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Abstract 
 
A strictly monotonous sequence {𝑎𝑛}𝑛∈𝑁 with 𝑎1 = 0, 𝑎∞ = 𝛾, and 𝑎𝑛 transcendental für 𝑛 ≥ 2 is 
provided which proves the irrationality of the Euler-Mascheroni constant. 

 

 
 
 
 

Theorem 
 
 
For the Bessel functions 𝐽𝜈(𝑥) we consider the generalized Bessel functions in the form  
 

𝐵𝜈(𝑥): =
𝐽𝜈(2𝑥)

𝑥𝜈 −
𝐽𝜈(2√𝑥)

𝑥𝜈/2   

with 

 

𝐽𝜈(2𝑥)

𝑥𝜈 : = ∑
(−1)𝑘

𝑘!

𝑥2𝑘

𝛤(𝜈+𝑘+1)
∞
𝑘=0   . 

 
 

Theorem: The sequence 
 

𝑎𝑛 ≔ ∫ 𝑥1/𝑛𝐵1/𝑛(𝑥)
𝑑𝑥

𝑥
= ∫ [𝑥1/𝑛𝐵1/𝑛(𝑥) + 𝑥−1/𝑛𝐵1/𝑛 (

1

𝑥
)]

1

0

𝑑𝑥

𝑥

∞

0
  

 

is strictly monotonous with 𝑎1 = 0, 𝑎∞ = 𝛾, and all 𝑎𝑛 are transcendental für 𝑛 ≥ 2. 
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Proof of the theorem 
 
 
The theorem is the consequence of the following lemmata. 
 
 

Lemma 1: For 𝜈 ∈ 𝐶, and 𝛼 algebraic with 𝛼 ≠ ±
1

2
, −1, ±

3

2
, −2 … , 𝐽𝜈(𝛼) are 

transcendental. 
 
 
 
 
Main lemma:  
 

i) 𝛾 = ∫ [𝐽0(2𝑥) − 𝐽0(2√𝑥)]
𝑑𝑥

𝑥
= ∫ 𝐵0(𝑥)

𝑑𝑥

𝑥

∞

0

∞

0
 , with  𝐽0(𝑥) = 𝑂(𝑥−

1

2) for large 𝑥 
 

ii) for 0 < 𝑅𝑒(𝜇) < 𝑅𝑒(𝜈) +
3

2
 it holds ∫ 𝑥𝜇𝐵𝜈(𝑥)

𝑑𝑥

𝑥
=

1

𝜇
[

𝛤(1+
𝜇

2
)

𝛤(1+𝜈−
𝜇

2
)

−
𝛤(1+𝜇)

𝛤(1+𝜈−𝜇)
]

∞

0
  

 

iii) for 0 ≤ 𝛼 < 𝛽, 0 ≤ 𝑥 < 1 it holds  𝐵𝛽(𝑥) − 𝐵𝛼(𝑥) > 0. 

 
 
Proof: i) - iii) see lemmata 2-4 below. 
 
 

Putting 𝜇: = 𝜈: =
1

𝑛
 and 

 

𝑎𝑛 ≔ ∫ 𝑥1/𝑛𝐵1/𝑛(𝑥)
𝑑𝑥

𝑥
= ∫ [𝑥1/𝑛𝐵1/𝑛(𝑥) + 𝑥−1/𝑛𝐵1/𝑛 (

1

𝑥
)]

1

0

𝑑𝑥

𝑥

∞

0
  

 
it follows  
 

i) 𝑎1 = 0, 𝑎∞ = ∫ 𝐵0(𝑥)
𝑑𝑥

𝑥
= 𝛾

∞

0
 

 

ii) 𝑎𝑛 = 𝑛 [1 − 𝛤 (1 +
1

𝑛
)] < 𝑎𝑛+1 (*) 

 

iii) for 𝑛 > 1 all 𝑎𝑛 are transcendental. 
 

 
 
 
 
 
 

 
 

 

 
(*) (AbM) p. 255: for 1 ≤ 𝑥 ≤ 2 it holds 
 

i)          i)  𝑚𝑎𝑥{𝛤(𝑥)} = 𝛤(1) =  𝛤(2) = 1,  

 
ii)          ii) 𝛤(𝑥) is convex with minimum at 𝛤(3/2) ~ 0, 88622. . = 1 − 0,11378 … 

 

iii)          iii) 1/𝛤(𝑥) is concave with maximum at 
1

𝛤(
3

2
)
 ~ 1 + 0,11378 … 
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Lemma 2 (BrR), (WaG) 13-24, (WeH): For 0 < 𝑅𝑒(𝜇) < 𝑅𝑒(𝜈) +
3

2
 it holds  

 

∫ 𝑥𝜇 𝐽𝜈(𝑥)

𝑥𝜈

𝑑𝑥

𝑥
=

𝛤(
𝜇

2
)

2𝜈−𝜇+1𝛤(1+𝜈−
𝜇

2
)

∞

0
 . 

