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The three conceptual ingredients:
the zeros {z,},.y Of the Kummer function ,F, G%z)

the Kadec 1/4 —theorem, and
the Schnirelmann densities of the odd & even integers, (BrK), (GiJ)

Applying the Hardy-Littlewood circle method to the binary Goldbach conjecture failed due to
insufficient (purely Weyl sum based) bounds for the minor arcs. Replacing the zeros of the (sin, cos)
based orthonormal system of the Hilbert space L, by the imaginary parts of the zeros of the
considered Kummer-functions enables a non-harmonic Fourier series based two-half-circles method
overcoming current challenges, e.g., that the Schnirelmann density of the odd integers is %, while the
S-density of the even integers is zero.

Putting f(x) := e the entire Zeta function £(s) is given by, (EdH) 1.8,
(*) §(s):=2TG)(s = Dr/24(s) = (1 = ) (SIM[—xf ()] (s) = §(1 = 5.
The alternatively proposed entire Zeta function is based on the Hilbert transform of f(x), defined by

£(5):= (1= W OMIWIE) =5 (1~ ) 2 G tan(ys) = (1= )¢ 2 2 (3)
with the related duality equation
§7(s) cot(39) = (1 = 5) cot (5 (1= 9)).
It enables a product representation in the form

{()6(1 —5) =vmE*()¢* (1 —5)%“1 _i)wr(l _?)

2} Z(-s)
The left-hand side is linked to the primes by the Euler product formula in the form
() =) =Tp=Tlormym . Re(s) > 1.

The right-hand side can be linked to several Paley-Wiener type product representations, where the
most prominent example is given by, (LeB) p. 32,

sin G5) = G [ (1 - 5)-

4n?
The zeros «, of the Digamma function provide the product representation, (Mel),
vQ () _ e s s
i - M (1m20) (14220
The zeros z, of the Kummer functions ,F, (3,3;2) are equal to the zeros of ,F, (1;3,~z), enabling a product
representation in the form

A (252) i (1252) =Tl (1~ 2) (1+2),

Technically speaking a missing appropriate approximating Paley-Wiener function to the entire Zeta
function £(s) is the root of evil of the only conditional convergent term  ¥,,,y=o Li(x?) + Li(x*~?) in the
formula for the Riemann density j(x). The zeros y, of the even Zeta function z(s): = £(1/2 + is) enable
the product representations z(s) = 5(0) [, (1 —%) Its related (absolute value) counterpart H(s): =
2012, (1 —;—2), (with 2,, = |y,| and ¥ 1;? < »), is symmetrical to the x-axis, but w/o information about a
critical line symmetry. Polya’s “fake” integral represention ¢ (s) of £(s) is built by the sum of an
appropriate Bessel function, (EdH) 12.5.

In a Kummer-function based Zeta function theory H(s) is replaced by Paley-Wiener functions in the
form

%H;.f=1(1_é)(1_ > ),inle(l—i) (1—1), Kn :=%+2niwn, On :=%+2niwn,

1-Kp On

providing an appropriate “fake” integral represention £**(s) to £*(s), which finally results into a
replacement of the only conditional convergent term ¥,,,,»0 Li(x?) + Li(x'~?).

The Kummer functions are related to the Whittaker functions. The corresponding one-side Laplace
transform, (Grl) 7.621, in the form

_p8t Z d
fome " Ztlel(ngt)Tt =n"%0 (g + i) , 1< Re(z) < 2.
4'4



enables an alternative definition of Riemann’s contour integral representation, (EdH) 1.4.
Riemann’s contour integral representation is derived from the integral representation of the Dirichlet

series
1 OOxd

) =S = s o

For the 15t derivative of the Hilbert transform of the fractional part function it holds

, Re(s) > 1.

e"lx

p(x) = =22 sin2mvx = — cot(mx) € H#,(0,1).
Correspondingly, in the critical stripe the ,function”
$*(): =5 Mlpp ()11 = s) = (2m)* I (1 = s) cos(5 Z){(1—s)

is defined as a complex—valued H*,(0,1) based distributional Mellin integral representation.
For h, =3%p ,— —— One gets

Gi(s) =Yo f x5~ 1[ log?(tanh )] dx for Re(s) > 0.

nE_r()

The function ¢;(s) can be interpreted as a complex-valued L%(0,1) based approximation distributional
integral representation of ¢*(s). The related density function of ¢;(s) is given in the appreciated form

LG L=y, 2og ).

2mi

We note that in the product representation of ¢{(s)¢(1 —s) the term (1 —s), generating the li(x) term, ,is
consumed” by one of the product representations. Putting

fi(x):=log (nsin(%x))dx , fa(x):= log(g tan (gx))

then for any divergent sequence of positive numbers 0 < o <a{® <a{” <., (k = 1,2) it holds, (PoG1)

()n11WTMMﬂ—ufmmt

n—>oolog( ) n

In other words, for the sequences {a{”} . k = 1,2, there is a pair of two number theoretical distribution
functions each with asymptotics ~ n/logn.

The distribution functions pair (f,(x), £,(x)) is supposed as the appropriate tool

i) to define an alternative ti(x) function approximation term =*(x) of n(x), simplifying the proof
of the RH criterion based on the term[li(x) — =" (x)] + [7* (x) — n(x)] = 0(Vxlogx)

ii) to prove the binary Goldbach conjecture based on the term =*(2x — p).

The building of the sequences {a{”} _, k =12, is based on the zeros of the considered Kummer
functions and the Digamma function. They enable gaps and density theorems dealing with the
determination of the rate of growth of analytic functions from their growth on sequences of points a,:

All zeros {z,},cy Of the Kummer function ,F, (— = z) are complex-valued. For the absolute values of their
imaginary parts |im(z,)| = 2rnw, and the negative zeros w,, of the Digamma function it holds

(++) n —%< Wn,—Wp <1 With 27w, = [Im(z,)|.
Remark: the Kadec 1/4 —theorem provides the link to the theory of Paley-Wiener functions; those are
entire functions of exponential type at most « that are square integrable on the real axis, which are
isomorphic to the functions of the Hilbert space L% (-, 7).
Remark: Appropriately condensed sequences of w,, -w,, €.g., in the form
Ay = —+@,/10 =0,vEZ,

“close” the Hadamard gap of indices sequences and fulfill the condition of the Kadec 1/4 —~theorem.

Remark: A striking generalization of the Kadec theorem is Avdonin’s 1/4 —in-the-mean theorem. We
note that the Avdonin condition 4, = n + 8, is fulfilled by the sequence -w, ~n — 1/logn.



Remark (KaM) p. 53 ff., (MaK), p. 46, (MoH) p. 34: the Schnirelmann density is analogous to a
“relative measure”, and like relative measure it is not completely additive. However, the multiplicative
distribution function property can be applied to define “independent events”. The related “relative
statistical independent” density functions (*) are accompanied by the concepts of a “relative measure”,
a “mean value of a function”, a “relative conditional probability” and the concept of “intersective sets”.

Putting b = w, , b{? =2 —w, it follows from (++)
n—1<all = Zﬁ’;l b <2n+1<a? = %Zi’;l b <2n+3.

Putting F@(x) = Yo 1fk( ) and 7' (x) = —(F(l)(x) +F<2>(x)) it follows with (+)

log (n/z)
T (x) ~ ﬁ ~m(x), n=[x].
In other words, the RH criterion li(x) — n(x) = 0(vxlogx) can be reformulated into

[li(x) = " ()] + [7*(x) — m(x)] = 0(Vxlogx).

Let G,,, denote the number of divisions of the even integer 2n = p + g into a sum of two primes, where
p +q and q + p are counted as two divisions and =(2n —u) = 0 for u > 2(n —1). Then the solution of the
binary Goldbach conjecture is about an appropriate asymptotics of, (LaEZ),

H(2x) = 02 Gyn = Tpezr m(2x — p) With H(2x) ~ 5 (

).

log (Zx)

The approximation formula =*(x) enables the definition of corresponding density function in the form

2x

H*(2%) = 5321 G = Speaa’ (2x =) ~ 5 (o )?
In contrast to the Stackel approximation formula, (LaE2)
G, =" 1 )anhz[]a oSk
nT105¢(3) qa(n) log n m 2 Mog x

the identical asymptotics of H(2x) and H*(2x) are accompanied by appropriate error estimates of the
underlying summands G,,, — G;,.

Remark: in the framework of the Hardy-Littlewood circle method the number of solutions of the binary
Goldbach problem equation 2n = p + g is equal to

R(n) = fol[ZPSZn e—zmpa][ngm e—27ripa]e—2n'i(2n)ada’ since fol e M dx = {(1) ijfr 3?3-

Remark: the Fourier series representations of the considered (distributional) functions £, (x) , f>(x) are,
(BeB) p. 200

%log (tan%x) =—-¥% 1—sm(2nnx) € L4(0,1) , %cot(nx) =Y sin(2mnx) =€ H*(0,1).

Remark: the above permits a re-examination of Kummer’s proof of Fermat’s theorem for regular
primes (EdH1), (KuE4), the Kummer conjecture (*) and the related contribution in (HeD). We note that
the set of the larger Hurwitz quaternion integers is a Euclidian ring domain, the norm of any prime
ideal is a prime number, and the Hurwitz quaternion integers (HQI) with 24 units are accompanied by a
HQl.pen, ® HQI,qq decomposition, (HUA) p. 23, allowing an extended Hurwitz-Schnirelmann density
concept, (**), see also (BrH), (HeE).

(*) (HaH) p. 457, i.e. “prime number classes p;, ps, ps containing infinite primes with densities (1 : 1) =&, 2 M enabled by a proposed “(Euler;

24" 24" 24

Kummer) pairing”, built on pairs of odd integer (4k — 3; 4k — 1) (where "4k — 1" may be split into odd quadrat numbers and rest) and related
(complex; quaternionic)-norms for unique prime factorizations, (StU). For prime pairs (p = 4k + 1;q = 4k + 3) we note (¢(p) =p—1=-e" foren; 9(q) =
q-1=e-f,u) Withe=2and k > 1, i.e., the roots of the related Gaussian two-part f, — periods are all real resp. are all imaginary, (WeH) §77.

Related tools are the “n-Kummer (Galois) extensions”, (LaS) & (MoP), and “Chevalley’s lost key of idéles (ideal elements)” (**), (NeJ), (MiJ). The

latter one avoids Dirichlet series density asymptotics with a Euler function ¢(n) factor, (MiJ) pp. 154 ff, which also plays a key role in the Stéckel

approximation formula for the number of prime pairs (p, q) with 2n = p + q, (LaE2).

We mention Kummer’s analogy to chemistry, (KuE1), where the molecules correspond to the multiplication of complex numbers, while their atom
weights correspond to the prime factors.

(**) We note that the Hurwitz quaternions “basis” is in line with the cubic characters based Gaussian sums framework of the Kummer conjecture,

and the “elliptic curves over Q” world. In the context of the concepts “spin”, “dual turns”, line geometry & kinematics, and “quaternions” we refer to
Study’s “movement indicator”, (BIW) §58. For a related combinatorial interpretation of the Rogers-Ramanujan identities we refer to (BeB3).



The Riemann {(s) function and the Riemann density function J(x)

For Re(s) > 1 the Riemann ¢(s) function is given by the Dirichlet series
o 1
((S) = Zn:lF
Mirroring the representation

w 1 1 o x° dx
Zn:l ns  r(i-s) fU eX—1 x ' Re(s) > 1

leads the contour integral representation in the form

r(1-s) po (=x)%d.
{(s) = [ g CO &

2mi JtooeX—1 x '

which is defined for all s € C, except a simple pole for s = 1, which is the simple pole of I'(1 —s), (EdH) 1.4.

The trivial zeros of {(s) are derived from the functional equation, (ApT) p. 266,

{((1—-s)=202n)" SF( )cos (—s){(s)

where the zeros of {(-2n) = 0 are the zeros of the term cos (%s) with {(1 —5s) =1+ 2n.

Remark: This functional equation is derived from the Hurwitz formula, (ApT) p. 257, for ¢ > 1, resulting into

(A=-s)= (2 o {e'”‘S/ZC(S) + e’”s/z((S)} 2605 EOHON

(2m)$

Remark: We note that the Hurwitz formula involves the periodic Zeta function, represented as the Dirichlet
series

F(x,5) = Snex o with F(1,5) = §(5).

