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Abstract

A strictly monotonous sequence {a, } ey With a; = 0, a,, =y, and a,, transcendental fir n > 2 is
provided which proves the irrationality of the Euler-Mascheroni constant.

Theorem

For the Bessel functions J, (x) we consider the generalized Bessel functions in the form
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Theorem: The sequence
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is strictly monotonous with a; = 0, a,, =y, and all a,, are transcendental fur n > 2.



Proof of the theorem

The theorem is the consequence of the following lemmata.

Lemma 1: For v € C, and « algebraic with a # ii,—l,i%,—z vy (@) are

transcendental.

Main lemma:
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i) v = Jy Uo@x) = Jo(2V®)] 5 = [, Bo(x)f , with J,(x) = 0(x"2) for large x
1 1"(1+§) _ra+p

i) for 0 < Re() < Re(v) +3 it holds ;" xB, () =~ r(v=5) T
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iii) for0<a<p,0<x<1litholds Bg(x)— B,(x) > 0.
Proof: i) - iii) see lemmata 2-4 below.

Putting p: = v: = = and
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it follows
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iii) forn > 1 all a,, are transcendental.
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Lemma 2 (BrR), (WaG) 13-24, (WeH): For 0 < Re(u) < Re(v) +§ it holds
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it therefore follows
Lemma 3: for 0 < Re(u) < Re(v) + % it holds
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Corollary: It holds

i) fooo t4-1), (26)dt = F%(I;(i)

i) v = J @0 — Jo(2vE)] <

for 0 < Re(w) < z
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Proof: i) follows from the lemma 2 above; in (BrR) it is proven that f0°°[e—f —]O(Zt)]% = 0 based on the
asymptotics formula
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The corresponding asymptotics
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From the representation
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one gets

Lemma4:for0 <a <f,0<x <1itholds Bz(x) — B,(x) > 0.

Proof: The lemma follows from the equation
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