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Preface to the
Dover Edition

In the eleven years since the preface to the first edition was written, the research
that I (N.B.) have carried out has repeatedly confirmed the power and utility of
asymptotic analysis, in general, and asymptotic expansions of integrals, in particu-
lar. I have also found that my presentations of this material in the classroom have
followed very closely the presentations of this book, some of which were first
prepared as part of a set of lecture notes, ten years before the first edition was
printed!

The first edition has retained a loyal following, which has been extremely gratify-
ing to both of us. This has been true despite an embarrassingly large number of
typographical and other errors, which admittedly detracted from the overall value
of the original edition. The present edition has been prepared by directly correcting
the original pages and then photographing the corrected pages. This method mini-
mizes the probability of introducing new errors, while maximizing the likelihood
of eliminating the old errors. Thus, we hope that this Dover edition will be wel-
come both to owners of the original edition and to new readers.

In regard to corrections, we would like to express a special debt of gratitude to
John Boersma, whose careful reading and extensive list of corrections have pro-
vided the bulk of outside information for this edition.

The bittersweet process of producing a book such as this remains an important
part of our professional and personal growth as applied mathematicians. We
would not have missed that experience for anything!

N. Bleistein
R.A. Handelsman
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Preface to the
First Edition

Asymptotic analysis is that branch of mathematics devoted to the study of
the behavior of functions in particular limits of interest. This book is concerned
with the theory and technique of asymptotic expansions of functions defined
by integrals. Although the subject matter might appear narrow at first glance,
in actuality its scope is quite large, and it is particularly relevant to applied
mathematics. Indeed, the solutions to a large class of applied problems can,
by means of integral transforms, be represented by definite integrals. Exact
numerical values are often difficult to obtain from such representations, in
which event one must resort to some method of approximation.

We might also mention that many of the techniques to be developed here
have counterparts in other areas of asymptotic analysis. Thus it is expected
that once these techniques are learned, they will prove useful in the other areas
as well.

In the past, asymptotic analysis was considered more an art than a discipline.
This was mostly due to the fact that researchers in the field were from a wide
variety of scientific areas and their methods were developed for specific problems
or for a narrow group of problems. As a result, asymptotic techniques appear
to be rather ad hoc in nature. One of the goals of our book is to establish that
there are certain underlying principles in the asymptotic analysis of integrals
which enable one to attack problems in a systematic way.

It is hoped that this book will be used by a variety of people. Basically we
feel that the student, the user, and the researcher will all find the book of value.
Because the needs of each of these groups are obviously different, we have
attempted to start each chapter with either elementary motivational material
or an informal development of the subject matter. While the initiated user
or researcher might find this material useful for reference purposes, it is expected
that neither will find it necessary to read these sections in detail. In fact, such
readers will likely find the material in Chapters 1-3 familiar and will, in most
instances, want to concentrate on Chapters 4-9.

To aid the person who merely wishes to use certain results and is not parti-
cularly interested in the theory from which these results were obtained, we
have prepared an extensive index. This index lists and locates all of the special
functions whose asymptotic expansions have been derived in the text and also
locates the formulas associated with the major techniques of asymptotic
analysis.

The book is primarily oriented as a text for students of applied mathematics.
One quickly learns that asymptotic analysis lies at the heart of applied mathe-

vii
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matics and that it is crucial for the student to have a solid foundation in the
subject. Although this book covers only a portion of the entire field, we feel
that a course based on its contents will go a long way in developing the desired
foundations.

The prerequisites for such a course are minimal. Indeed, we feel that any
student having a good background in advanced calculus, differential equations,
and complex variables can adequately handle the contents.

Actually the book contains more material than can be covered in a single
quarter or even in a single semester course. In fact, we believe that a full year
would be required to cover the entire text. Nevertheless, meaningful one-
quarter and one-semester courses can be readily designed. A one-quarter
course might consist of the material in Chapters 1, 2, and 3 and sections
4.1, 5.1, 6.1, and 7.1-7.3. This covers the so-called standard methods that is,
integration by parts, Watson’s lemma, LaPlace’s method, stationary phase,
and steepest descents. For a one-semester course one might add to the above
the remaining portions of Chapters 4 and 7. Chapter 4 is devoted to the Mellin
transform method, and the latter sections of Chapter 7 are concerned with
less elementary aspects of the method of steepest descents.

The amount of material included in a one-year course is dependent on the
thoroughness with which each topic is treated. We might mention however,
that some topics, especially those in the chapter on uniform methods, are not
intended for use in an introductory course; rather, they have been included
for the sake of completeness.

A great deal of effort has been devoted to preparing the exercises for each
chapter. As in so many courses of an applied nature, we feel that the material
can best be learned by doing as many problems as possible. Whenever feasible,
the answers to complicated exercises are given by simply asking the student
to “show that...”. We might also mention that new results are to be derived
in the exercises in several instances.

Some remarks should be made concerning the selection of material. The
subject matter is itself sufficiently vast that it would be impossible to treat it
completely in a single volume of reasonable size. Thus we had to be selective
in preparing our work. In the final analysis, we chose those topics which we
felt were most useful and which most lent themselves to a coherent and syste-
matic presentation. Of course, our selection is biased by our own experience,
and we recognize that other authors might quite honestly come up with different
ones.

One aspect of asymptotic analysis has been deliberately omitted from our
treatment, namely, that of obtaining precise numerical estimates or errors.
In other words, we have in all cases contented ourselves with establishing
the asymptotic nature of our results by means of traditional order estimates
and have not attempted to develop methods for attaching numerical values
to errors.

We wish to say a few words concerning other works in the area of asymptotic

e
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analysis of integrals and our system of referencing in general. There are several
existing books, as well as a multitude of research papers, that are worthy of
mention. We have found it impossible, however, to make specific reference to
all of these and have therefore been selective in our referencing. Basically we
have chosen those references which we feel are most useful from the point of
view of the student.

We have used a two-decimal-point numbering system for equations,theorems,
lemmas, examples, and figures. Thus Figure 7.2.3. refers to the third figure
in the second section of Chapter 7. We deviate from this practice for the case
of “one of a kind.” Thus Theorem 4.2 refers to the only theorem in section
2 of Chapter 4. The second section of Chapter 4 is itself referenced as section
42,

Finally we wish to thank many people who have aided us in the preparation
of this work. In particular, we acknowledge the helpful discussions with and
the encouragment from Professors J.B. Keller, D. Ludwig, and the late R.M.
Lewis. We thank Professors V. Barcilon and W.E. Olmstead for reading the
manuscript and offering their constructive criticisms. We also thank E. Adams,
R. Mager, and D. Strawther for testing the text and exercises and K. Russell
for an excellent job of typing. Finally, we would like to take this opportunity
to express our gratitude to those agencies who have over the years supported
our research efforts, many of which have been incorporated into the text.
These agencies are the Air Force Cambridge Research Laboratories, the Air
Force Office of Scientific Research, the National Science Foundation, and the
Office of Naval Research.