Lemma:

) lim(s = DI(s) =y, (TIE) 2.1.16

i) ¢()-==1-3s{(s+1) -1} -2 (s +2) -1} -, (TIE) 2.14

i) {(s) = —=+y+0(s—1]), lim Shoi(=+1—logn) =y, (TIE) 2.1.16

iv) {(s) = S_il +5 [7([t] — ©)t=s~1dt and therefore log|(1 — 5){(s)| « log|s| + 1.
Lemma:

) 7o) = 1 _f@_ _ -
iy ¢'(0)= 2log(27r), 70 = log(2m), (TIE) 2.4.5

i) (s~ DI = e )np( %)e%, where b = log(2m) — 1 - ¥ (TiE) 2.12.6.



For the Riemann’s prime number distribution function
1 1 1
J(x):= 3 [an<x; + ansx ;]
and the related von Mangoldt’s density function
P(x): = Yy A(x)

the following asymptotics are valid

A
logn log X

J(X) = Ynex——

P(x) = x.
Their relationships to the Riemann zeta function are given by

log g (s) =s [, x™ Y (x)dx = [["x~*d] (x)

CD = s [ T e0dx = [ xS o).

Lemma (LaEla) 889, (PrK) p. 231: For y,(x): = %{w(x +0) —y(x — 0} it holds

P I
Yolx) =x = 2,5 = £(0) —log(1 - 3),
where

%log(l —xi) g —,x?>1 and %’(0) = log (2m).

The density function 1, (x) corresponds to y(x) for non-prime number powers x # p;™, otherwise y(x) —%logpo. For
x > 1 itis continuous for non-integers x > 1 and for integer non-prime number powers. It is not continuous to
both sides of non-prime number powers. The same holds for the series Zp WhICh is also convergent for 0 <
x<1.

Regarding the known asymptotic of the density function

1 xP
2oy

p

we note that
. L1 P 3 P '
Y@ ~x it lim ¥, = lim %, log () = 0.

We further note the special representation (r = 1) of the von Mangoldt function with the zeros of the Zeta
function in the form

Xle(t)
X fO Zp 1-p 21

2n+1"



Remark: Regarding the asymptotics of {(o + it) we note

i (o + it) = 0(logt) = O(t%) for o > 1, (LaE1la) § 46
i) (o + it) = 0(logt) = 0(t-°*%) for o < 0, (LaE1a) § 228
i) o+i)=0 (7 logt)=0(r7 ) for0 <o <1, (LaElb) § 240,

Lemma (Backlund’s estimate of N(T), EdH) 6.7: let N(T) denotes the number of roots between
0 < Im(s) < T, then the relative error in the approximation

N~ Liog (£) -1

21

is less than a constant times T-t as T — oo.

Lemma:

) —— 7= e Mg (1+2) e o =15 (1+2) (1 + %)7 , (Grl) 8.322

r(1+§

1
i) e¥® =x[[2, (1+—)e 5, (Grl) 8.364.
x+k

Lemma (PaR) p. 41:
FC+iv){2+ iv) € Ly(—o0,00),



The entire Riemann &(s) function

Lemma (EdH): for the entire Zeta function

£6):= (=D (5)n
it holds

) () =81 -5)

[lel) (x)]

i) &(s) = 4f x4cosh[ (s - —) logx] dx

x2y’(x)
ii) §(§+it) 4f” [ v ]
iv) £(s) = Do zn(s —;)2", EG+it) = ZF(—1)"az, t2"

where

g e d @] g4 Glogx
=4 fl dx x @2n)!  x°

x4 cos ( logx) %

2™ dx

v) §(s) =&l (1 - %) where £(0) = —¢(0) = §
Vi) §(3+it) = £ () Meetewo (1~ ) where p, =+ ia;, (EdH) 1.16.

The entire function &(s) is of order ¢ = 1 with finite order type as on the circle |s| = r for its maximum
modulus function it holds M(r)~ %rlogr.

The function % has only zeros on the negative x-axis. The entire function

1 Yz z _Z
ey~ ¢ M= (1+5)e™=

is the most prominent example where the density of the zero set is finite, while the canonical product
of order one is of maximal type, i.e. logM (r) = Crlogr. The ,root of evil“ in this case is the absence of
a symmetry in the distribution of zeros, (LeB) p. 32).

The most prominent example with ,symmetrical zeros* is given by
in(Cs)=CEHT, (1 - i)
sin (55) = (55) [n=1 e

with finite order type ¢ = n/2 and logM(r)~§r. The ,root of evil in this case is the presence of a
symmetry in the distribution of zeros, (LeB) p. 32.

Regarding the distributions of the zeros of {(s) and é(s) it holds, (InA) p. 48,

i) The zeros of £(s) are all situated in the strip 0 < ¢ < 1, and lie symmetrically about the
linest=0and o =1/2

ii) The zeros of {(s) are identical (in position and order of simplicity) with those of £(s), except
{(s)has simple zero at each of the points s = —2n

iii) &(s) has no zeros on the real axis.



We note the following equivalent critera for the RH:

i) n(x) = Li(x) + 0(\/x log x)

ii) n(x) = Li(x) + 0(x'/?*¢) , £ > 0, i.e. the relative error is M = O(x_%_g) £>0
iii) P(x) =x + 0(xlog?x)

iv) The series Y;_, u(n) n~* is convergent for Re(s) > 1/2 and % =y, ”T(l':).

Laguerre-Polya class LP of functions consists of the entire functions having only real zeros with
a Weierstrass factorization of the form

az9e%Pz* [, (1 — z/a;)e?/®,

where a,a, a; are real, p = 0 and g is a nonnegative integer, and «; are the nonzero real
numbers such that 2,;”:1% < . The subset LP* consists of all elements of order < 2. In this case
k

B is neccessarily zero.

RH criterion (CaD): If the function
2(t):= &(1/2 + it)
can be realized as a convolution
E() = (K xdF)(D),
yvhere K(t) € LP*, i.e., is an entire function from the Laguerre-Polya class of order < 2,
ie.
cz9e“ [, (1 — z/ay ) e/ %,

where c,a, a; are real, and g is a nonnegative integer, this would prove the RH.

Lemma: (PaR) p. 77: The even Zeta function £(z): = £(1/2 + iz) has all its zeros in the strip |Im(z)| <
1/2. Let z, denote its zeros, then

£(2) = £(0) [I%,(1 — —) with 2 152 < oo where 4, = |z,].

Putting

it holds log |%| = 0(1) along the imaginary axis. Thus, because of

logz(iy) = 0(y) + logl’ @) ~ iyloyy. (v >0),
it follows
logH (iy) ~ Zylogy
and therefore

Z2(0)

¥ lo ax

logy Y

2 - —%aSy—>00.

Lemma (PaR) p. 41:

r(g + i) g + iv) € Ly(—00, ).



10

2

Lemma ((PaR), p. 86: Let &(z) = [Iy-,(1 — E—AZ) with lim 2 = 1,
T An n—oo n
then
lim 2920 _ 4
y—oo y
22 . n .
Lemma (LeN), p. 92: let @(z) = [I;~,(1 —=) with lim — = D, where D is real, and such that for some
Zn n—00 Zp

d>0,|z, — zy| =dln—m]|. Thenfore > 0,asr -» o

I) (I)(reie) — O(enDlsin9|r+£r)
ii 1 _ —nD|sind|r+er
”) ¢(rei9) - 0(6 )
1 — &lznl

iii) T O(ef" ), n - oo,

Lemma (LeN) p. 89: If A,, satisfies r{inololl =D and for some ¢ > 0, 1,41 — A, = ¢, and if

F2) =5 (1-2)

A%

then as n - oo:

1 _ el
P~ 0T
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Riemann’s method for deriving the formula for j(x)

The Riemann’s formula for

(o) d.
JG) = = [ 10g § () xS
is derived from the Fourier inverse of

lag((s) f J(x)x™S71dx ,Re(s) > 1.

The principal term is given by the i, (x) — function, (EdH) 1.14,

1-¢ dt x dt 1 1 a+iv d log(s—l)] s
oot I ) [ x5ds.

li;(x) = —ll(x +i0) + li(x — i0) = llmf

+elogt  2milogx”a—i® ds

The tool to derive this term is given by the auxiliary function

211:1 log x 7a—1o ds s

oo a [log(1-3)
H(ﬁ) 1 fa_+'1 i[og B ]xs ds

where a > Re(fB) and where log(1 — %) is defined for all complex numbers g other than real numbers

B < 0tobelog(1—p)—log(—p).Let C~ denote the contour which goes over the lower semicircle
from1—eto 1+ ¢ andlet C* denote the corresponding upper semicircle. This auxiliary function is
also applied to derive all other terms.

The other two critical terms are the ,oscillating“ term and the Riemann error function

(4) t = SimpysolLiGx?) + LG P)}, (B) + [°—=

t(1-t?) logt

derived from the formulas

o q [Zlog(1->) .
fa+l00 [7[’] xs ds = Zlm(p)>0 {fc+t—dt + fC log dt}

logt

A)=XH(p) =

2mi log x *a—1© ds N

2milog x Ya—1© ds s logt tlogt

1 1 io d |logl\1+5 o t—2n-1g¢ 0o (B9, t™2M)dt
(B) = ——— [ —[L] xSds ==Y H(=2n) = T, [ = [ @i

in combination with the

Lemma:
i) For Re(B) > 0 when x is a fixed number with x > 1, it holds
fﬁif; = foxﬁd—u =Li(xF)—in, m(B) >0
fc_if;: = foxBl:—u = Li(xP) +inm , Im(B) < 0.
ii) For Re(B) < 0 when x is a fixed number with x > 1, it holds

H) == [P e =— [

X logt Blogu
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The Kummer function ,F; Gzz)

The zeros z, of 1F1( ) are the zeros of 1F1( —z) due to the relationship
() = et (14-2),

Lemma (SeA), Appendix: all the zeros z,, v € Z — {0}, of the function ,F, ng) are simple and complex

valued;

i) they satisfy the asymptotic formula

z, = 2miv + [5 log2mlvl + logyVm F iZ] (1 — ) — =+ 0 (“51)), v - Foo;

4miv 4miv

ii) they lie in the horizontal stripes
(2n—1Dr < |Im(z)| < 27n,n € N;
iii) their real parts satisfy the asymptotics

Re(z) = 3log2mvl +logym +—+ 0 (“51)),v - to.

- 16v
Note (SeA): ,F; (%%z) is not of exponential type = and cannot expressed in the form
f_nnemLm vark(t) < oo , k(+m ¥ 0 # 0).

(7‘[2—t‘2)1/2 !

Note (SeA): Only in case of Re(c) = 2Re(a) the function F(z) = e~ ,F,(a, c, 2miz) belongs to
Skeay 1-€. |F(2)| = | z| Re@emlm® where S, consists of so-called sine-type functions.

Lemma (BuH) p. 184: the product representations of 1F1( , ,z) and 11«"1(1;§,z) are given by
13 L e £ 3 27 oo -=
F (E,E;Z) =es’ [[2., (1 - Zi) em, F (1,5;2) =e3’ [[7, (1 + Zi) e .
Corollary: it holds

F(G2z) R (L2) = e T (1= 1) (1+ 2).

Lemma (SIL) p.60:

i) if Re(z) > 0, z > oo, then ,F, G%Z) = %e?z{l + O(Ii_l)}
i) i Re(z) < 0,2z~ oo, then ,F, (5.3:2) = - {1+ 0 ()}
i) if Im(z) = 0, x - o, then 1F1( ; ,logx)~ %% 1F1( 150 log ) ilo;x
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A Kummer function based Zeta function &*(s)

(BrK): The entire Zeta function &(s) is given by, (EdH) 1.8,
() §(s):=5TC)(s = Dr/24(s) = (1 = )S(HM[~xf (0] (s) = £(1 ~ ).

Let M and H denote the Mellin resp. the Hilbert transforms. The proposed Kummer function based
Zeta function theory in (BrK) is based on the following replacements

flo) = e o fa@) = ED(rx) = 2x F (15, —nx?)
MIFI(s) = 3T () o MIEEIE =3 (2 tan Cs)
PO?) = i f(Vn) o Pl = B fu (V).

For —1 < Re(s) < 1t enables the definition of an alternative Zeta function in the form

£(s):= (1~ )My ()I(s) = 2 (1 — ) () 2T C) tan(Zs)
accompanied by the duality equation in the form
&' (s)cot(5s) = & (1~ s)cot(5 (1~ ),

i.e. in the critical stripe the function &*(s) has the same zeros as the entire Zeta function £(s).