 
From 

 

1

2
∫ 𝑥𝜇/2 𝐽𝜈(2√𝑥)

𝑥𝜈/2

𝑑𝑥

𝑥
=

1

2
𝛤(

𝜇

2
)

𝛤(1+𝜈−
𝜇

2
)

∞

0
  resp.  ∫ 𝑥𝜇 𝐽𝜈(2√𝑥)

𝑥𝜈/2

𝑑𝑥

𝑥
=

𝛤(𝜇)

𝛤(1+𝜈−𝜇)
=

1

𝜇

𝛤(1+𝜇)

𝛤(1+𝜈−𝜇)

∞

0
 

 
it therefore follows 
 
 

Lemma 3: for 0 < 𝑅𝑒(𝜇) < 𝑅𝑒(𝜈) +
3

4
 it holds 

 

∫ 𝑥𝜇𝐵𝜈(𝑥)
𝑑𝑥

𝑥
=

1

𝜇
[

𝛤(1+
𝜇

2
)

𝛤(1+𝜈−
𝜇

2
)

−
𝛤(1+𝜇)

𝛤(1+𝜈−𝜇)
]

∞

0
 . 

 
 
Corollary: It holds 
 

i) ∫ 𝑡𝜇−1𝐽0(2𝑡)𝑑𝑡 =
𝜇

2
𝛤(

𝜇

2
)

𝛤(1−
𝜇

2
)

∞

0
   for 0 < 𝑅𝑒(𝜇) <

3

2
 

 

ii) 𝛾 = ∫ [𝐽0(2𝑥) − 𝐽0(2√𝑥)]
𝑑𝑥

𝑥

∞

0
 . 

 
 

Proof: i) follows from the lemma 2 above; in (BrR) it is proven that ∫ [𝑒−𝑡 − 𝐽0(2𝑡)]
∞

0

𝑑𝑡

𝑡
= 0 based on the 

asymptotics formula 
 

𝛤(𝜇) −
1

2
𝛤(

𝜇

2
)

𝛤(1−
𝜇

2
)

=
1

𝜇
[𝛤(1 + 𝜇) −

𝛤(1+
𝜇

2
)

𝛤(1−
𝜇

2
)
] =

1

𝜇
[(1 − 𝛾𝜇) −

(1−
𝛾𝜇

2
)

(1+
𝛾𝜇

2
)

+ 𝑂(𝜇2)] = 𝑂(𝜇) →𝜇→0+ 0 . 

 
The corresponding asymptotics 
 

  𝛤(𝜇) −
𝛤(𝜇)

𝛤(1−𝜇)
=

1

𝜇
[𝛤(1 + 𝜇) −

𝛤(1+𝜇)

𝛤(1−𝜇)
] =

1

𝜇
[(1 − 𝛾𝜇) −

(1−𝛾𝜇)

(1+𝛾𝜇)
+ 𝑂(𝜇2)] = 𝛾 + 𝑂(𝜇) →𝜇→0+ 

 

result into ∫ [𝑒−𝑡 − 𝐽0(2√𝑡)]
∞

0

𝑑𝑡

𝑡
= 𝛾, with same asymptotics as 

1

2
𝛤(

𝜇

2
)

𝛤(1−
𝜇

2
)

−
𝛤(𝜇)

𝛤(1−𝜇)
. 

 
 
From the representation 
 

𝐵𝜈(𝑥): =
𝐽𝜈(2𝑥)

𝑥𝜈 −
𝐽𝜈(2√𝑥)

𝑥𝜈/2 = ∑ (−1)𝑘+1 𝑥𝑘

𝑘!

(1−𝑥𝑘)

𝛤(𝜈+𝑘+1)
∞
𝑘=0   

one gets 
 
 

Lemma 4: for 0 ≤ 𝛼 < 𝛽, 0 < 𝑥 < 1 it holds  𝐵𝛽(𝑥) − 𝐵𝛼(𝑥) > 0. 

 
 
Proof: The lemma follows from the equation 
 

 𝐵𝛽(𝑥) − 𝐵𝛼(𝑥) = ∑ (−1)𝑘+1 𝑥𝑘

𝑘!

(1−𝑥𝑘)

𝛤(𝛽+𝑘+1)
∞
𝑘=0 − ∑ (−1)𝑘+1 𝑥𝑘

𝑘!

(1−𝑥𝑘)

𝛤(𝛼+𝑘+1)
∞
𝑘=0   

 

                        = ∑ (−1)𝑘 𝑥𝑘(1−𝑥𝑘)

𝑘!
[

1

𝛤(𝛼+𝑘+1)
−

1

𝛤(𝛽+𝑘+1)
] > 0∞

𝑘=0  . 
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