September, 1974
Denver, Colorado
Chicago, 1llinois

N. Bleistein
R.A. Handelsman
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Fundamental
Concepts

1.1. Introduction

Simply stated, asymptotic analysis is that branch of mathematics devoted to
the study of the behavior of functions at and near given points in their domains
of definition. Suppose then that f(z) is a function of the complex variable z.
Suppose further that we wish to study f near the point z = z,. If f is analytic
at z = z,, then the desired behavior can be determined by studying its Taylor
series expansion about z = z,.

Now suppose that z=z, is a singularity of f. If it is either a pole of a
branch point, then again the analysis can be reduced to the investigation of
convergent series expansions. However, if z=1z, is an essential singularity
of f, then no such reduction is possible and the analysis is far more complicated.
Partly for this reason, we shall find that most often our investigations will
involve the study of functions near their points of essential singularity.

In this chapter we shall consider, for the benefit of those readers unfamiliar
with asymptotic analysis, some of the more fundamental concepts of the subject.
It is not our aim to be exhaustive in this regard, but rather to present enough
introductory material so that the techniques to be presented in future chapters
can be well understood. Therefore, the present chapter shall consist of several
definitions and theorems to place the subject on a firm mathematical foundation
and also, perhaps more importantly, several heuristic discussions designed to
give the reader an intuitive feel for what asymptotic analysis is all about.



2/ CHAPTER | Fundamental Concepts

Let us begin by considering a particular example. We define

L

1(x)=xe".|. eT_tdt. (L.L1)

Here x is real and nonnegative. The integral in (1.1.1) is often referred to as
the exponential integral and is denoted by E,(x). The reason for the factor xe*
will be clear from the discussion below.

Suppose it is desired to approximate I(x) at certain values of x. More
precisely, suppose that an estimate of I correct to three significant figures is
required. Our first inclination might be to seek a series representation of I
and then use the appropriate partial sums to obtain the desired approximations.

Since to expand a function in a series about a given point requires a knowledge
of the value of the function at that point, it should be clear that selecting any
finite nonzero value of x about which to expand I would not be helpful.
However, by applying L'Hospital’s rule in (1.1.1) we find that

limI=0, limI=1. (1.1.2)

x—0+ X -

To expand I in a series about x =0 is by no means a simple matter. The
reason for this is essentially due to the fact that E,(x) has a logarithmic singu-
larity at the origin and hence I(x) does not have a Taylor series expansion
about x = 0. Nevertheless an expansion can be obtained. We leave its derivation
to a later chapter and merely quote the result here:

_ we‘t s (_1)n+1xn
El(x)_L ~a- —logx—y+nzl - (1.1.3)
Here y is the so-called Euler-Mascheroni constant and is defined by
=1
y= lim [Z rlogm] =0.5772157.... (1.1.4)
m=® | g2y
Thus, upon combining (1.1.1) and (1.1.3) we obtain
® ¢  q1ynt1l on
I(x) = xe* [—logx—y+ S (—1)—"] (1.1.5)
=t n'n!

We note that the series in (1.1.5) converges for all x and that (1.1.5) is a series
(although not a power series) representation of I about x =0. When we
examine (1.1.5) we quickly discover that, for “moderate” values of x, the
convergence is painfully slow. Indeed, for x = 10, upward of 40 terms must
be retained to achieve an estimate of 1(10) accurate to three significant figures.
Moreover, as x gets larger, the situation worsens. Upon reflection, we realize
that (1.1.5) is an expansion of I about x =0 and hence we should only expect
to obtain accurate estimates using relatively few terms for x “small.”

Thus, in trying to estimate I for x > 10 say, it is natural to seek an expansion

SECTION 1.1 [Introduction | 3

about x = co. Such an expansion is readily obtained by repeatedly .integrating
by parts in (1.1.1). Indeed, after N integrations by parts, we obtain

N-1 —Dn! % e_l
Ix)= 3, ( x) +(—1)NN!xe"J e dt (1.1.6)
n=0 x

which is an exact expression.
At first glance we are pleased with (1.1.6) because we have represented I(x)

by a series whose terms involve inverse powers of x. In fact, we are tempted
to let N go to infinity in (1.1.6) and set

I(x) = ‘20(_2: n (1.1.7)

Our pleasure is short-lived, however, when we realize that the series (1.1.7)
diverges for all x. Indeed,

(n + 1)st term
nth term

" (1.1.8)

X

which, for every fixed x, increases without bound as n—» co. .

Having learned long ago that divergent series are ‘‘bad” while convergent
series are “‘good,” we are inclined to discard these last results altogether.
Admittedly, we must discard (1.1.7) because it is a meaningless statement, but,
as we shall now show, to discard (1.1.6) would be decidedly premature.

Let us set

-1¢(__1\n
sN(x)=NZ Sl ALLY (1.19)
n=0 X
@ e-t
E(x,N)= (= )¥ N! xeXL ST (1.1.10)

Thus Sy(x) is the Nth partial sum of the divergent series (1.1.7) and &(x,N)
is the error made in approximating I(x) by Sy(x). We now make the obser-
vation that, because x is positive, &(x,N) is positive when N is even and
negative when N is odd. This implies that

Sy(x) SI(x) < Sy41(x), N even, (L.1.11)
Sn+1(x) S I(x) < Sp(x), N odd.

Hence, for any x, the actual value of I(x) must lie between two successive
partial sums of the divergent series (1.1.7).

As (1.1.11) shows, a succession of upper and lower bounds for I(x) can be
obtained by evaluating Sy(x), N=1,2,.... We have not as yet, however,
determined how good any of these bounds are. One point is clear ; for ﬁxed~ X,
the best approximation of I(x) by Sy(x) is achieved for that integer N which
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minimizes |&(x,N)|. Furthermore, this optimum value of N, call it ;’Q(x),1
must be finite because IimN‘,_M’(x,N)} = due to the divergence of (1.1.7).
Also, because &(x,N) alternates in sign with N, |&(x,N)| is less than N!/x",
the absolute value of the first term omitted in (1.1.7) when approximating I(x)
by Sy(x). Thus, for fixed x, we might expect that the estimate Sy(x) improves
with N so long as the absolute value of the ratio of successive terms remains
less than or equal to 1. Hence, from (1.1.8) we are led to predict that

IQI(x) = [x] = Greatest integer less than or equal to x.  (1.1.12)

Finally, we observe that for fixed N, |<.?(x,N), is a monotonically decreasing
function of x and lim, .. |&(x,N)| = 0. Thus, for any fixed N, Sy(x) becomes
a better approximation of I as x increases, but the error is zero only in the
limit x = .

Many of the results obtained above are summarized in Table 1.1. In this
table the numbers in the column headed I (x) have been obtained by numerical
means and can be taken as exact to the indicated accuracy.