Lemma:
1 1 e s s sin (3s) Mo 5 s
m oy () (1-5) T = (14 5) (1-3)
Lemma:
S T _ T 1 _ s 1
F(E) tan(;s) B cos(gs) F(l—%) N sin(%(l—s)) F(l—%)'
Corollary:

(A - 5) =VEE©E( - )Qr(b_)mp(l_z)_

2 5(1_5)

where the product formula for the left-hand side is given by the Euler product in the form

1

(1 =5) =Ty iy Re(s) > 1
resp.
{(%4—5)((3_ S) HP\/— p—s\/—\/_ps 'Re(s) > o

Remark (ReH) p.145: The Haar scaling function is an universal scaling function of genus g = 1. Its scaling equation for rank m is
@(x) = Yo<ken @ (mx — k). This corresponds to the scaling vector y,,: = {1,1,1,1,...1} of rank k for a Haar matrix of rank k, playing a
key role in the Bagchi-Beurling-Nyman RH criterion, (BaB). Its Fourier transform is given by

90 = Fon () (9 Wit o= £ 555 0

Taking the limit one finds the interesting infinite product formula

1

. 2
sine(mg) = 7}11330 e [TFom (%) =1a- (1%)) T rarora-o’
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Kummer and Whittaker functions related Mellin and Laplace transforms

Lemma (Grl) 7.612:

0 dt r(a-b)r
[t Fi(ac,—t)% = r(b)%% , 0 < Re(b) < Re(a).

Corollary: For 0 < Re(s) < 2 it holds

S S
fooo x; 1Fy (1;;. —X)d—x =2 fooo x° 4Fy (1}2, —XZ)% = ﬂil"(z)r(_l 2 .

x x 1 1

Corollary: For —1 < Re(s) < 1 it holds

w st 3 ax _NETEOIED) V(s n
fo x2 1F (1.5,—36)——771,(1_%) —71"(5) tan (ES)'

Corollary: For 0 < Re(s) < 1 it holds

o 5 13 dx © 13 2) dx F(%)
R (i) T =2k Gl ) T =

For the Dawson function
X

D(x):= e‘xzj e’ du
0

the following representations are valid

Lemma:
i) D(x) = [, " sin(2xu) du (Grl) 3.896
ii) D(x) = xe™ ,F, G,;;xz) =x,F (1;2, —xz) (LeN) p. 272.

Remark: The Hilbert transform of the Gaussian function f(x) = e~™" is related to the Dawson
function by, (GaWw), (KoO),

fu(x) = H[f](x) = \/%D(\/Ex) = 2x ,F, (1;2,—7rx2>.

Corollary: For —1 < Re(s) < 1 the Mellin transform of the Dawson function is given by

o 3 dx _ oo St1 3 dx_x/ﬁ“%)r(%)_ﬁ s T
Jy DG 7=y xRy (1'5'—")?—77“1_;) =51 () ren G

resp.

2

\/—EM[D](S) = %F G) tan (gs).

Remark: The asymptotics of the Dawson function D(x): = e™*’ fom e’ du and the Digamma function ¥(x)
are related to the logx function by ¥ (x) + D(x) = (logx — i) + i = logx.
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Lemma: (Grl) 7.643:

o x? 2 b? 2
fo x*e zsin (bx) F; G —2v,2v + 1,%) dx = \Eb‘“’e—T F G —2v,2v + 1,%), b >0, Re(v) < —%.

Corollary:

2 b2

o o X . 1- 2 _bZ 1- b2
fo x%e” zsin (bx) {F; (Ts,1+§,x7)dx=\/§bse z | F) (Ts,1+§,7),b>0,Re(s)<—1.
Remark: We note the formulas

i) log (tanZx) = 2%, " sin(2mnx) € Ly (0,1), hy = Ly == = Hyy — 2 H, , (EL), (EIL1)

i) ~cot(mx) = Y-y sin (2mnx) € H*,(0,1), (BeB) p. 200.

For the Whittaker functions, (Grl) 9.220

1
M, (2) = z""2e7?/2 |F, (u -1+ %, 2u + 1,2)

it holds

Lemma (BuH) p. 118, (EpA) p. 215, (Grl) 7.621:

—v F(1+24) TQ=V)IGHptv)
FGutd)  [GHu—v)

[ e 2 My, (bt) dt = b . Re(v+3+u) > 0,Re(2—v) > 0.

Putting v = —2— =, 1:= u = - one gets

o _b, s 1 s,
Jy e72 't iM1i(bt)Z = b*3ti0 (—E), —1 < Re(s) < 1.
o t 2

Restricting to the domain —1 < Re(s) < —3/4 it follows with b :==n® and —z = 4s+ 2,1 < Re(z) < 2

o _p8L _S_1
et nuto% s (-2) <)
on t 2 8 4

with convergent Dirichlet series Y7, n™% < oo.
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Asymptotics of the zeros of degenerated Hypergeometric Functions

(SeA): Suppose that the sequence Z = z, € C, has the asymptotics
(*) zp=@®) +0(1),n - too,

where ¢(n) - «. The numbering of the sequence Z is said to be consistent with the asymptotics (*) via
the index set T if there exists a bijection T < Z preserving this asymptotics.

From (SeA) we recall the following two main results:

Theorem 1. Suppose that a,c € Z and a,c,c —a € C —{-Z,} . Then

1. all the zeros of the function ,F,(a, c; z) are simple and they satisfy the asymptotic formula

r(a) LT c-2a
ot (- 2)|a+

n 2a(a-c)-c +0 (109|”|))’ n - +oo;

2min n? -

**) z, =2min+ [(c —2a)log2m|n| + log

)

2min

2. the numbering of all the zeros of the function ,F, (a,c; z) is consistent with the asymptotic
expansion (**) via the index set T = Z — {0}.

Theorem 3.

1. Supposethatl <a<c<a+1andc=2ifa=1.Then all zeros of ;F (a,c;z) lie in the half-
plan

Re(z) < —(a—-1++1-(c—a))?

2. Supposethatl <a <1,c=>1+a, moreover, c # 2 if a=1. Then all zeros of ;F;(a,c;z) lie in
the half-plane

Re(z) > (Wc—a—1++1—-a)?.

3. Supposethat0 <a <1,a<c<1+a, moreover, c # 2 if a=1. Then all zeros of ,F,(a,c;z) lie
in the horizontal stripes

2n—-1Dr < |Im(2)| < 2nn,n € N.
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The Digamma function ¥ (x) = log'T' (x)

For the Digamma function ¥(x) = log'T'(x) the following formulas are valid

) P =y - G )
i) Y(z) =logz+ 0 (Ii_l) =logl'(1+z) —logl'(z) + O (é)
iii) % = W(s)% resp. —logr'(s) = log¥(s) — logl''(s).

Lemma (NiN) p. 99: for every ¢ > 0 there is a R > 0 that

|¥(x) — logx| < e for|x| =R > 0.

Lemma (NiN) p. 99, (SeP): Let w,, denote the zeros of ¥(x) n € N,

i) all zeros of ¥ (x) are real; there is only one positive zero w, ~ 1,461, (AbM) 6.3.19
ii) all negative zeros w,, of ¥(x) lie in the intervals w,, € (—n,1/2 —n).
Lemma (NiN) p. 99:

i) the sequence y, :=n+w, , n € N, is characterized by the relations

Y(1-wy) =¥Yn+1-y,) =ncot(ntw,) = mcot(m(—n + y,)) = cot(my,),

i.e.
1
Yo = —arctan (w (1fwn))
ii) it holds y,,> -y, € (0,3) and for large n
n cot(my,) = logn + §,, withlim &, = 0,
n—-oo
resp.
_l T _ 1 6;1 . r
In = naTCtan (logn+8n) ~ logn + logn ' rlll—>nolo =0
1 1 o .
i) 2w - w,) = Zot(mw) = Teottmyn) = = 1 = i sy (NIN) S. 51
Corollary: ll1”(1 + |wy|) ~ .
y: > wy, G

Note: The asymptotics of the sum of the Dawson function D(x): = e fow e*’du and the Digamma
function ¥ (x) is related to the logx function by ¥(x) + D(x) = (logx — i) + % = logx.
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The common denominator of the zeros of ¥ (x) and ;F; ng)

The Hilbert transform of the Gaussian function f(x) = e~™" and the Dawson function
D(x):= e %’ f0°° e**du are linked to the considered Kummer functions by,

) fu@) = HIf1(x) = =D (V) (Gaw), (KoO)
ii) D(x) = xe ™ ,F, (%,%;xz) =x,F (1;%, —xz) (LeN) p. 272
iif) fom et sin(2xt) dt = x ,F, (1,2, —xz) =xe™* |F, G,z,xz) (Grl) 3.896.

Their asymptotics are linked to the Digamma function ¥ (x) and the logx function by

~ _Ayy s
Y(x)+ D(x) = (logx o)+ = logx.
The link to Ei(x) = f_xooe?tdt is given by, (OIF) p. 258, (AbM) 13.1.4,

F(lix) s for x -» o
171\27 2 N )

1
The function F(z) = e~ ,F, G,%,Zm’z) belongs to S1, i.e. |[F(2)| = |z| ze™™®! where s,
2
consists of so-called sine-type functions, (SeA).

Lemma (SeA): The imaginary part of the zeros {z,},ey Of the Kummer function ,F, G%z) are all
complex with Re(z,) > % For the absolute values of the imaginary parts of {z,},cy it holds

n—1/2 < w, <n with 2nw, = [Im(z,)|.
Lemma: The zeros {wgy, w,},ey Of the Digamma function are all real and negative, except w,. It holds

—n<w,<1/2—n,1-—w,~— 0461 € (—%,0) (NiN) p. 99, (SeP).

Corollary: for w, € (-n,1/2 — n) and w,, :=€ (n — 1/2,n) it follows

*) Wy — wy,| len—ml, lim — = 1, |w, — W, zlln—ml, lim — = 1.
2 n—oo Wn 2 n-—oo Wn

Note: The above conditions (*) are the standard prerequisite of ,gaps and density theorems* dealing
with the determination of the rate of growth of analytic functions from their growth on sequences of
points a,, ((LeN). The more sharper Kadec condition plays the central role in the context of Paley-
Wiener functions and the related theory of non-harmonic Fourier series

Lemma: Let a,, a_, = —a, be a sequence fulfilling the conditions n — % <a,a_, <n. Then the ,retarded”

_ 3aytayi

sequence a; = —-—*= vEZ fulfill the Kadec condition

* 1 1
() v—a;| <L <, VEZwhereaq, € (O’E)

O With respect to the single positive zero of the Digamma function we note the auxiliary function

GW):=Gu+iv) = (w—2g) [Iy (1 _:’_n) (1 _Z_n)

playing a key role in the proof of the Levinson-Kadec theorem XVIII, (LeN) pp. 48, 55.
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Kadec’s Theorem (YoR) p. 36:

If {1, }nez is @ sequence of real numbers for which |1, —n| < L < 1/4, then {e“nf}nez satisfy the
Paley-Wiener criterion and so forms a Riesz basis for L, (—m, 7).

Kadec’s theorem can be improved under ,small* displacements of the 4, ‘s.

Corollary 1 (YOR) p. 164: Let {1, ,4,,45, ....} be a sequence of points lying in a strip parallel to
the real axis. If the system {e““’(’ln)f} is a Riesz basis for L, (—m, ), then so is {e“n t}.

Lemma (IvS): On addition of one exponential the Riesz basis a {e?"»*} _ forms a Riesz basis of
fractional Sobolev spaces H(0,1) of order g with 0 < 8 < 1 and g # 1/2. Let {e*"*»*} _ forms a Riesz
basis for L%(0,1). Then for each number yu, which do not belong to the spectrum {,.},.c;, the exponential

ili ®B) — 1 2midpx 2Tipx i i ™*
families E, {(1+|2m1n|b’)e }nEZ u {e?m#*} form a Riesz basis for the Sobolev space H; (0,1) ©.

A striking generalization of the Kadec theorem was discovered by Avdonin:

Avdonin’s theorem of i —in the mean, (YOR) p. 178:let 1, =n+6,,n=0,+1,+2,...,be a
separated sequence of real or complex numbers. If there exists a positive integer N and a
constant d, 0 < d <, such that

|Z(m+1)N 5k| < dN

k=mN+1
for all integers m, then the system {e*»*} _ is a Riesz basis for L}(~m, ).
For By, =" with m — > < a,, <m it holds

1

3
Z<.Bm_ﬁm—1 <Z

i.e. the following theorem can be applied with @ = % providing a link between the zeros of the Kummer
und Digamma functions, the related non-harmonic Fourier series and the Weyl sums in the following

form
cot (§) — & < |Liky e™2hn] < cot (§), for every ¢ > 0.

