation of his entire Zeta function E(s)- =T z= F( ) (s— 1)((5) by multiplication of £*(s) =

ffoll"(xz)[xs I L ﬂ ;S(ll 5=~ [ +7 ] multiplication of this

X 2 s(l s)

with s(s — 1) to govern the two poles of the term -2

sin(Zs)  sin(2(1-s)
term with sin(ms) gives 1sin(s) _ o (TZ—‘ s) cos (;—I s) E + %g] = cos (TZ—r s) [M + mg—g)] see also (EdH) 10.3 ,A self-adjoint operator with

2 s(1-s) s
2§(s)
s(s—1)
***) For Riemann’s density function J(x) the term log(s — 1) gives li; (x) =

transform &(s)“, and (EdH) 10.5 ,, as a transform”.

e 2B xds (a > 1), (EdH) 1.14,

z_mlogx a—ico ds

(***) the Mellin transform of the Kummer function in the critical stripe is given by M[ 1Fl( ;5 —mx )] (s)=m"z2 El )), (Grl) 7.612;

1F1 (E'E'X) ~\/_RY as x - oo, (OIF) p. 257); the zeros z,, v € Z — {0}, of ,F, (E'E'Z) are all simple, complex valued with Re(z,) > 1/2, and

(2n — Dm < |Im(z,)| < 2mn, n € N, (SeA); The related product representation is given by ,F, G%z) = ?egﬂ(l —Zi)ez/zn, (BuH) p.184; we
note that the , density” properties of the zeros are very much related to the negative zeros w,, of the Digamma function accompanied by
the additional asymptotics y, := n + w, ~ In (n)7%; the latter property implies that the negative zeros of the Digamma function fullfill the
Kadec-1/4 condition, enabling the definition of non-harmonic Fourier series based Riesz bases and related Paley-Wiener functions, (BrK),
(LeN), (YoR); regarding Riemann’s method deriving the formula for his prime number density function J(%), (EdH) 1.13.

M) = sMIBICS); MIGAY 1) = (1= MIRI(S); (TE) 21262 (5= DY) = e g Ty (1) s, with b = log(2m) ~
1-vy/2.



Main Theorem: For s # v, v € Z, it holds

. ((s)sin(g(l—s))+((1—s)sin(gs) n ((Zn) U(2n) o 1.2
§(s) = pryy Zn oD 5o T sl ~ 22Znzoban(s —3)
and

log?M(x)] dx

0= 17000 [T, 2

In proving the Main Theorem the essential step (which is proven in the next section) is

Lemma MT: Fors # v, v € Z, it holds

11 1w 7(1-s) n Z(Zn) 3(2n) 1-s eT™ dx
25(1 s) 2[ (gs)+cos(gs)] ta Zn 0( 1) 2n-s (2n 1)+s] f [X tx ]ZSmh(Ttx) x’

Proof of the Main Theorem: With

1 1
25(1 s)

§(s) = [ WED + x5 2 -

and

D)= () — Y(x2) = TL (e 2™ — ™) x> 1

the Lemma MT gives

Q) = — [® s 1-s79x | 1] ) 3(1-s) n [5(2n) ¢(2n)
§(s) = fl D) [x° +x7%] . + 2 [SinGS) + cos(ns)] +- Zn o(=1) + ]

2n--s (2n—-1)+s

Analogue to Riemann’s approach deriving his famous power series representation for £(s), (EdH) 1.8, "),
the first term can be represented in the form

— [P OGO + X175 T = 2 X o bon(s — "

Corollary: The set of non-trivial zeros {sn = % + itn} of the zeta function are characterized by the identity of two
convergent series representations

o 1 (2n) 2n)
T80 ban(Sn — D% = = B o(—1)" [F 4 20|

2n—-zp (2n—1)+sp
resp.

Zo(—1)"bynt2h = =¥ o(— 1)“((2n)[ T ]

)2+t2

Note: In case there would exist a negative value t3" < 0, the affected term on the left side changes its sign,
while the corresponding term on the right side would not.

) [x5 +x175] = 2vx [cosh (s - %) logx] and cosh (y) = Z;":D% with y: = (s - %) logx .
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2. Proof of the Lemma MT
With

1

—T[X
o —2Tnx
=- = =Y. € ,x>1
(P( ) = 2 smh(‘rtx) T e2mx_q Zn—l

the Lemma MT takes the form
Lemma MT: Fors # v, v € Z, it holds

1 1

— _ [®rys 1-s 113 i(1-s) n [¢(2n) ¢(2n)
2s(1-s) - fl [X tX ](P(X) + 2 [sin(gs) + cos(gs)] T Zn 0( 1) 2n-s T (2n-1)+sl’

Proof:

As — 4+ 1=

s=1 -s s(s 1)
(MiM) in section 4 *) in the form

the Lemma MT is a consequence of the integral and series representations as provided in
is) 1 2 n((2n) © q-s_ e ™ dx

Sin(gs) T os-1 Zn 0( 1) +f smh(nx) X

resp.

7(1-s) _ 1 2¢w (_1yn 7(2n) o o eT™ dx
sin(g(l—s)) — T[Zn=0( 1) (2n—1)+s fl X sinh(mx) x

) (MiM) p. 7: Special cases, 4.1 The case ¢ = 0

For the special case ¢ = 0 the integral

. o3
_15in(58) roo x17S

{(s)=— pral rreroe 2 Re(s) <0 (MiM) (4.1)
can be broken into two parts {(s) = ,(s) + {(s) where

6u(s) = ) 4 gim (T [ ims s (MiM) (4.6)

4o(s) = = Zsin (5) Tz (- 1" 522 (MiM) (4.8)

which are both valid for all s.
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