It is of interest to compare the results for x = 1, x=10,and x = 100. We see
from the table that the best approximation of I (1) isgiven by S,(1) as predicted
by (1.1.12). S,(1), however, is not “close” to I(1), the percentage error being
approximately 66 percent. The best approximation of | (10) is indeed afforded
by §,0(10) which we see is correct to three significant figures. It will be recalled
that 40 terms of the convergent expansion (1.1.5) are required to obtain equi-
valent accuracy. Finally, for x = 100, we see that §,(100) is already correct
to five significant figures and, presumably, the next 96 or so partial sums yield
still better approximations of I(100).

We can conclude, therefore, that it would have been a mistake to discard
the expansion about x =0 obtained via integration by parts, because a great
deal of information about I(x) has been garnered from (1.1.6). We might ask
what the feature of the divergent series (1.1.7) is that makes it so useful in
approximating I for x, say, greater than 10 and, in the same vein, why the
utility of the convergent series (1.1.5) is rather limited in this region. The answer
simply stated is that for x > 10, the convergent series “initially” diverges from
the true value of I(x) while the divergent series “initially” converges toward
this value. Hence, we can obtain a reasonable approximation to I by taking

relatively few terms of the divergent series whereas many more terms of the
convergent series are needed to achieve the same degree of accuracy.

We might now conclude that, when x is “large,” we should always use the
partial sums Sy(x) to approximate I{x) rather than the partial sums of (1.1.5).
Why this is not quite so brings out the inherent disadvantage of divergent series.
In using the partial sums of (1.1.5) to approximate I(x), we can make the error
as small as we please, no matter how large x is, by simply taking sufficiently
many terms. In using the partial sums Sy(x) to approximate I (x), the smallest

1 I‘}(x) need not be unique.

Table 1.1

SlO

So

Sg

s,

Se

Ss

S4

83

8,

S,

I(x)

X

-4.0000

2.0000
1.0000
0.8999
0.8800
0.9200
0.9902

0

1
1
1
1

0.59634
0.72266
0.78625
0.85212

1

1.7500
0.9626
0.8736
09164

0.2500
0.6667
0.8352
0.9140

0.5000

0.667

2
3
5
10

100

0.4688
0.8352
0.9152

0.8820

0.8000
0.9000

0.9900

091542 091581 091544

0.91592

1
1

091563

0.99019

0.99019

SECTION 1.1

Introduction | 5
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error obtainable is dictated by the value of x. Moreover, this minimum error
is never zero unless x =co. Thus, if we require I( 10) to four significant figures,
then we cannot use any of the partial sums S, ~(10) because, at best, they afford
three significant figure accuracy.

As a practical matter, in any problem where I(x) is to be approximated,
some a priori upper bound, say &, would be placed on the tolerable error.
We know that for fixed N, |£(x,N)| decreases monotonically to zero as x
increases to infinity. Therefore, no matter how small &, is, we can find an
Xo such that

| 6(x0,N (xo))| < &. (1.1.13)

Then, for all x =>x,, the partial sum Sixo)(x) yields an estimate of I(x)
accurate to within the tolerable error. Actually as x increases from X0, the
number of terms required to achieve the desired accuracy decreases from
IQ(xo). Indeed we have in the extreme I(c0)=§ 1(c0).

With the above example as motivation, we shall, in the sections to follow,
develop a theory that will enable us to systematically exploit the advantageous
features of divergent series.

1.2. Order Relations

Throughout this book, because we shall be concerned with studying the
behavior of functions as their arguments approach some limiting value, we
shall find indispensable the use of the so-called order or “0” relations defined
below.

In this section x represents a real or complex variable. Let us suppose that
f(x) and g(x) are two functions of x defined and continuous in a domain R
and that x, lies in R, the closure of R.

DEFINITION 1.2.1. LARGE ‘0” SYMBOL. Suppose that, as x-x,
through values in R, there exists a constant k, that is, a quantity independent
of x, and a neighborhood N, of x, such that

If ()] < kg(x)]| 1.2.1)

for all x in Ny nR. Then we say that, as X —Xq, f(x) is large “0” of g(x)
and write symbolically

f(x)=0(@g(x)), x-x, in R. (1.2.2)

Similarly, we introduce the following,

DEFINITION 1.2.2. SMALL “0”’ SYMBOL. Suppose that, for any ¢ > 0,
there exists a neighborhood N; of x, such that

SECTION 1.2 Order Relations [ 7

If ()| < e]g(x)] (1.2.3)

for all x in Ngn R. Then we say that, as x —Xx,, f(x) is small “0” of g(x)
and write symbolically

f(x)=o0(g(x)), x-x,in R. (1.2.4)

Thus, so long as g(x) is not zero in R,2 f=0(g(x)) as x—xq l.f the rjatxp
f/g remains bounded as x—x, in R and f =o(g(3.c)) as x— x, if the limit
of this ratio is zero as x—x, in R. We note that if f =o0(g(x)) as x— x,,
then necessarily f = O(g(x)) in this limit. The converse, however, need not

be true.

EXAMPLE 1.2.1. Let R=(01),f (x)=\/§, and g(x)=sin ./x. Then we
have by L’Hospital’s rule

o VE ] - 1.2.5)
Jl_l:\'(h[ sin \/; =1 (
so that
sin \/x=0(/x) and  /x=0(sin /x), (1.2.6)
asx—>0+.

EXAMPLE 1.2.2. Let R=(—ow,0) and

0, —0<x<0,
fx)y= (1.2.7)
e 1 0<x<o,
If g(x)=x™ where m is any complex number, then
i f(x)] = i [Q} =0 (1.28)
im o) = m [
and clearly
lim [M] =0. (1.29)
x=0-1 g(x)

Hence, f(x) =o(x™) as x—0 for all complex numbers m.

EXAMPLE 1.2.3. Let x be a complex variable and lgt R .be thg sector
0 < |x| <o0, |arg(x)| < n/2— 8. If & is positive, then, as is easily verified,

e *=o(x™) (1.2.10)

2 Except possibly at x,.
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as | x[ — oo in R for all complex numbers m. On the other hand, if é is negative,
then (1.2.10) does not hold for any complex number m as [x|> o0 in R due
to the rapid growth of e~ in the left half-plane Re(x) < 0.

At first glance it might appear that if, as x — Xo, f(x) =0(g(x)) but £+ o(g(x)),
then g(x)=0(f(x)). That this is not necessarily so can be seen from the
following counterexample.

EXAMPLE 1.24. Let R=(0,1), S(x)=xsin(x~?), g(x)=x, and X =0.
In R, because

f(x)

—— =|[sin(x"Y)| <1 1.2.11
0| =5 (121
we have f=0(g) as x -0 +. We also have that
. ft .
xl_{{)n+ [{; —x!}lgl [sin(x~1)] (1.2.12)
is undefined and hence f + o(g) as x -0 +. Finally,
g| _ 1
(f = s D (1.2.13)

is not bounded as x -0+, so that g #O0(f) in this limit.