Theorem (LaEl):letm>1,B,real, 0< O <B, =1 <P3—PB2 < Pm —Bm_1<1-06,and

S =Sy = |Xne1 on| With 0,1 = e~ 2mipn

Then it holds:
i) Sm < cot (5 0);
i) For @ = 1/2 and every positive fraction @ < 1/2 with odd nominator and odd
denominator: S, = cot (5 0);
ii) For all other 6 with 0 < © <1/2: S, < cot (50);
iv) For all ® with 0 <@ <1 andevery e >0: S, > cot (29) —&.

O We note that according to the Sobolev embedding theorem any g € HE;‘(O,l) with 8 < % is bounded, i.e. |g(x)| < c.
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1/2

The Hilbert space H?,,, = I;7/* and Dirichlet series

In this section we are concerned with Hilbert scales Hf = 1$ , « € R, which are built on the 27 —periodic
Hilbert space L%(I") where I := S*(R?) denotes the boundary of the unit circle sphere. Then for u € L{(I")
and for real g € R, v € Z the Fourier coefficients

— i ivx
u, = 27Tgﬁu(x)e dx
enable the definition of the norms
lull} = SreclvI® |uy |2
Remark: The Dirichlet series
f($):= I ape ™9™, g(s): = L5 e *1o9"

are linked to the (distributional) Hilbert space H,,, = 12‘1/2 by ((EdH) 9.8, (NaS))

((F9)_, 1= lim = [ F(1/2 +i6)g(1/2 = it)dt =35 > anb,

Theorem 11 (HaG): Let s = o + it and u, = logA,, and the series Y, a,e #n convergent; then if ¢ > 0
the following definite integral representation is given

- _ 1 (oo —1.s79x
D=1 Ape~Hn® _Ts)fo x*[ane "5]7

Theorem 13 (HaG) p. 13: if the series Y%, a,e % is convergent fors =g +iyand ¢ > 0, ¢ > 8, 1, <
w < 1,41 then

c+ioo ds
— [T f() e S =T ar,

the path of integration being the line ¢ = Re(s) = c. At a point of discontinuity o = 1, the integral has a
value half-way between its limits on either side, but in this case the integral must regarded as being
defined by its principal value. The principle value is the limit, if it exists, of

c+iT ds
sz i f(s)e”
which may exist when the integral, as ordinarily defined, does not.
The theorem 13 above depends upon the following

Lemma (HaG): if x is real, we have

1,x>0
c+oo ds 1
_J‘ xsews — _’x=0,
2mi Y c—io N 2
0,x <0

it being understood that in the second case the principle value of the integral ist taken.
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Lemma (EdH) 9.8: It holds
2wl JE@Pde = log

and therefore

. - .1 (T |~ w 1
i) 12012y, = %ﬁ;j_”:(ﬂpdt =Y, =0(1) =00

, ~ » 1 2 11 o um]?t
i) IR =T =0@) =T = [ dx = [T, MG

Remark: For each positive real number x the Schnirelmann density is defined for a subset A of the set
of positive integers N by

0<o(A):=inf "™ <1 with A(x) = Naeea 1.

asx
The function A(x) is called the counting function of the set A. For x > 0 it holds

0 < A(x) < [x] <x and so 03%31,

In the context of the (distributional) Hilbert space Hi’l/z = 12'1/2 we propose the following extended
Schnirelmann density g € [0,1] concept considering sequences d = (a,)ney € l;B:

lim Am)

n—-oo N

1 -
S Rt lan = lldl2, < oo

Remark: The distributional Hilbert space H*, plays a key role in (BaB), where the Nyman criterion is
reformulated into a purely functional analysis weighted 12 —Hilbert space framework. The considered
Hilbert space is about of all sequences a = {a,|n € N} of complex numbers such that

Tne1 Onlan]? <o with < w, <2
which is isomorphic to the Hilbert space H_; = [;1.

Remark: for y:= {11,1,1,...... } then it holds

2 w 1 2 . 1
IVlI2, =X <=7 ley el

The Bagchi-Beurling-Nyman RH criterion, (BaB): Let
vie={p@®|n=123...} for k=123,..

and I, be the closed linear span of y,. Then the Nyman criterion states that the following
statements are equivalent:

The Riemann Hypothesis is true if and only if y € I},.

Remark: The Riemann Hypothesis states that {(s) # 0 forall s=o +it with 1/2 <0 < 1, i.e.

1 ()
HOM4O)

has no poles in case of 1/2 <0 < 1.
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{(s) and a Dirichlet series in the form {;(s) = Z;‘{;lh—”n‘s

n

Lemma (Grl) 4.224:
fog log? sin(x) dx = g[logZZ + ?—: :
Lemma (Grl) 3.761:
fowys sinydy—y =T(s) sin(gs), 0<|Re(s)| <1
fowys Cosydyy =T(s) cos(%s), 0 < Re(s) < 1.
Lemma: let M denote the Mellin transform operator. Then it holds
M[xh](s) = —sM[R](s).

Lemma (TIE) Il, (BeB) (17.12/13): The Fourier series representations of the fractional part function
p(x): = {x}: = x — [x] and its related Hilbert transform py (x) = H[p](x) are given by

) p() =5 IP TR € 15(01),5(0) # 0
i) pr(x) = B¢ L% = — 2log 2 sin(mx) € L§(0,1) , py(0) = 0.

Corollary: In a distributional sense it holds

i) p'(x) = =23F cos 2mvx € H*,(0,1)
ii) pr(x) = =2¥ ¥ sin2nvx = — cot(mx) € H*,(0,1).

Lemma (TIE) Il:The following Mellin transform representations are valid
i) (s) =—s fowx_sp(x)i—x, 0 <Re(s) <1
ii) (s) =—s f:x's [p(x) —%]d—x , —1 < Re(s) <0.

X

Remark: The following lemma is valid primarily for —1 < Re(s) < 0. However, the right-hand side is
analytic for all values such that Re(s) < 0.

Lemma (TIE) II: for —1 < Re(s) < 0 it holds

() = =M [p(x) = 3] (=) = SM[p'()](=s) = = 2m)’I (1 — 5) sin(E5)I(1 - ).

VS

Proof: for 1 < Re(1 — s) < 2 the Dirichlet series Zi"; is convergent; as p(x) € L%(0,1) term-
by-term integration is justified in the following, i.e., it holds

(2mv)s

_ Syl (P B _ S o
((s)—hzlvfox sin2mvx— = — 37—

"y~ siny
fo y smyy
= - @O [=I (=9)] sin(}){(1 =)

= i(Zn)SF(l —5) sin(%s)((l —5).
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Let
1

n —
k=13p—1

hn = Zn—%Hn,nEN,Where H Zk 1k

denote the harmonic numbers. Putting

T(x) = ——log (tan x) and ¢ (s) =Yoo 1 - ns

it holds, (EIL) (EIL1)
Lemma:

i) 1(—) < o

i) G() = s+ D) = B M = B T = s [T (R, e ) dx

is analytic in the half-plane for Re(s + 1) > 0

iii) {(s) = F(S 1)f x57%log?(tanhx)dx, the integral is absolute convergent for Re(s) > 1

iv) n(s) = @ x571 [ log?(tanh )] dx, the integral is absolute convergent for Re(s) > 0

V) T(x) = Z;‘I‘;l;"sin(Znnx) € L,(0,1)

vi) T'(@) = — o=~ zSin”(g@ ZCOSH(gx) € H%,(0,1).
Putting

()i =S Mpp(0)](1 = s)
n(s) == 2m)S~r(1 —ys) cos(gs)

one gets

Lemma: for —1 < Re(s) < 0 it holds
MIT(0)](=s) = (2m)*T (s) sin(5 )3 (=)
Proof:
M[T (x)](-s) = fooo x'S(Z;'lehT”sin(Znnx) ‘i—x

= Z;‘{’zlz—”fom x5 sin(2mnx) %

= 2 2 [y siny L2

= (2n)*[E5ey b 07T (=5) sin (5 (=)
Corollary: for 0 < Re(s) < 1 it holds

M[T ()] = s) =n(s)p(1 —s)

Corollary: for 0 < Re(s) < 1 it holds formally only

*(s) = MIpy ()11 = 8) = n(s){(1 — ).
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Remark (PeB) | 815, Il 812: the ¢*(s) function can be interpreted as a complex-valued H#,(0,1) based
distributional integral representation of {(s) where ¢ (s) is a complex-valued L%(0,1) based
approximation distributional integral representation of ¢*(s)

Remark (EsR) pp. 105/139: for the functions logI'(1) there exists a moment asymptotic representation
in a distributional space of ,less than exponential asymptotics*; for the Hilbert transform operator there
exists an asymptotic representation in a distributional space.

Remark (VIV) p.189 ff.: the theory of Tauberian theorems for generalized functions provides quasi-
asymptotics of the fundamental solutions of distributional convolution equations.

The functions —glog (tan%x) and —%log 2 sin(mx) are related to the alternatively proposed entire Zeta
function ¢*(s) =5 (1 - s)((s)n_gl‘(g) tan(%s) by the formula
Lemma:

N b4 b4 1 b4 1
FQtan(39) = Gmy i) = o) r(2)

The lemmata leads to the following ,telescope” product representation

Corollary:

$(s)(1—5) = TS ECD iy (T6) (12 sin (T2 - 9)) (1~ 5.

n(l-s) ms 2

Proof:

W=%sin(§(l —s))F(l—%)

(1= )4(s) = 2m2 -0 = omag* (s) 2sin (S (1 — )) ' (1 - 3)

) tans)

) mop e 8a= _5 eg _lsin (T _l=s
s{((1—s)=2m"> S tan) 2m 2 EF(1 s)nsm (2 S)F(l > )

Remark: the telescope” product representation enables the application of the auxiliary function, (EdH)
1.14,

H(B):=

s
101 J-a+i00d log(1-¢)
a—ioo (s

]xsds

2mi log x S

resulting into formulas in the form Li(x#) + in for Re(p) > 0.

Remark: Taking the log-function of the term (1 —s){(s) leads to the Gaussian density functions li(x)
resp. the Riemann density function j(x), (EdH) 1.12 ff.

N

The related density functions of sin (%s) r (1 - 5) resp. sin (g (1- s)) r (1 - g) govern the densities of the

non-trivial zeros of ¢(s) with positive resp. negative imginary parts.

Taking the log-function of the terms gtan(gs) and %sin (n%) provides two additional density functions
t(x) and s(x).
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Remark (Grl) 4.224, 4.227:
i) fol log (nsin(gx))dx = logg
i) fol log(g tan (gx))dx = log %
Remark (Grl) 4.227: the product factors =, - of sin (%x) tan (gx) are essential, as it holds
fol log(sin (%x))dx <0, fol log(tan (gx))dx =0.

Lemma (PoG1): Let f(¢) Riemann integrable in the domain [0,1], and 0 < ¢, < g, < q, < ---. a divergent

sequence of positive numbers. Let w(x) a positive, non decreasing function with lim ngz; =1 with a, B
n—oo

positive numbers. Then

Um0y f&) = [} F©dt.
Examples:
f)=p (%) +v,f() = log(gtan (gt), w(x) = log(x), w(x) = log(a . tan(x)) ,a>1.
Remark: The Landau-type function w(x) puts the spot on automodel (or regular varying) functions

equipped with an order of automodelity, providing Tauberian theorems for generalized Functions (VIV)
p. 56.

Remark: A quick distributional way to prove the PNT is provided in (ViJ).

With respect to the proposed approximating zeta function Dirichlet series

h —
AOE e

we note the

Lemma (LaEla) §86: Leta >0 Z;‘;l% convergent, i.e. D(s) = X bn

S is an absolute convergent
Dirichlet series for a := Re(s). Putting

()__ fl:lbn for x notinteger
f X).= %:1 bn _ bx/z for x integer
Then it holds
— lim L (@i sds L atie sds _ yx x
f@) = lim = [TID) T resp. o= [T D(9)x° S = Tioy by log ().

Remark: D(s) does not need to be regular; only for a < Re(s) this follows from the pre-requisites.
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An alternative contour integral represention of {(s) and a formula for (G)

Riemann’s contour integral representation

_ r(1-s) o (—x)sd_x
() =102

toeX-1 x

is derived from the integral representation of the {(s) —Dirichlet series

(M=) =T =) Xy = [ 2% Re(s) > 1.

0 eX-1 x

For the function M(z) := Z_%e_ng'l(z) =z 1F (1% —z) the one-side Laplace transform is given by

o S dt _fx/_
Jy M)~ =n 27711“(2) tan (gs) , —1<Re(s) <1

enabling a corresponding contour integral representation.