As the above discussion shows, the order relations allow us to compare the
behavior of functions in some prescribed limit. It is often useful, when
considering many functions, to have one function or set of functions that serve
as a scale on which comparisons are made. This idea will be exploited in later
sections of this chapter. Here, however, we wish to use it to introduce the
concept of the order of vanishing of a function at a point.

If we wish to study f(x) as x — x,, then the simplest comparison functions
are the (not necessarily integer) powers of (x — xo). Suppose that, as x — x,,

Sx)=0((x — x4)%) (1.2.14)
for some real number A =A,. Then clearly (1.2.14) holds for all A <A,. If
= sup{A|f(x) =0((x — x,)9)}, (1.2.15)

then f is said to vanish at x = x, to order 8.> Of course 6 may be negative
in which event f becomes unbounded as x — x,. This growth, however, can
be interpreted as a negative decay.

It may or may not be true that

S (x) =0((x — x4)?), X - X,. (1.2.16)
Indeed, let f=Ilogx, R=(0,1), and xo=0. We have log x=0(x4), as

3 More precisely, & is the order of vanishing of f at x = x, with respect to the powers of (x — x,).
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x—0+, forall A<0 and log x #0(x?) for A> 0. Thus, =0, but log x #
O(l) as x—>0+.

From Example 1.2.1 we have that sin \/; vanishes to order 3 as x>0+ ;
while from Example 1.2.3 we have that as x —» co in the right half complex x
plane, e™* vanishes to infinite order or, equivalently, faster than any power
of x~1.

There are many useful formulas involving combinations of order relations
whose validity follows directly from the basic definitions. Below we list some
of the more important ones. In each of these, the limit x— x, in R is to be
understood.

(1) 00(f))=0(f)

(2) O(o(f)) = 0(0(f)) = olo(f)) = o(f).
(3) O(fg) =0(f)0(9).

(4) O(f) o(g) = o(fg).

() o(f)+0(f) =0(/).

(6) of)+o(f)=o(f).

(M) o(f)+0(f) =0(f).

To illustrate how the above formulas are to be interpreted we shall express (1)
in expanded form. For example, (1) states that if g =0(h) and h=0(f), as
X - Xx,, then g =0(f) as x - x,. We can therefore conclude that if g =0(h)
as x— X,, then the order of vanishing of g at x = x, is at least as large as
that of A.

To conclude this section we wish to point out that there are several operations
permissible with order relations. An important result is that an order relation
can be integrated with respect to the independent variable. Indeed, suppose
that R is an interval on the real line and f =0(g) as x— x, in R. Then

f° f@dt=0(J|g(0)|dt), x—x, in R. (1.2.17)

We leave the proof of (1.2.17) to the exercises. o
In general, order relations cannot be differentiated. That is, if f =0(g)
as x— Xx,, then it is not true in general that f' =0(g') as x— x,.

1.3. Asymptotic Power Series Expansions
Let us briefly reconsider the function
wp—t
() = xe"J f-t— dt (1.3.1)

studied in Section 1.1 and interpret the results obtained there in terms of the
order relations of Section 1.2. We have from (1.1.6)
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-3

—é”(x ,m)

-t

=(=1" m!xe"'[jt:—ﬂdt, m=12 .., (132

which relates I, the mth partial sum of the divergent series (1.1.7) and the
truncation error &(x,m).

We now make the claim that &(x,m)=0(x"™) as x-—oco. Indeed, this
follows by L’Hospital’s rule which yields

lim {x" &(x;m)} =(—1)"m! lim {x’"*’J T dt/e “"} (1.3.3)

Eaadi o] X
= (=1 m!

Thus, as previously noted, the error made in approximating I(x), as x — o,
by the first m terms of (1.1.6) is of the order of* the first omitted term.

It is readily seen that the preceding result can be written in the following
equivalent ways:

lim {x‘" [I(x)—i(_ "!J}=0, m=0,1,2,.... (134
x-© n=0
™ (=1)"n! et
=7y S 06T, X, m=0,1,2,...  (135)
n=0

It is the property expressed by (1.3.4) and (1.3.5) that makes the divergent
series (1.1.7) useful in approximating I as x— co. We now introduce the
concept of asymptotic power series based on just this property.

For the present we assume that x is a real variable whose domain is R and
that x, is a finite point in R, the closure of R. We then have the following.

DEFINITION 1.3.1. Let f(x) be defined and continuous on R. The formal®
power series 2, a,,(x Xo)" is said to be an asymptotic power series expan-
sion of f, as x - x, in R, if the conditions

x]l»r? {(x—xo)"" [f— i a, (x—xo)":l} =0, m=0,1,2,... (1.3.6)

n=0
are satisfied.
It is readily seen that conditions (1.3.6) are equivalent to

fx)= Z (X —Xo)" +0(x — xo)"*!, x-x,in R, m=0,1,2, ....
n=0 (1.3.7)

4 The phrase “of the order of  always refers to the large rather than the small “0” symbol.

By a formal series we mean any infinite series where no assumption is made concerning its
convergence.
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We note that neither (1.3.6) nor (1.3.7) implies the convergence of the formal
power series Z,_¢ a, (x — xo)". They are simply statements concerning the
behavior, as x— x,, of the error made in approximating f by the partial
sums of this series. Thus, in general, we cannot set f equal to the series and
hence we introduce the notation

kS

fX)~ Y a,(x—x)  x—xg (1.3.8)

n=0

to imply that conditions (1.3.6) hold and, in particular, to allow for the possible
divergence of the right-hand side.

DEFINITION 1.3.2. Assume that (1. 36) is satisfied for m=0, . -1,
but not for m = N. Then we say that Z¥_4 a,(x — x,)" is an asymptotlc power
series of fas x — x, to N terms and wrlte

Z (x —x0)" X Xg. (1.3.9)

Under the assumptions made we can now only conclude that

f(x)=Ni1 a, (x—x)"+o(x—x)" 1, x>, (1.3.10)

n=0

It is a simple matter to adapt our definition of asymptotic power series to
the important case where x, =oc0. Indeed, we have the following.

DEFINITION 1.3.3. The formal series L2, a,x™" is said to be an

asymptotic power series expansion of f as x—oo if the following equivalent
sets of conditions are satisfied :

xlggo{ [ f ]} m=0,1,2, ..., (13.11)

fx)= Z a,x " +O(x_'”_1), X —» 00, m=0,1,2,.... (1.3.12)

If (1.3.11) and (1.3.12) hold, then we write

(x) ~ Z a, x ", X —00. (1.3.13)
n=0
Thus, the analysis of Section 1.1 coupled with (1.3.3) shows that
o p—t © — 1\ n!
xe"j Ca~y SO (1.3.14)
x t n=0 X

As we have noted, the asymptotic conditions (1.3.6) imply neither the con-
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vergence nor the divergence of the formal series X._, a, (x — x¢)" If the
series converges to f(x) throughout some neighborhood of x = x,, then f
is a real analytic function in this neighborhood and can be studied by using
the powerful theorems associated with such functions. The more interesting
case arises when the formal series actually diverges in R, except of course
at x =x,. In that event f(x) must have some sort of singularity at x = x,
in the sense that x = x, must be a point of nonanalyticity for f.

We remind the reader that, if the asymptotic power series diverges, then for
any value of x # x,, the optimum number of terms of the series to be used
in approximating f must be finite and the corresponding optimum error is
not zero. In our work throughout this book we shall not dwell on obtaining
the optimum number of terms to be retained and shall, whenever possible,
determine an infinite asymptotic expansion.

At first glance, the concept of an asymptotic expansion may appear rather
foreign to many readers. Upon reflection, however, everyone who has studied
the calculus will realize that he has already been exposed to such expansions.
Indeed, although it is rarely stated in such terms, Taylor’s theorem with re-
mainder is a theorem in asymptotic analysis. For any function f(x) having
N continuous derivatives at x = x,, Taylor’s theorem with remainder states

m (U]
fe=3, ! n.fxO) (x = xo)" (1.3.15)
+m(_x_x0)m+1f(m+l) (x0+9m [x—xo]), 0<0m<1,
m (n)
= Z f n(‘xo) (X _ xo)n +0(x . xo)m+ 1, x - xo’
n=0 N

m=0,1,...,N—1
Then it immediately follows that

S (%) (x = Xo)"

n!

Sx)~ X X (1.3.16)

n=0
is an asymptotic power series expansion of f to N terms as x— x,.

Let us now suppose that f is infinitely differentiable at x = x,. We then
say that f belongs to the class C*(x,). We can then let N go to infinity in
(1.3.16) to obtain the infinite asymptotic power series expansion
o S (x0) (x = xo)"

fe~3

oy . XX (13.17)
n=0 .

Note that we have not set f(x) equal to its Taylor series, for nothing we have
assumed implies the convergence of this series. In other words, f need not
be analytic at x = x,,.
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To pursue this matter a bit further, let us define the function space C™(x,)
which includes those functions infinitely differentiable at x =x, but not
analytic there. Such functions arise often in asymptotic analysis. Unfortunately,
they are easier to define than to construct. If f&C “(xo), then f(xo) is
finite for each n but the Taylor series

i S (xo)

n=0 n!

(x — xo)"

does not converge to f throughout any neighborhood of x = x,. This can
happen in two ways. The Taylor series may actually converge thl"ough'out
some neighborhood of x = x, but not to f(x). Alternatively, the series mlght
diverge for all x # x,. We shall illustrate both of these instances in the following
examples.

EXAMPLE 1.3.1.  Consider

JB)= (13.18)
0, x<0.
Here f(x) and all of its derivatives are continuous and equal to zero at x = 0.
(See Example 1.2.2)) Although f is infinitely differentiable at x =0, it is not
analytic there because its Taylor series sums to zero for all x, a result v‘{hich
disagrees with f for x positive. However, because f is infinitely differentiable
at x = 0 we do have the asymptotic power series expansion

f(x)~0, x—0. (1.3.19)

EXAMPLE 1.3.2. Let us now consider
o
fx)=3 emcosm’x; —l<x<l (1.3.20)
m=0

We first note that the infinite series is uniformly convergent for xe[—1,1]
as are all of the series obtained by successively differentiating (1.3.20) term-
by-term. Therefore, we can conclude that f(x) and all of its derivatives. are
continuous in [ —1,1] and furthermore the derivatives of f can be obtained
by successive term-by-term differentiation of (1.3.20).

At the origin only the derivatives of even order are nonzero and we have

ey =(-1r i e~ "™ (m?)?", n=0,1,2,.... (1.3.21)
m=0
Thus, because f is infinitely differentiable at the origin, we can immediately
write
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‘ (=Xt s
fexy~ 3 o emm*l, x>0 (13.22)
n=0 ‘ m=0

Consider now the absolute value of the term of degree 2n, n> 0, in (1.3.22).
We have

) [ ' 2n [ = 2 \2n
gn)»’ ( 2 ‘”'"’"“) = (%) ( 2 e m“") > (——'X' ;1> e (13.23)
ToAm= m=0

which holds for m=0, 1, 2, ..., because one term of a sum of positive numbers
is certainly less than the sum. Furthermore, for x # 0, strict inequality holds
in (1.3.23). If we set m = 2n, then (1.3.23) becomes

2n 2n
(I;L)' ( oo m4.,> S (2"e|x|) x40, (1324)
*\m=0

Because the right-hand side of (1.3.24) exceeds 1 for all n greater than e/2|x|,
the series in (1.3.22) diverges for all nonzero x. Therefore, f is infinitely
differentiable at x =0 but is not analytic there.

&

In the following two sections we shall introduce generalizations of asymptotic
power series. We wish to comment here, however, that the terms of any asymp-
totic expansion can depend on one or more parameters. If the asymptotic
conditions are satisfied independent of the parameters as these parameters range over
some domain in parameter space, then we say that the asymptotic expansion holds
uniformly in the parameter(s) on this domain.

1.4.  Asymptotic Sequences and Asymptotic Expansions
of Poincaré Type

The asymptotic power series expansion of a function f(x), as x— Xx,, was
defined in Section 1.3. As (1.3.6) shows, it involves the sequence of functions
{(x=x0)"}, n=0,1, ... Its utility stems from the fact that the difference
between f and the Nth partial sum of the expansion is O(x — xo)V as x — xq.
That is to say, the truncation error is of the order of the first term omitted or,
equivalently, vanishes, as x—x,, to a higher order than any of the terms
retained.

Upon reflection we realize that the validity of the above remarks is a conse-
quence of the simple relation

(x = xo)"" = o0((x = xo)"), X=X, (t.4.1)

which actually holds for all complex numbers m. There are, of course, many
sequences of functions which have the property that all ratios of successive
terms vanish as x — x,. For example, the sequence {sin"(x — X0)}, n=0,1, ...
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has this property. It is reasonable to expect that a meaningful generalization
of asymptotic power series can be achieved in terms of such sequences. Th.e
remainder of this section shall be devoted to the development of this generali-

zation. ‘ ‘ .
Let us assume that R is an open interval on the real line, that x is a real

variable, and that x, ¢ R. Motivated by (1.4.1), we now give the following.

DEFINITION 1.4.1. The sequence of functions {¢,(x)},n=0, 1., 2,... is
called an asymptotic sequence as x — X, in R if, for every n, ¢,(x) is defined

and continuous in R and
¢n+ 1 (X) = 0(¢n(x))’ X — xo- (142)

It follows from (1.4.1) that {(x — x,)"} is an .asymptoFic sequence as X — X.
The list below yields further examples in the limits indicated.

(1) {(x=xo)""}, x—>xo Re(usy)>Re(r,),

() {x7}, x>0, Re(yn+1)>Re(y,)

3 {[g()]"}, x—x0 glxo)=0,

@ {g(x) $a(¥)}, x—Xo.
In (4) {¢,} is an asymptotic sequence as x = Xo while in (3) and (4) g(x) is
continuous and not identically zero in any neighborhood pf X=Xo.