Lemma (BuH) p. 118, (EpA) p. 215, (Grl) 7.621:

—v F(1+20) TQ=V)IGHptv)

b
o =2t v-1 _
tVTIM, ,(bt)dt = b
lye ) FGHutd)  IGu—v)

, Re(v+3+u) > 0,Re(1—v) > 0.

. s 1 1
Putting v = -5 ph=p=,0ne gets

o _b, s 1 s,
Jy e72 't iMa1i(bt) = b*3ti0 (—5), —1 < Re(s) < 1.
o t 2

Restricting to the domain —1 < Re(s) < —3/4 it follows with b :=n® and —z:=4s+ 2 € (-2,-1)

foo _ns%t_%_lM 8 dt _ZQ( s) —2q (z N 1)
4 —_—= —_ ) = — —
. ¢ )5 =n 2= 8T,

with convergent Dirichlet series Y7, n™% < oo.
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For a fixed g > 0 let y(n) denote the arithmetical function known as a character modulo g (for g =
1,L(s, x) = {(s), if (a,q) > 1 then y((a) = 0). Then the Hurwitz Zeta function is the Dirichlet series defined
by, (IvA) 1.8,

L(s,x):= Yo 2D = [, (1—x(@)p~)"" for Re(s)>1

nS

Remark: For g = 1 it holds
L(s,x1) =) I, —p~) 7 =T, = p™) " [Ipe(1 —p~) 7.
Thus L(s, x,) has a first-order pole at s = 1 just like {(s) and it behaves similar as {(s) in many other

ways, while L(s, y) for y # x, is regular for Re(s) > 0.

The Generalized Riemann Hypothesis (GRH) states that all non-trivial zeros of all Dirichlet
L —functions have real part equal to 1/2.

Remark: There are also other generalized Zeta function, e.g., the Lerch, the Epstein or the Dedekind
Zeta functions, as well as Zeta functions associated with cusp forms, (IvA) 11.8.

Ramanujan’s following formula may be regarded as a representation for ¢ (%) it also can be viewed as
an identity for an infinite sum of theta functions.

Entry 8.3.1 (BeB2) p. 191: let « and B and be positive numbers such that af = 4n3. Then

1 2 1
[00]
i —r—=—+-+
Zn—lenza_1 6 4

E{Z (1) + 3 1 cos nﬁ—sinm—e_m}
41 2 "=l coshynB-cos\np ’

Remark (BeB1) p. 225: Ramanujan also recorded a Quasi-theta product formula using hyperbolic
functions and elliptic functions. The equivalent formulation in terms of hyperbolic series is given by the
identity

sinh{(2n+1)a/2} . D"
ay_ +my>
Zn—l (2n+1)cosh2(—(2n;1)a Zn_l (2n+1)ﬁ)

) (2n+1)cosh? C——

where a and 8 are complex numbers with nonzero real part and with af = 2.
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Exponential sums related inequalities for almost periodic functions

Remark (ReH) p.145: The Haar (wavelet) scaling function is an universal scaling function of genus g =
1. Its scaling equation for rank m is

@(x) = Yo<k<n @(mx — k).

This corresponds to the scaling vector y,,: = {1,1,1,1,...1} of rank k for a Haar matrix of rank k playing a
key role in the Bagchi-Beurling-Nyman RH criterion, (BaB).

The Fourier transform of the Haar scaling function is given by
PO =Fom (2)0(5) with Fon(@): = Bj e
Taking the limit one finds the interesting infinite product formula

1

) ) iy ¢ &2
sinc(mé) = 1}11_r206 in§ [1Fom (ﬁ) =T1(1 - (—)) = roran

n2

Remark (ReH) p. 142: the Haar scaling function is defined by
— 1 if 0sxs<1
(p(x) '_ {0 ;f othefwise'
It is a specific compactly supported solution of the corresponding scaling equation

() o) =9@2x) +¢2x—-1).
The compactly supported solutions of (*) differ only a the endpoints of (0,1).

Theorem 15 (Val): Let 1, 4,, ..., 4y be real numbers and
fG) = ENo ame(yx) = Th-; a(n)e?™4nx .
If |A,] =6 >0forn=1,2,...N, then
supxlf ()| < (48) sup,, If ' (@)1
If, additionally, f(x) is real valued, then
supy|f ()| < (26) ' sup, | f' ().
Moreover, the constants (46)~* and (26)~! are asymptotically best possible as N — oo.

A general form of Hilbert’s inequality was first obtained by Montgomery and Vaughan:

Theorem 16 (Vald): Let 14, 4, ...., 4y be real numbers satisfying |A,, — 1,] = § > 0 whenever m # n, and
let a(1), ...a(n) be arbitrary complex numbers. Then

N N a(m)a(n) TN 2
_ L — < =
Zm;rllZZ;,ll Am—tn | =8 n=1la(@)|?.

Theorem A.5 (GrS) p. 115: Let N and T be positive real numbers, and let a,, be a sequence of
complex numbers with a, = 0 if n < N or n > 2N. Suppose g is a real-valued function with |g(m) —
g(m)| > 8 whenever N <m,n < 2N and m = n. Then

(T = 6™ Talanl? < [ [Zn ane(tg(m)Pdt < (T + 671 Talayl?.
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Turan’s first main theorem is concerned with lower bounds of exponential sums. From this it follows

Fabry’s Gap Theorem (MoH) p. 89: Suppose that T(x) is an exponential polynomial of N terms and
period 1, say

T(x) = Xn=1 bne(1nx)

where the 1, are integers. Let I be a closed arc on the circle group T, and let L denote the length of I.
Then

L
> N-1
r??leT(x)l - (2e) I?earxlT(x)l'

Remark: The striking feature of this bound is that it does not depend on the size of the 4,,.

The Beurling function

sinnz)z{z;?zo(z _ n)—z _ r_nlz—oo(z _ m)—z — 22‘1}

B(z):=(

T

is an entire function of exponential type 2r satisfying a simple and useful extremal property .

Remark (CaJl): A. Selberg used the function B(z) to obtain a sharp form of the large sieve inequality.

The Beurling function could be used to construct trigonometric polynomial approximation to

ll}(x) = p(x) — % =X — [x] _ % — _Zio Sin;::vx.
Putting |
HE@:= P ERw i+ @ =31 ()

where

1 ift=0

J&) = {nt(1 — |tD) cot(mt) + |t], if0<|t| <1

0 if >1

it holds

Theorem A.6 (GrS): The trigopnometric polynomial

P () = = Dizmisn 5o Jnaa (We(nx)
satisfies

In|

[P () — P (@] < —=Ficpmien(1 — e (nx).

N+1

Theorem A.5 (GrS) p. 115: Let N and T be positive real numbers, and let a,, be a sequence of
complex numbers with a, = 0 if n < N or n > 2N. Suppose g is a real-valued function with |g(m) —
g(m)| > & whenever N <m,n < 2N and m # n. Then

(T = 6™ Talanl? < [ [Zn ane(tg(m)Pdt < (T + 671 Talayl?.

OLemma (GrS), (VaJ): It holds
i) B(z) = sgn(x) for all real x
ii) if F(z) is any entire function of exponential type 2r satisfying F (x) = sgn(x) for all real x, then
ffooo F(x) —sgn(x)dx = 1
iii) F(x) = sgn(x) ifand only F(z) = B(2).
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Riesz basis systems {e'nt} _ {e}

The core theorem of non-harmonic Fourier series theory is based on the Levinson-Kadec theorems
(e.g. (LeN) p. 48, (PaR) p. 113.

Levinson theorem XVIII, (LeN) p. 48: If {1,,} is a sequence and L a constant such that |1, —n| < L <
1/4, then the system {e"»*} _ 'is close in L4(-m m) (i.e. from [* f()e~™dx = 0 it follows that f (x) is

identically zero) and possesses a unique biorthogonal set {h, (x)} such that for any f € L%(—mn, ) the
series

0 T F(@emdE — e [T F(E)h,(E)dE

21

converges uniformly to zero over the interval [-n + §, = — &] for any § > 0. Moreover the
difference of weighted sums (Riesz, Abel, and so on) of the non-harmonic and ordinary Fourier
series also converges uniformly to zero over [-m + 8,7 — §].

The main ingredients to prove the Levinson theorem are the following two lemmata concerning the
function

GWw)i=Gu+iv) = (w— 1) 1%, (1 - ﬁ) (1 - ﬁ)

Lemma A (LeN) p. 55: If {1,,} fulfills the Kadec condition, then for different constants c it holds

) 1G] < c(lw| + De™!
i) 1G] > clvl(jw] + 1) 72"
i) |G1/2 +iv)| > c.
Lemma B (LeN) p. 57: The functions h, (¢) defined by

5] G(u)

— —iué
() = Lo e e

form a sequence of biorthogonal to {e”n"} over (—, ).

Kadec's i— Theorem (YOR) p. 36: If {1,},¢7 IS a sequence of real numbers for which |1, — n| <
L <1/4,then {et} _ satisfy the Paley-Wiener criterion and so forms a Riesz basis for
L, (—m,m).

Lemma (LeN) p. 48, (YoR) p. 100: If {1,,} is a sequence and L a constant such that
* A,—n|l<L<1/4,

then the system {e"»*} _ is close in L5(~m,m) (i.e. from J* f(x)e~*dx = 0 it follows that f(x) is
identically zero) and possesses a unique biorthogonal set {h,,(x)} such that for any f € L4(—m, m)
the series

2% [T f(©e™dE — e [T F ()R, (§)dE
converges uniformly to zero over the interval [-= + §, 7 — §] for any § > 0. Moreover the

difference of weighted sums (Riesz, Abel, and so on) of the non-harmonic and ordinary Fourier
series also converges uniformly to zero over [-m + 8,7 — §].
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Remark (YoR) p. 36: Kadec’s %—theorem shows that the system {e“nx}nez constitutes a Riesz
basis for L4(—m,m) whenever every p, is real and

A, —n| <L <1/4,
but need not constitute a basis when L = 1/4.

Lemma, (YoR) p. 109: The system {ei*=t} is minimal in L{(—m, m) if and only if there exists a
nontrival function f(z) of exponential type at most =, zeros at every 1,, and such that

e 2

—00 1+x2

A sequence of vectors in a separable Hilbert space is called complete, if its linear span is dense in the
Hilbert space, resp. if the zero vector alone is perpendicular to every basis vector. A characterization
of an orthogonal Schauder bases of a separable Hilbert space is that they are complete orthogonal
sequences.

A complete sequence of vectors in a separable Hilbert space is a Riesz basis if and only if its moment
space is equal to [, (YOR) p. 142.

Regarding the stability of the class of Riesz bases {ei*'} in L,(-m, =) Kadec’s theorem can be
dramatically improved, first under ,small“ displacements of the 1,,'s and then under more
general ,vertical“ displacements, (YoR) pp. 160 ff.

Corollary 1 (YoR) p. 164: Let {1, 4;,13, ....} be a sequence of points lying in a strip
parallel to the real axis. If the system {eRe(=)t} is a Riesz basis for L,(—=, ), then so is

{eilnt}_
Corollary 2 (YoR) p. 164: if {1,},c; be a sequence of scalars for which sup,|Re(1,) —

nl < 1/4 and supy|Im(2,)| < o, then the system {e'**} _ 'is a Riesz basis for L}(-m,m).

Theorem 13 (YoR) p. 160: If the system {e”n"}nEN is a frame in Lf(—m, ), then there is a
positive constant L with the property that {eiﬂnx}nEN is also a frame in L (—m, ) whenever

[, — pn| < L for every n.

Corollary (YoR) p. 161: If the system {e“nx}nEN is a Riesz basis for L%(—m,m) then there is a
positive constant L with the property that {e"“n"}nEN is also a Riesz basis for L (—m, m) whenever

[2,, — u,| < L for every n.

Theorem 14 (YoR) p. 161: let the sequence {1,},ey be a sequence of points lying in a strip
parallel to the real axis. If the system {e'f*nx} _ is a frame in L(~m, m), then so is {e*} _ .

A striking generalization of the Kadec theorem was discovered by Avdonin:

Avdonin’s theorem of % —in the mean, (YOR) p. 178: let 1, =n+6,,n=0,+1,42,...,.be a
separated sequence of real or complex numbers. If there exists a positive integer N and a
constant d, 0 < d <, such that

| Sk s 8] < dN

for all integers m, then the system {e} _ is a Riesz basis for L}(~m, ).
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The Paley-Wiener (separable Hilbert) space PW

The Paley-Wiener (separable Hilbert) space PW is the totality of all entire functions of
exponential type at most  (i.e., |[f(z)| < e™?!) that are square integrable on the real axis, i.e. it
holds

If (x + iy)l < e™If]l.