Our generalization of asymptotic power series is given in the following.

DEFINITION 1.4.2. Let f(x) be continuous in R anq let c{:j),,(x)} be
an asymptotic sequence as x — X, in R. Then the formal series Z,,=.o a, ¢,(x)
is said to be an infinite asymptotic expansion of f(x), as x —X,, with respect
to {¢,} if the equivalent sets of conditions

fx)= i a,$, +0(Pp+1), X = X, m=0,1,2,... (1.4.3)
n=0
7= ad,
lim —%0——- =0, m=0,1,2 .. (1.4.4)

are satisfied. Moreover, the asymptotic expansion is said to be _°f Po?ncar_é type.

As in the case of asymptotic power series, this definition neither implies nor
precludes the convergence of the formal series. Hence, whenever (1.4.3) holds,
we write symbolically

©

)~ 8,6,  x-xo, (14.5)

n=0

to allow for the possible divergence of the right-hand side. We wish to emphasize
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that the usefulness of (1.4.5) is a consequence of (1.4.3) which states that, upon
truncating the formal series, the resulting error vanishes, as x—x,, at a
well-defined rate.

DEFINITION 1.4.3.  If (1.4.3) holds only for m=0,1,..., N — 1, then
N—-1
)~ a, ¢,  x-x (1.4.6)
n=0
is said to be an asymptotic expansion of f to N terms with respect to the
asymptotic sequence {¢,}. We note that, in the case of finite expansions,
(1.4.3)and (1.4.4) are not quite equivalent. Indeed, if (1.4.4) holds for m=0, 1, ...,
N —1, then we can only conclude that
N-1
J@=73 a, ¢, +o0(dy_,). (147)
n=0
Now suppose that we are given a function f and an asymptotic sequence
{#.} as x—x,. It follows directly from (1.4.4) that if an infinite asymptotic
expansion of f exists with respect to this sequence, then the coefficients g,
of the expansion are defined recursively by

n—1
f- Z a; ¢;
a,=lim|—=% | 5=0,1,2, ... (1.4.8)
=ul o,
If, however, the limits in (1.4.8) exist and are finite for n=0,1, ..., N — 1,

but ay is either undefined or infinite, then we can only conclude that the
finite expansion (1.4.6) holds.

We shall presently illustrate the above remarks by an example but first we
establish the uniqueness of asymptotic expansions of Poincaré type in the
following.

THEOREM 14. Let

N-1

fx)~ ZO A e (1.4.9)

be an asymptotic expansion to N terms of f with respect to the asymptotic
sequence {@,}. Then the coefficients a, are uniquely determined.

PROOF. Assume there exists a second expansion given by

N-1
T (14.10)

The coefficients b, must satisfy
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f=3 b4,
i=o

b,= lim |-——|, n=0,1,...,N—-1. (1.4.11)
B R @
It follows from (1.4.8) and (1.4.11) that
| S
@0 =bo = lim Lb_ ' (1.4.12)

Upon assuming that a,=b, for n=0,1,2,..., i<N -1, we immediately
obtain

/- AZ‘;) aip;—f+ 'Zo big;

Gioy —bisy = liyxlot v =0. (14.13)

It therefore follows by induction that a,=b,, for n=0,1,2,...,N —1, and
the theorem is proved.

EXAMPLE 1.4. Let us again consider the function
o -t
¢ (1.4.14)

I(x)=xe"J. .

introduced in Section 1.1. In that section we obtained, via integration by parts,
an asymptotic expansion of I, as x-»co, with respect to the asymptotic
sequence {x~"}. This expansion can be directly obtained from (1.4.8). Indeed,
upon applying L’Hospital’s rule we find that

xjj t™letdt

X = X — X = w

ay = lim I(x) = lim — = lim E— i] =1, (1.4.15)

x? Xt e dt —xe™* 2x§C t7leTtdt

a1=}i£n% e~ =xh£r}c - e~
= -1 (1.4.16)

The higher coefficients can also be determined in this manner, but the labor
involved increases quite rapidly. In addition, the above procedure suffers from
a defect in that its application requires a good deal of information about the
answer sought before we begin. In particular, although we are free to select
any asymptotic sequence we desire, we will not get very far unless the sequence
chosen reflects very closely the actual behavior of I as x-—c0.
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To illustrate these remarks, suppose that we attempt to find an asymptotic
expansion of (1.4.14), as x — oo, with respect to the asymptotic sequence {x~,
n=0,1,2,.... We have

ay = }gn I(x)=1 (14.17)

as before, but

a, xlljrglg [ P =0, (1.4.18)
Hence, the best we can say is that I~ 1 is an asymptotic expansion of I, to
one term, with respect to the asymptotic sequence {x~2"}.

Thus, we can conclude that unless we have some a priori knowledge about
the correct asymptotic sequence in a given problem, it is unlikely that a meaning-
ful asymptotic expansion can be obtained by using (1.4.8) directly.

Let us now consider some additional facts concerning asymptotic expansions

of Poincaré type. We first point out that a given function f(x) may have,
as x—» Xy, an asymptotic expansion with respect to each of the several asym-

totic sequences. Indeed, let
f(x)=./1—sinx. (1.4.19)

Upon expanding the square root we obtain

1. 1 ., 3,
fl~1 —38inx = ooy sin® x — S5 sin? x — x—0. (1.4.20)
Here the asymptotic sequence is {sin" x}, n=0, 1, ... . Alternatively,
cos x @ (—'1)’l x2n

f(X)z./1+sin x~..z=:o @n)! /T +sinx x>0 (14.21)

is an asymptotic expansion of f with respect to the asymptotic sequence

{x*"//1+sinx}, n=0,1,.... That both (1.4.20) and (1.4.21) are actually
convergent expansions is of no consequence here.

We now point out that two distinct functions can have the same asymptotic
expansion. To illustrate this assume that

0
fX)~ Y ax™"  x—w. (14.22)
n=0
Because
lim (x"e™*) =0, n=0,1,2,..., (1.4.23)
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we also have

fx)+e*~ a,x"  x—o. (1.4.24)
n=0

Suppose then we consider the set of functions defined on a domain R and
having the same asymptotic expansion as x— Xo. These functions are said
to be asymptotically equivalent with respect to the underlying asymptotic
sequence. That is to say, a given asymptotic sequence {¢,} establishes an
equivalence relation between functions defined on R and having an asymptotic
expansion of Poincaré type with respect to that sequence. In fact, we have that,
as x—Xo, f and g are asymptotically equivalent with respect to {¢,} if

h(x)=f(x)—g(x)=0(@,),  x—Xo

for n=0,1,2,....

Intuitively, f and g are asymptotically equivalent with respect to {6, if
their difference h is asymptotically zero on the scale induced by this asymptotic
sequence, that is, if, in terms of {,}, h cannot be distinguished from zero as
X = Xg.