It is equipped with the inner product

(f.9) = [ f)g(x)dx.

Lemma (YoR) p. 90: The Paley-Wiener space PW is isometrically isomorph to L%(—mn, ). Every
function f € PW can be recaptured from its values at the integers, which is achieved by the
cardinal series representation of f.

A sequence of real or complex numbers {1,},.cy iS said to be an interpolating sequence for PW if the
set of all sequences {f (1,)}.ey Where f ranges over PW, coincides with [2.

If, in addition, the system {e'*t} _ is complete in L(I"), then f(4,) = ¢, has exactly one solution,
provided c,, € [, and in this case we shall call {1,},cy @ complete interpolating sequence.

A complete interpolation sequence is ,maximal® in the sense that it is not contained in any larger
interpolating sequence, and the converse is also true, (YoR) p. 142.

Putting
G(2)

ZZ
G(@): = 2[lkmo-w(1 = 32) AN G (2): = 7570

then G, (z) belongs to the Paley-Wiener space PW and g,(t) is the inverse Fourier transform of G, (z),
i.e. for almost all ¢t € [, n],

gn(®):= [ G,(2)e™dt.

sin w(z—21y)
n(z—2An

The exponentials et are transformed into the reproducing functions K, (z) = , gn(0) IS

transformed into G,(z), while the moment problem itself becomes
f(A) =0,n=0,+1,42,43, ...,

since f(4,) = (f,K,). Here ¢, € 12 and f € PW is to be found. By taking the Fourier transform of {ei“f}nez,
we see that the set of functions

)

forms an orthogonal basis for Pw. Accordingly every function f in PW has an unique expansion of the
form

nez

_ Yo sin m(z—n) . . 2
f@) = % 0 T2 With T2, cl” < oo,

The convergence of the series is understood to be in the metric of Pw. But convergence in PW implies

uniform convergence in each horizontal strip. This is an immediate consequence of the following
useful estimate, (YoR) p. 90:

If (x + iy)| < e™If]I.
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Some useful formulas and references

Lemma (Grl) 1.431:

2
i) sinx = x [[7=; (1 - ;7)
2
i) sinhx = x [T, (1+ 5)

i) cosx = (1- —25)

T k+1)2n?

iv) coshx = [y, (1 + L)

(2k+1)21?

Remark (EdH) 1.10: The infinite product [;-,(1 + a,) is absolutely convergent if and only if the series
Yla,| converges.

Lemma (Grl) 1.441.

) o =TEo<x<2n

.. o Cos (kx) _ 1 1 _ 1

i) Yimi—p — = 5 log e log T & 0<x<2m
i) G L L A

iv) Yo (—1Dkt %(kx) = log (2cos ’2—6), —nm<x<Tm.

Lemma (Grl) 1.442:

i) Z,}“’=1%=%,O<x<n

i) Zle%=§log (cotg),0<x<n

iii) Y (—1Dk ! —Sinz(i’:l)x = %log (tan (% + g), —% <x< %
V) TR (-pRre s oy <

Lemma (Grl) 3.896, 3.952:

2
; ®© _ax? : _b = liﬁ—i E_E
i) fo e sin(bx) dx = 2% " 1 (2’2’4a> " 2a 1 (1’2' 4a)
v? 2
- © u—1,-Bx% — _ Y L Tapp ite _r3r
ii) fo xtte sin(yx) dx 2BHTHe #r(—5) 1F (1 2’2'4ﬁ)'

Lemma (Grl) 3.761: For a > 0 it holds

i) f()mx“‘1 sin( ax)dx =%sin(§u) ,0<|Re(u)| <1
ii) fooo x* 1 cos(ax)dx =%cos(§u), 0<Re(uw) <1
iii) f01 x* 1 sin(ax)dx =2_—;[ Fp+1ia) — Fi(up+1, —ia)], —1 < Re(u)

iv) fol x# 1 cos(ax)dx =i[ Fip+1ia) + Fi(up+1, —ia)], 0 < Re(w).
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Corollary:
i) fooo x5 cos(nx)dx = FTE“:) COS(%S), 0<Re(s) <1
ii) f01 x5/271 cos( 2mix)dx =§[ F (%, 1+ %, 21tn) + .F; G, 1+ %, —21tn)], Re(s) > 0.

Corollary: For a > 0 it holds
. © 1 r iaZ,
i) Jy x*te' ™ dx =%em2“, 0<Re(w) <1

i) fyxi e dx =5 R+ L), Re(w) > 0.

Lemma (Grl) 8.353: for I'(a, x) = [ e~*t~*"dt it holds

I'(a,xy) = y%e™ f:e‘ty(t + x)*"1dt, Re(y) > 0, x > 0, Re(a) > 1.

Lemma (Grl) 6.246: For a > 0 it holds

i) fow x* tsi(ax)dx = —%%sin(gu), 0 < Re(p) < 1,with si(x) = —f_a; Sint(t) dt

i [ x4t ci ax)dx = — i%ﬁ)COS(%u), 0 < Re(u) <1, with ci(x) = — [ .
Lemma (Grl) 8.334:

. 1 1 T

I) F(E+S)F(E—S) - cos (1s)

ii) r@a-s)r(s) = Sm’(’ns)

1+s 1-s T s s\ _ ®

) r (T) r (T) ~ cos(Zs)’ r (1 _E)r (E) = sin(%s)

iv) % = cot(ms) = cot Gs) + cot (g a- s))

3

V) F(%)FS?) - I"(%)tan Gs), (%) =T (— g) tan (ES)

= fes :

vi) Zlog’ (tan(%s)) = =G+t G- it).

T

sin(ms)
Lemma (Grl) 8.328:
T 1
i) Jim |7 (x + iylez?!|y|z7" =2, x,y € R
y|—-00
ii) lim 249 o-alogz — 1

|z|o00 T'(2)

Remark: In the neighborhood of x = 1 it holds gtangx = ﬁ + 0(]1 —x|). This indicates a circular density
function on the half-circle in the form

log% - log%(tang(l —-x)) = log%cot(%x).
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Lemma (InA) p. 57:
1 1 1
logF'(z+a) = (z +a-— E) logz + > log2m + O(E)
uniformly in any fixed angle |arg (z)| < = —§ <= and any bounded range of a, as |z| - «; and

logl''(z) = logz — —+ 0(—)

2|

Lemma (PaR) pp. 31, 39:

|F (%-'— iy)| - \/|F (§+ iy)' |F (i_ iy)| = cosh (ny) \/_e Zlyl \/;cosil—y

) u 1. _r
F(%+iy) = [7 e "G dy ~ 0(e 2.

A more general approximation formula is given

Lemma (Grl) 8.328,
T 1
|llim IF(x + iy)|ez? |y =V2r,  x,yare real.
y —00

Lemma (Theorem 20, (PaR) p. 128): Let f(z) be a measureable function for which
LT 2
— [\ (0)l2dx

is bounded in T. Then

f If 02

o 1+x2

dx < .

As Hardy-Littlewood proved, (EdH) p. 201,

%f_TT |{ G + ix)|2 dx ~ logT
it follows the

1,.\2
YIS

1+x2

Remark: Regarding the density %we mention the relation to the Bessel functions, (WaG) p. 514,

dlogx =— == []0 (x) + Y2(x)]d8, 6(x) := arctan (Y°(x))

The asymptotics of the sum of the Dawson function D(x): = e~** fom e’ du and the Digamma function
¥ (x) is related to the logx function by

=~ Ayl s
Y(x)+ D(x) = (logx o)+ = logx.

Lemma (Grl) 1.421:

1 —_—
X2+k2

2x
cot(mx) = — + —
(mx) = —+ 2% ey
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Lemma (Grl) 8.364:
® 1)
log¥(z) = logx + Y ;-1 log (1 + m) e x+k,
Lemma (NiN) p. 38: let s, == y and s, == + - + - + - for n > 2, then
1 1 ¢S]
Y(1+x)= P ZCOt(fo) a7 Yiezo(1 = Sppeq1)x?"
Lemma (TIE) 2.15:for0 <o < 1

x~%ds.

lI’(1+x)—logx———f:tt:o (1-ys)

sin (rrs)

Lemma (Grl) 6.469:

0
fol Y(x) sin(mx) sin(nmx) dx = {é log n;i noeven

Let M[h](s) denote the Mellin transform operator
[h1(s) = J; x*h(x) <.
Lemma:
) M[—xR'](s) = sM[R](s)
if) M[(xh)'](s) = (1 = s)M[R](s).

Conjecture (Frank Morgan’s math chat): Suppose that there is a nice probability function P(x)
that a large integer x is prime. As x increases by Ax = 1, the new potential divisor x is prime with
probability P(x) and divides future numbers with probability 1/x. Hence P gets multiplied by (1 —

P/x), so that AP = (1 — P/x)P — P = —P?/x, or roughly —xP' = P? resp. — P(x) = P(x). The

1

~ —

general solution to this equation is P(x) = .
c+logx  logx

Remark (ErA) p. 316: log(1 — x): = {log (=) owxa1 log(1—x):= {log (1-x) 1<

0 1<x 0 0<x<1
i) fooo x5 Y(log(1 — x))dx = —%[‘IJ(S +1)-%], —1 < Re(s)
i) fooo x5 (log(1 — x))dx = % [mcot(ms) + W (s+1) —¥(1)], 0<Re(s)
Lemma
) [y x5 Mog [72| dx = Ztan (55), =1 < Re(s) < 1 (ErA) p. 316
i) Jy x5 og *E dx =2f01x5'1[x+x3—3+---]dx=2 Sttt | iED) p. 102
1 1+udu _ 1 .
i) [P Tog Ty = [Jullog G = 2 [ s+ (TIEL) p. 192
. 1 1 T s .
iv) 4 [—12_32 to =t ] =tan () (TIE1) p. 192
tan (gx) 4w 1
V) — = ;Zk:lm (Grl) 1.421
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Lemma (Grl) 9.212:
Fi(a,c,z) =e* F(c —a,c,—2).
For the Dawson function D(x):= e*’ fox e’ du the following relations are valid,
Lemma:
i) D(x) = [ e* sin(2xu) du (Grl) 3.896)

i) D(x) = xe™* ,F, (gg x2) =x ,F, (1;3, —x2) (LeN) p. 272.

Lemma (Grl) 7.612, (Grl) 7.643:

i) Iyt 1 Fi(a,c,—t) S =T (b)~ E‘C‘:Z’;FF(—a; , 0 < Re(b) < Re(a)
i) Iy x‘“’e_ésin (bx) ,F, ( —-2v,2v+1, )dx = \Eb“"e_g F G - 2v,2v+ 1,172—2),
b>0,Re(v) < —%.
Lemma (Grl) 7.612:
) M[F (G2 -x0)| O =[x 1B (32, —x) E =2 0 < Re(s) < 1
i) M[xIFI( - )]G) @ 0 < Re(s) <1
i M [ (G —x)+x 0 (32 —x)] ) =F1(—_§S)(1 ~3),0 <Re(s) <1
iv) r G) = 1—:§M [ .F; G,%,—x) +x 4 F] G,%,—x)] G) , 0 < Re(s) <1.

The Hilbert transform H[g(t)](x): = %P. V. ff;%dt, defined by the Cauchy principle value integral, of
the Gaussian function f(x) == e~™” is related to the Dawson function by, (Gaw), (KoO),

fa ) = HIf1() = =D (Vx) = 22 ,F, (1,2, —mx?).

Lemma: (Grl) 7.612: For —1 < Re(s) < 1 the Mellin transform of the Dawson function is given by
1+s.

Iy xzD(\/_) =[x 1F1(1 —x) % = fw_ﬁr(g)mn(gs)

x 2 r(1——) 2
resp.

iM[D](s) = %F G) tan (gs).

Lemma (WaG) p. 391, p. 393:

i) Jo xSV (x) dx = ) for Re(s) < Re(v +2)

22vr(v+1-3)

S S s
i) Jo 257V, (x) dx = rerG ;);fs( C-vm)

for [Re(v)| < Re(s —v) < ; .
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The Struve function H, (x) is defined by, (WaG) p. 328,

v+2n+1

H,(2x) = Xp_o(— 1)"T

v+n+- )

Lemma: (TIiEL) p. 182, (WaG) p. 392, (Grl) 6.813: Provided that a > 0 and —1 — Re(v) < Re(s) and
Re(s) < mm{ 1- Re(v)} it holds

2 x5V H, 2ax)dx = Zas ) tan (o5 +-v) = a—_sr(VTH) tan (= (s +v))
0 v T2 2 27 v-s r(?) 2 '

V=S
r(1+—2 )
x2n+1

r(ne3)r(n+3)

Corollary: For Hy(2x) = Yo _,(—=1D)" and —1 < Re(s) < 1it holds

© 1 s 3
Jo ¥*7'Ho(2x)dx = 27°I'(s) sin (gs) fol(l —x®)T2x Sdx = %%ns(zs) :
2
Remark: The considered Kummer functions are linked to the Whittaker function, (Grl) 9.220
41 1
M;,(2) = z""ze 22 | F, (,u -1+ 7 2u+ 1,2)

by

3 z

3z 13 2z 3
M11(z) = zse 2z 1F; (E,E,Z) = ziez 1F; (1,;,—2),
44
3z 3 3z 13
M_11(z) = z2e 2 |F; (1,;, ) = ziez 1F1( ,2,—2).
44

Lemma (ErA) p. 215: for Re(u +v) > — = and Re(p) > >Re(a) it holds

1t
fooo e PIYTIM, ,(at) dt = a’”_ﬂ oF G +u+ v,i +u—2A2u+ 1,1%2).

Lruvy 2

(p+5 )2

Remark (AbM) p. 559:

1 r(c) ico I'(a+s)r'(b+s)

2F1(a b.c, Z) 2mi r(a)r(p)’—ioo I'(c+s)

I'(—s)(—z)%ds.

Remark (BuH) p. 118: When Re(1 —v) > 0 it is permissible to put p = 1/2. With

r(c)r(c-a-b)

2Fi(a,b,c, 1) = r(c-a)r(c-b)

one thus obtains

Lemma (BuH) p. 118, (EpA) p. 215, (Grl) 7.621:

pY F(1+2y) r@a- 1/)F(2+u+v)

b
Tt y-1
V=M, ,(bt) dt =
Jy e 2. (b0) FGu+d)  TGtu—v)

Re(v+%+/,t) >0,Re(A—v)>0.

1+s

yar VT
puting v =54 3=+ ana 0(2) = ECEXED L 1 () an 2y one g
Corollary:
© b, s s 1+s s
) e‘?ﬁ‘%Mﬂ(bo% =y % pitn(Z), —1<Re(s) <1
2 s
o e by s dt 4 SAETEOres) st
||) f e 2 t 2 4M%%(bt)7— 2 p T‘FE) =b"z2 4.(2(—5) -1< RE(S) < 1.
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A relationship of the Whittaker functions to the probability integral @ (x): = \/Z—Ef;‘e‘fzdt is given by
Lemma (Grl) 7.672: with it holds
[7 e My, 13, o Gey)dx = (2v + 127y (1 - (), y > 0,Re(v) > —3

e} X rv+2)y”
1 2 —
x e 2M1 11 1(x xy)dx =

fo EV+E'EV+§( )]O( y) F(v+%)2v

Lemma (Grl) 7.693:

(1-2@3),y > 0,Re(v) > —1,

oo 1 1 1 1
f_lim F(E +v+u+ X)F(E +v+u— x)F(E +v—u+ x)F(E TV == X)Myy i (@QMy_ix,y (b) dx =

1
@)’z r2ev+yrev+u+)rev-2p+1)
(a+b)2v+l r(4v+2)

=27

1
My vi1(a+b), Re(v) > |Re(w)| — .

Theorem 11 (HaG) p. 11: let u, = log 1,. Then

s dne ™ = o [T (S ane ) dx

if Re(s) > 0, and the series on the left-hand side is convergent.

Let

1 1 1
hn = Z'zlm:HZn—EHn,nEN,Where Hn = Z=1Z

. h
denote the harmonic numbers and c,,: = 7"

Lemma (KaM), (ZyA) p. 164: Let {n, } be a sequence of (integer) indices satisfying the “Hadamard”
gap” condition, i.e.

Tkt > g > 1.

ng
Then the trigonometric gap series Y.;_, cxsin (2mn,x) converges almost everywhere, if and only if,

Tioici < oo

Let h, = 22=12k+1 = H,, — %Hn, n €N, where H, := 2;;:1% denote the harmonic numbers.
Lemma (EIL), (EIL1): for g(x) = —Zlog (tanZx) it holds

) 9 € Hoaa = {f € LLODIF (20 -0) = ~rCn)

if) fol g(x) sin(2nnx) dx = hn

n

U

i) fol g(x) cos(kmx) dx = {% kodd

k even

iv) gx) = ZZ;’le%"sin(Zrmx) € L,(0,1)

w hn
) Yoo e = ilogz(tanh (E))

4

2 T[
Vil [y gt0dx =235, =1

T

Vi) log’ (tangx) = € H*, (0,1).

sinmx
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Theorem (LaE): letm > 1,8, real, 0<0<B, — B, <P3—B2 < Pm—Pm1<1-—06,and

S =58, = |¥™, 0,| with g,: = e~2"Fn,

Then it holds:
i) Sm < cot (% 0)
ii) For 6 = 1/2 and every positive fraction & < 1/2 with odd nominator and odd

denominator:
Sm = cot (g@)
iii) For all other ® with0 <0 <1/2:

Sm < cot (g 0)

iv) For all ® with 0 < @ < 1 and every ¢ > 0:

Sm > cot (g@) — €.

Landau theorem (PoG1l): Let g,, denote a divergent sequence of positive numbers 0 < ¢, < g, < g3 <
lim g, = o, t(x) the corresponding counting function of the numbers of g,, less than < x and
n—-oo

w(x) a positive, non decreasing function with

w(2x) W) _

=1, and lim

n—oo w(x) n-co

1.
Then
Zq<xp( ) =

n—>oo T(x)

Generalized Landau Theorem, (PoGL1): Let w(x) a positive, non decreasing function with lim ng;
with a, B positive numbers. Then

Um 0%, fO) = [, Ot

Lemma (LaEla) §86: Leta >0 Z;‘;l% convergent, i.e. D(s) = X 1 -  is an absolute convergent
Dirichlet series for a := Re(s). Putting

X
-1b i
. n=1%n for x notinteger
f(x):= { X by —byj2 for x integer
Then it holds
a+it ds 1 ra+ico D(s)
flx) = lim —— fa_it D(s)x*—-  resp. ﬁfa o =Y _.b, log( ).

Remark: D(s) does not need to be regular; only for a < Re(s) this follows from the pre-requisites.
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For each positive real number x the Schnirelmann density is defined for a subset A of the set of
positive integers N by
. A(n) .
0<o(A):=inf,—<1 with A() = Yaea 1.

n asx
The function A(x) is called the counting function of the set A. For x > 0 it holds
0<Ax) <[x]<«x

and so

It also holds A(n) = kn for ¢(4) = k; A(1) = 0 (and therefore o(4) = 0), if 1 is not an element of 4; and
A(n) = n (and therefore o(4) = 1), if A = N. In other words

- If the integer ,1“ is not an element of A4, the Snirelmann density of A is =0
- If the integer "2" is not an element of 4, the Snirelmann density of 4 is < §

if A= N, the Snirelmann density of 4 is = 1.

The Schnirelmann-Goldbach theorem states, that the set 4 := {0,1} u {p + ¢; p, g prim} has positive
Schnirelmann density. In case of a Schnirelmann density % the binary Goldbach conjecture would be
proven.

Remark (StE): Algebraic resp. transcendental field extensions are the main tool of the theory of
transcendental numbers. Algebraic closed field extensions are concerned with fractional rational
functions. For algebraic number fields the Galois theory is applicable, which is based on the
assumption that every equation with vanishing discriminant must be reducible. The main tool for
transcendental field extensions are transcendental bases accompanied with infinite extensions. The
transcendental bases basically corresponds to the (Schauder!) bases of vector spaces. The Steinitz
theory basically states that each extension can be decomposed into an algebraic and a purely
transcendental extension. The link to the Hilbert space based proposed UFT and the underlying
concept of Quaternionic inner product spaces V, accompanied by a non-degenated indefinite inner
product on V/V(0), where V(0) denotes the isotropic part of V, is provided in (AID).

Remark: the theory of algebraic integrals containing the square root of functions of 1st or 2nd
order are built on trigonometric functions and the irrelated circle functions. The theory of
algebraic integrals containing the square root of functions of 3" or 4t order (e.g. the Fagnano-
integral to calculate the value of 1"(%) are built on elliptic functions and their related elliptic

integrals. The conceptual new property, which is unique in the whole area of elementary
functions, is the double-periodicity of the elliptic functions. This property, in combination with the
change from the set of zeros of the trigonometric functions to the set of the +z, zeros of the
Kummer function (accompanied by a change from harmonic Fourier series to hon-harmonic
Fourier series, cohomology groups interpreted as homology groups of negative order, (NeJ),
and the H, , space as first cohomology, (NaS)), puts the spot on the concept of the n-Kummer-
Galois extension of the field containing a primitive nth root of unity and the Kummer’s prime
number irregularity theorem in the context of cyclotomic fields, zeta-function values and the
Kummer pairing. Kummer’s prime number irregularity theorem basically reduces the problem of
deciding whether a prime p is irregular to a question of arithmetic modulo p, (CoJ).

Remark (CoG), (RiP): A pair (p, 2k) is called an irregular pair, if 2 <2k <p — 3 and p divides the
nominator of the Bernoulli number B,,. Kummer guessed that there are infinite regular primes.
Jensen proved 1915 the existence of infinite numbers of irregular primes. Under certain
assumptions Siegel proved 1964 that the density of regular primes is %~61%.
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Auxiliary theorems

Lemma (InA) p. 56: The entire function &(z) is of order ¢ = 1 with finite order type, as on the circle |z| =
r for its maximum modulus function M(r) it holds

%rlogr —Ar <logM(r) < %rlogr + A,r.

Lemma: The Hadamard product formulae of the considered entire functions are given by

ii)

iv)

1 o )
rziz) %eyz/z [T (1 + Zz—n) e~?/?" (LeB) p. 32

2
sin G2) =2 2[17a (1 - 3) =2z H;’{’:;gou ——)e*/’", (LeB) p. 32

logm
2

£(2) = %eBZ M, (1 - %) er where B = log 2 + 1-7~-0,023., (INA) p. 58

13

1B (1,%;2) = eéz | (1 - i) e%, 1Fi (E,E;Z) = e%z | (1 - i) e% , (BuH) p.184.

Lol _ 5yl e vl L oaT _ ooT ar
E(ez —e2 )Slsm(;z)|<e2 resp.z(ez —ez )< M(r)<ez,

ie. logM(r)~>r with the (finite) order type o = >

1
r(%+iy)

T 1
Lim |1(x + iy)|ez”|y|z"* = v2m, for real x,y, (Grl) 8.328
y|—-00

~ 0(ez?y (PaR) p. 39

log% =—z(1+40(1))logz ,lp| < (LeB) p. 32

1
T ()]

log = —z(1+ 0(1))(cosp) ' 1 logr, z = e'¢, % <lpl <m,

and therefore
logM(r) = C -r - logr,

i.e. 1/I'(z) is of maximal order type, while the upper density of the zero set is finite.

Remark: The ,root of evil“ of the maximal order type of 1/r(z) is the absence of a symmetry in the
distribution of its zeros, (LeB) p. 32.



43

Gap and Density Theorems

Lemma ((LeN), p. 89: For @(z) = [15-,(1 — i—z) with lim — = D, where D is real, and such that for

Nn—00 Zn

i 1
some d >0, [re’ —z,| > -d. Thenfore > 0,as r - o

iV) ¢(T€i9) — 0(enD|sin6|r+gr)

V) ﬁ = O(e~mPlsinflr+er
®(ret

V|) 1 — 0(e£|2n|), n — 0.

@' (z)

This lemma is contained in

Lemma ((LeN), p. 92: Let @(2) =[]y, (1 —j—j) with lim = = D, where D is real, and such that for
n n—oo Z,

n

somed >0, |z, — z,| =dln—m|. Thenfors > 0,asr - «
VII) d)(reie) — O(enDlsin6|r+£r)

1 — —7nD|sin@|r+er
V|||) m = 0(@ )
1

[@’ (zn)I

iX) = 0(efl*l), n - oo,

Lemma ((PaR), p. 86: Let F(z) = [x-,(1 —%) with lim 2 = 1, then
n n—oco n

lim 25 _ 4
y—o00 y ’
Theorem XXIX ((PaR), p. 86: Let F(z) = [I5-,(1 — %) with lim 2 = 1 belong to
n n—oo N
L,(—o,). Then the set of functions {e**»*} cannot be closed L, over (—m, ).
Again, let zF(z) belong to L,(—,«). Then the set of functions {1, e*#~*} cannot be

closed L, over (—m, ). In either case, a finite number of functions of the set may be
replaced by other functions of the form e* to the same number.