It is instructive to view a given asymptotic sequence as defining an underlying
scale of measurement. In fact, this notion suggests still a further generalization
of our concept of an asymptotic expansion. This generalization shall be dis-
cussed in the following section and shall prove to be essential in our subsequent
work.

1.5. Auxiliary Asymptotic Sequences

In the preceding section we considered asymptotic expansions of Poincaré
type. In such expansions the terms of the underlying asymptotic sequence
appear explicitly. If we look upon an asymptotic sequence as defining a scale
on which to measure functions near a particular point, then a further generali-
zation of the concept of an asymptotic expansion is suggested. In this generali-
zation, we allow the asymptotic sequence to play an auxiliary role and we do
not insist that its terms appear explicitly in the expansion.

The basic idea is formulated in the following.

DEFINITION 1.5. Let {¢,} be an asymptotic sequence as x —x,. Then

the formal series £2, f,(x) is said to be an asymptotic expansion of a given
function f(x) with respect to the auxiliary asymptotic sequence {¢,} if

f{x)= i fi(x) +o(pn(x)), x—ox9, N=0,1,2,.... ((151)
n=0

We express this symbolically by
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LAY xoxe {$) (1.52)

n=0
and, when no confusion can arise, we shall omit any explicit reference to the
asymptotic sequence.

The main advantage of this generalization lies in the fact that the functions
Ju(x) need not themselves form an asymptotic sequence and hence our concept
pf an asymptotic expansion is significantly broadened. We note that if {f,}
is not an asymptotic sequence as x— X,, then (1.5.2) is not an asymptotic
expansion of Poincaré type.

EXAMPLE 1.5. Let x, = and consider the sequence {f,} where

Cos nx

Ju —, n=0,1,2,.... (1.5.3)

X

We observe that because

lim [cos (n+ l)x] =xlijr}o [f,,+1 (x)]

X €08 nx S (x)

_is undefined, {f,} is not an asymptotic sequence as x — oo. The difficulty
is ('iue to the fact that in every neighborhood of oo there are infinitely many
points at which cos nx vanishes while cos (n + 1)x does not.

We do have, however,

X =

COs nx

< -n =S
S [<IL =012 (1.5.4)

and therefore it is reasonable to expect that we might obtain a result such as
N a, cos nx
f)=73 T+o(x'"), x—w, N=0,12.. (1559

m=0

for.some function f(x). If so, then (1.5.5) yields an asymptotic expansion of
J in the sense of Definition 1.5. The auxiliary asymptotic sequence here,
of course, is {x™"}.

For expan§ions of the type (1.5.1), the auxiliary asymptotic sequence is by
no means unique. Indeed, suppose that {i,} is another asymptotic sequence
as x—x, with the property that

Ou(x) =0, (x)), x—-x, n=0,1,2,... (1.5.6)
It then follows from (1.5.1), (1.5.6), and relation (2) on page 9 that

N
fx)= Zo [a(x) + o(ry), X = Xg, N=012, ... (1.5.7)
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Hence, [ ~Z%0/fa(x) is an asymptotic expansion of f with respect to the

auxiliary asymptotic sequence {¥,} as well.
Some care must be taken in selecting the auxiliary asymptotic sequence if

meaningful estimates of the truncation errors
N
E(x,N)= f(x)— Z o), N=012,.. (1.5.8)
n=0

are to be obtained. Indeed, suppose that (1.5.1) holds but that
S =0(¢m) (1.5.9)

for some nonnegative integer m. We then claim that the auxiliary asymptotic
sequence {¢,} is too coarse or crude a scale on which to measure fx,m—1)
as x— Xo. This is established by noting that if m is a positive integer, then

f_ fn
. | &x,m—1) . nZO Son
lim | ——~| <lim ||———|+|| =0 (1.5.10)
x=rxo m x=xo d)m ¢m
while, if m =0, then
im| L | < 1im || L220] 4 Sl Zo, (1.5.11)
*>Xo 0 X Xo d’o ¢o

To ensure that the auxiliary asymptotic sequence {¢,} is useful for estimating
the truncation errors &(x,N) we must insist that, in addition to (1.5.1), the
conditions

=0, futold), x-X, n=012.. (1512

are satisfied.

We wish to emphasize that, in almost all problems, we first determine, by some
means, the formal series T f, which is expected to yield a good approximation
of [ in the limit under consideration. Whether it does or not is independent
of the particular auxiliary asymptotic sequence chosen as the underlying scale
of measurement. The selection of the auxiliary asymptotic sequence is an a
posteriori step in the analysis. It is introduced solely to enable us to obtain
meaningful estimates for the truncation errors &(x,N), N=0, 1,2, ....

1.6. Complex Variables and the Stokes Phenomenon

In the previous two sections we considered the asymptotic expansion of a
function f(x), as x — X, in the case where x isa real variable. We now want
to extend our results by allowing the independent variable to be complex.
Fortunately, only minor modifications of the definitions given in Sections 1.4
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and 1.5 are needed to achieve the desired generalization. There are, however,
some interesting and informative aspects of the complex case that do not
arise when the argument of f is restricted to be real.

To begin, let z be a complex variable whose domain is R and suppose that
Zo is a point in R. Suppose, further, that f(z) is defined on R and that we
wish to study its behavior as z—z, in R.

Because R is a two-dimensional region, in order to define any asymptotic
expansion of f as z—z, we must now specify the permissible directions of
approach to z,. With this purpose in mind, let us introduce the open sectorial
region S,; which is assumed to lie in R and which is defined by

Sep=1{z: 0< |z —2z|; a <arg(z — zo) < B} 5 z, finite,

(16.1)
Sp={z:12|>p; a<argz<pf), z, the point at ».

We extend our concept of an asymptotic sequence to the complex case in
the following.

DEFINITION 1.6.1. The sequence {¢2)}}, n=0,1,2, ..., is said to be an

asymptotic sequence as z -z, in S.p if each ¢,(2) is continuous in R and
if the conditions

bns1(@)=0(du(2)), n=0,1,2, ... (1.6.2)
hold uniformly as z— z, in Sop-

To illustrate how we generalize the previously made definitions to the

complex case, we consider asymptotic expansions of Poincaré type in the
following.

DEFINITION 1.6.2.  Let {¢,} bean asymptotic sequence as 224 in S
The formal series £ a, ¢, is said to be an asymptotic expansion of f
as z—z, In S, with respect to the asymptotic sequence {¢,} if the conditions

m

f@=Y a,¢,+0d,), m=0,12,... (1.6.3)

n=0
hold uniformly as z- z, in Sep

If (1.6.3) holds, then we write

[~ a,¢, 2oz, in Sy (1.6.4)
n=0

We note that Definition 1.6.2 differs from the corresponding one given in
Section 1.4 only in that now a sector of validity is specified. Because all of the
definitions and results of Sections 1.4 and 1.5 can be extended via the modifica-
tion, we shall not state these extensions here.