Lemma (LeN) p. 89: Let f(z) = ¥*_, a,e** where lim Aﬁ = D and for some ¢ > 0

n—oo An

An+1 - /’{n 2 C.

Then on the abscissa of convergence there is at least one singularity in every interval of length
exceeding 4,2nD.

Lemma (LeN) p. 89: If A, satisfies lim - = D and for some ¢ > 0, 1,,,; — 4, = ¢, and if

n—-oo A

2
F@) =Tl (1)
then as n - oo:
1

— el
F' () - O(e n)_
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Lemma ((LeN), p. 92: Let @(z) = [[o_,(1 —é) with lim — = D, where D is real, and such that for
Zn n

—00 Zp

somed >0, |z, — z,| = d|n—m]|. Thenfore > 0,asr - o

I) d,(reie) — O(enDlsin6|r+£r)

i 1 — —7nD|sin@|r+er
ii) oo ) O(e )
1 &lznl

iii) raeni 0(e'" ), n —» oo,

Lemma (LeN) p. 108: Let @(z) be analytic and of exponential type in the half-plane |ph(z)| < E
and let @(iy) = 0(e™). If {A,,} be an increasing positive sequence such that lim Ai =D, Anﬂ

n—-—oo An

A, =d > 0. Let A(u) be the number of A, < u. If flm’“y;—z“’dy = o and if A(y) + t(y) > Ly for some

positive t(y) satisfying flwtj(/—yz)dy < w, then

. y! )
lim sup L’lj( Wl _ jim sup 7log|:(x)|.

n—oo n X—00

The following lemma show, roughly stated, that the rate of growth of an analytic function (in this
case of order one) along a line can be determined by a sufficiently dense sequence of points on
the line.

Lemma ((LeN), p. 100: Let @(z) be analytic in some sector |arg (z)| < a. Suppose

lim sup (M) < acos + b|sinb|,0 < « < =

n—-oo

Let {z,} be a sequence of complex numbers such that lim — = D, where D is real, and such that

n—oo Zn
for some d >0, |z,, — z,,| = d|n —m|. If b <D, then

109|¢(2n)| 10g|4>(r)|)

llm sup ( ) = llm sup (———=

A special case of this lemma is the

Lemma ((LeN), p. 101: Let @(z) be analytic and of finite exponential type in the half-plane
larg (2)| < % Let

lim sup (%(iy)l) = nL.

n—oo

Let {z,} be a sequence of complex numbers such that lim - = D, where D is real, and such that

N—00 Zn

for some d > 0, |z,, — z,,| = d|n —m|, then L < D implies

lle‘t’(Zn)l loy|¢(r)|)

*) 11m sup ( ) = 11m sup (——=

Remark: If (*) does not hold there exists a ¢ such that

lim sup (log|¢(zn)| loy|¢(r)|)

n—oco

)<c<a—11msup(

Remark (YoR) p. 57: Let f(z) be an entire function; then f(z) and f'(z) are of the same order. If f(z) has at least one
zero, but is not identically zero, then
. log (n(r)
A= lim sup————
n-oo logr

where n(r) is the number of zeros in the closed disk |z| < r and A denotes the exponent of convergence of the
sequence of zeros. If f(z) = Y, a,z" is of order g, then

= lim su .
P n-oo P log (ﬁ)

nlogn
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The Hardy space H?(D) and the Besicovitch space

(PaJd) p. 4: The Hardy space H?(D) is defined as the space of all analytic functions on the disk b =
{z € C||z| < 1} for which the norm

AN = suprar {77 |f (re®|*do)

is finite. The radial limit (function) f(e¥®) = lrin} f(e'®) on I = S*(R?) exist almost everywhere with
AN =2 [27F () dop.
Lemma: Let (YOR) p. 12: Let X denote the vector space of all finite linear combinations of

functions of the form ei*, (- < t < ), where the parameter 1 is real. An inner product
in X is defined by

((f,9)):= lim 5= f(©)g(®)dt.

When X is closed by means of the metric generated by this inner product, we obtain a
certain Hilbert space B? (B is for Besicovitch). The continuum of elements e* forms a
complete orthogonal subset of B2. The Hilbert space B? contains the important class of
Bohr almost periodic functions. Those functions are obtained by adding to X the limits of
sequences of function in X that are uniformly convergent on the entire real line.

The Hardy space H? can also defined as the subspace of those L,(I") functions for which the negative
Fourier coefficients vanish, that is

fO) = fo == [ fe)e™"?dp < 0,v < 0.

Then a function £ with f(e?) ~¥r_, f,e'¢ can be naturally identified with the power series f(z) =
Y=o fn2™, defining an analytical function f in D.

In other words, the Hardy space H? is a Hilbert space, being a closed subspace of the Hilbert space
H:= L(I') and the orthogonal projection P,2: Ly(I') — H? is defined by

. oo i oo i
Puz: Yo _,aze’ = Yr  a,e'?.

As there is an isometric isomorphism between L;(I") and 1% (Z), and as the sequence space 1> (Z,)
maps to the Hardy space H?, one may regard (% (Z,) as embedding into [ (Z) as the subspace of all
(ap)p-_o With a, =0 forn<o.

Remark: For f(z) = ¥7_, apz™ € H*(D) and g(z) = X%, bpz™ € H2(D) it holds if02”|f(re"‘l’|2d<p =
Y2 olayl?r¥ foro <r < 1and

((f,9)): = X0 anby,
defines an inner product of H2(D) with |||£]l13: = (((f, /).

Remark: The mappingz -1 — i takes the right half plane Re(z) > 1/2 to the interior of the unit circle
D: = {zl||z| < 1} in the complex z-plane and maps the critical line Re(z) = 1/2 onto the unit circle

Proof:
2

2

z—1

Z

z-1 Z-1  |z|?—2Re(2)+1 _ |z|?-1+1
— = < <1.

z  Z |z]? 2|2

1-2
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Relations of the Besicovitch space to the Dirichlet series

Lemma (LaElb) §228: let 0 < g < 1, and let g(s): = Xy a,e~!9" be absolute convergent
for Re(s) = o =y. Then

) 1 . ) . logn
tim = [ S(B+ iDg(y — idE =37 a, 5,

i.e. it especially holds
() lim =% S(B+i)S(y = i)dt =57 =5 = {(B+7).
The latter formula (*) can be generalized by
Lemma (LaElb) 8228: let -1 < g,y withp+y=1, p>1,y>10rp<1,y<1. Then
. 1 [ . .
lim = [, ¢B +ig(y — it)dt =B +).
Lemma:

1 poln 1 ]2 1
;J‘O |F(E+lt| dx—;.

The most general results concerning the average values of (|(s)|? are provided in (LaE1b) §228:

Lemma: In the sense that the relative error approaches zero as w — o

1w 1,3
= [ (¢C+ )] dt ~logw.
Regarding Dirichlet series we recall from (TIiE) p. 138:

Lemma: Let f(s):= X7 aeS°9m, g(s):= 2T b,e5'°9™ be absolute convergent for Re(s) >
1/2. Then for a > 1/2

(f,9)-a = lim = [ f(o +it)g(o — it)dt = 5T~ anbn,
i.e. f,g € H = ;% fora > 1/2.
The generalization is provided by the “main theorem” from (LaE1b) §225:

Theorem 37: Let the series f(s):= Y7 ae 59" be convergent for s > «;, and absolute
convergent for s > a; + & with g; > 0. Let the series g(s):= X3 b,e~5!°9™ be convergent
fors > a,, and absolute convergent for s > a, + &, with &, > 0. Then for g8 > a4,y > a, and

ﬂﬂ%nitholds
2

&1
lim o= [ f(B +iD)g(y — i)dt =I5 ayby e~ 4D,
Putting « = a;,= a, and € = ¢; = ¢, Theorem 37 leads to
Theorem 38: Let the series f(s):= Y7 ae ™S9 and g(s): = X7 b,e~$°9™ be convergent

for s > a, and absolute convergent for s > a + ¢ with ¢ > 0. Then for 8,y > a, (8 —a) + (y —
@) > ¢ it holds

, 1 , , . _
lim == [© f(B +i)g(y — it)dt =57 ayby, e P+,
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Putting
l: = lim sup (l‘;ﬂ) (chosing &; = ¢, = 1)
Theorem 37 leads to

Theorem 39: Let the series f(s):= Y7 a,e 9™ be convergent for s > «,, and absolute
convergent for s > a; + &, with &; > 0. Let the series g(s): = X7 b,e 9™ be convergent
fors > a,, and absolute convergent for s > a, + ¢, with &, > 0. Then for g > a;,y > a5,
B-a)+—az)>1

. 1 . . . _
lim == [© f(B +i0)g(y — itydt =7 ayby, e ),
chosing ¢, = &, == a,f =y leads to

Theorem 40: Let I: = lim sup (l‘;ﬂ) positive and finite and let the series f(s):= X a,e 509"
and g(s):= X b,e*°9" be convergent for s > a. Then for g > a +1/2

lim = [ F(B +it)g(B — it)dt = £ apb, e,
w—00 2W

Theorem 41: Let I: = lim sup (l‘;ﬂ) positive and finite and let the series f(s):= X a,e 09"

be convergent for s > a, and absolute convergent for s > a + ¢ with ¢ > 0. Then for g > a +
g/2

lim = [ FI(B + i)|?dt = $7|ay|? e

w—00 20

Theorem 42: Let I: = lim sup (“j{"") positive and finite and let the series f(s):= Y a,e 509

be convergent for s > a. Then for g > a +1/2

. 1 . —
lim o= % FIB + D)7 dt = X5 |ay|* e*4nF.

Lemma (ApT) p. 188: let f(s): = ¥ a,e ' absolute convergent for ¢ > o, then

1 @ A(o+it) . _ [Anif A=A(n)
wa_we f(o +it)dt = {0 eyt

Lemma (ApT) p. 188: let u, = e’r, then g(s): = 3 a, e~ is absolute convergent for ¢ > 0;
if ¢ > g, then

r)f(s) = f; g®ttde

which is an extension of the classical formula

(S () = J; = t°71dt,
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Entire functions and different types of same finite order

Extracts from (LeN) pp. 4, 32, (InA), (PaR)

An entire function is of finite order, if M;(r) = Imlaxlf(z)l %< e for some constant k > 0. The order of
z|=r

growth of an entire function is the greatest lower bound of these values of k. As entire functions with
same order can grow differently, there are different types of orders, grouped into minimal, normal
(mean), and infinite types. The entire function f(z) is said to have a finite type, if for some 4 > 0 the
inequality My (r) = maxlf ()] “< e4™ is fulfilled. The greatest lower bound for those values of is called

the type o = gy with respect to the order k. If g, = 0 the type is called minimal, if 0 < oy < o the type is
called normal (or mean), if o is infinite, the type is called maximal. Entire functions of order k = 1 and
normal type ¢ = g are called entire functions of exponential type ¢ = ;. For an entire function f(z) of
minimal type with respect to an order k it holds log|f(z)| = o(|z|¥), |z] = o, (LeB) p 90.

Examples:
i) sin (Az) is of order k = 1 and type ¢ = |A|, which mean that it is an entire function of
exponential type |A|
i) ﬂ\/ﬁ) is of order k == and type 1
4 2
iii) —_is of maximal order type, as logM (r) = Crlogr.

r(z)

The function % is most prominent example where the density of the zero set is finite, while the
canonical product is of maximal order type as logM (r) = Crlogr.

Remark: We note that the canonical product [[;-,(1 — ai) is of exponential type zero, and so cannot
be bounded along the real axis (applying Bernstein‘ inequality), (YoR) p. 118.

Remark: Sequences y,, fulfilling the Kadec condition |[n —y,| < L < i play a central role in the theory

of non-harmonic Fourier series and its isometric connection with the Paley-Wiener space. The
corresponding Paley-Wiener function is given by

9= Tzt = 5.

By making a change of variables z? = w, one obtains an entire function of non-integer order p = 1/2,
LeB) p. 89.

Theorem 17 (InA) p. 56: If M(r) is the maximum of |£(s)| on the circle |s| = r, then
M(r)~ %rlogr.

Theorem XXIV (PaR) p. 77: If the y, are real and positive, if the series Zyiz converges, and if ¢p(z):=

o1 — ;—z), then the statements log(iy) ~ tAlyl|loglyl, as y = o and ffn%dx ~m?A-logly| are
completely equivalent.
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