®If z — zo = re®®, then arg(z — z,) = 6.
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Let us now suppose that f(z) is an a}nalytic and single-valued fupction in
S . and suppose further that, as z2—>2o In Sops S (z]) hgs an asymptotic expan-
siuon with respect to the asymptf)tlc sequence { qS_,, } given by (1.6.4). HIere we
assume that each function ¢, is an'alytnc anfi single-valued in S.p t. ma()i/
occur that both f(z) and its asymptotic expansion can be analytically continue
outside of S,q, but thatas certain rays through z =z, are crossed,.the anal){tlc
continuation of the asymptotic expansion ceases to be the asymptotic expansion
of the analytic continuation of f. This occurrence 1s known as t.he Stokes
phenomenon and the rays across which it occurs are called Stokes lines.

The Stokes phenomenon is perhaps not so easy to understand for many
readers. The following questions naturally arise: When shpuld we expect it
to occur? If it occurs, then how do we determine the locations of tg)e Stokes
lines? Finally, what is the significance of the Stokes phenomenoq. Becauge
we feel that the phenomenon is an important aspect of‘ asymptotic analysis
we shall attempt to at least partially answer these qpestlons. .

To begin, let us suppose that f is not singl;-valued in any 2rn neighborhood .
of z=1z, but that each ¢, in (1.64) is. It is then reasogable to expect that
(1.6.4) will become invalid when a branch cut for f (g) is crossed. In. other
words, a branch cut for f(z) emanating from z =z, w1.ll be a Stokes line for
(1.6.4). Alternatively, if f is single-valued in a 2= neighborhood of z = z,,
but at least one of the functions ¢, is not, then a branch cut for any ¢,(z)
emanating from z =z, will be a Stokes line. Such occurrences of thg Stokes
phenomenon are easily understood and in these cases the Stoke's .l%n.es are
easily located. However, as we shall now see there are fu.rthe.r possqumes.

Let us consider the function f(z)=e™ '/ This functlon-ns apalytlc every-
where except at the origin where it has an isolated. essentlal. s1ng1:11ar1ty. As
z-0 in the region Re(z) >0, f(z) has an asymptotic expansion with respect
to the asymptotic sequence {z"} given by

e~ Yz 0. (1.6.5)

The analytic continuation of f(z) into the left half-plane is obvious as is the
continuation of the asymptotic expansion (1.6.5). We alsg note that .both f
and the asymptotic expansion are single-valued in the entire plane. It is clear,
however, that for Re(z) <0, e~ '/# is not asymptotic to zero as z— 0 In fact,
e~ has no asymptotic power series expansion as z—0 in th.lS region at all.
We must conclude, therefore, that the positive and negative imaginary axes
are Stokes lines for the asymptotic expansion (1.6.5). '

From this last discussion we can begin to understand the basic cause for
the occurrence of the Stokes phenomenon. In obtaining (.1.6.5.) we sought to
study the behavior as z— 0 of a fairly complicated function in terms of thhe
simplest of all asymptotic sequences, namely' {z"}. \ﬁ/le/.zhave found tha‘td t 1sf
sequence is inadequate to describe the behavior .of e as z—0 outside o
the region Re(z)>0. This then suggests that, in general, the occurrence lof
the Stokes phenomenon is a manifestation of the inadequacy of a particular
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asymptotic sequence to describe the behavior of the function under consideration
outside of some sector. This is the main point of this section.

It appears then that the sector of validity for a given asymptotic expansion
depends solely on the asymptotic sequence chosen and that to maximize the
sector of validity for a particular f we have to select the appropriate sequence.
Of course, this idea can be carried to an extreme by selecting an asymptotic
sequence having f as its first element. We would then arrive at the rather
uninteresting result f(z) ~ f(z). In this event, however, the Stokes phenomenon
does not occur. Fortunately, a compromise can often be achieved as is illustrated
in the following.

EXAMPLE 1.6. Let
f@)=e""" g(2). (1.6.6)

Assume that,as z—0 in the sector Saps ¢ < —7/2, B> 1/2,q has an asymptotic
power series expansion given by

a@~ > a,z" (1.6.7)
n=0
It is readily seen that, as z—0 in Re(z)> 0,

f@~0 (1.6.8)

with respect to the asymptotic sequence {z"}. Moreover, as z—0 in the
sectors S,, _,; and S, 5, f(2) has no asymptotic power series expansion at all.
With respect to the asymptotic sequence {e™ ! z"} we have

f@)~e 12 i a, z" (1.6.9)
n=0

which is valid as z—0 in S.p- Thus, not only does (1.6.9) appear to be more
informative than (1.6.8) in the region Re(z) > 0, it has, in addition, a larger
domain of validity.

We have perhaps given the impression that the Stokes phenomenon is
something bad and to be avoided whenever possible. Although it is true that
its occurrence serves to limit the domain of validity of a given asymptotic
expansion, nevertheless its very occurrence does yield useful information.
Indeed it places us on alert that a significant change in the asymptotic behavior
of the function under study will arise when a Stokes line is crossed. Thus,
in the above example, the fact that the imaginary axes are Stokes lines for
(1.6.8) indicates that the asymptotic behavior of (1.6.6) as z—0 undergoes a
significant change when these lines are crossed. This information is not con-
tained in (1.6.9) and can only be recovered by some further analysis of the
terms in the asymptotic sequence {e~ !/ 2"},
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We now wish to investigate further under. what circumstapces we migl.xt
expect the Stokes phenomenon to occur. In partlcul'ar, letus .con51der. asymptotic
power series expansions. Suppose first that f(z) is analytic and smgle-valu‘ed
in a 2r neighborhood of z =2z, Then f(z) has a convergent power series
expansion about z =z, valid for all values of arg(z — z,). In other words,
the Stokes phenomenon does not occur. .

Conversely, suppose that f(z) is analytic and single-valued in the p}mctured
disc 0<|z— zo| < p. Suppose, further, that f(z) has an asymptotic power
series expansion about z =z, valid for all values of arg(z — zo)., that is, an
expansion for which no Stokes phenomenpn occurs. T.hen we claim that f(z)
is analytic at z=z, and the asymptotic power series actually converges.
To see this we note that the existence of the asymptotic power series for all
values of arg(z —z,) implies that f(z) is bounded in a 2.11.’ nelghborhood of
z = z,. Hence, by Riemann’s lemma, f has a removable s.1ngu1ar1ty ?lt z=2z,.
This in turn implies that f has a convergent Taylor series expansion ab(_mt
z =z, which, by uniqueness, must coincide with the asymptotic power series.

The above discussion shows that the Stokes phenomenon will occur for an
asymptotic power series expansion about z = z, only when the functlgn under
consideration has a singularity at z=z,. Moreover, we find that if z=z,
is an isolated singularity, then it must be an essential singularity. _

To conclude this section we wish to quote a theorem due to Carleman which
shows that an analytic function can have a divergent power series about a
point on the boundary of its domain of analyticity.

THEOREM 1.6. Assume that, as z—0 in the sector S, with a> —=n
B <m, f(z) has an asymptotic power series expansion given by

f(2)~ i a, z". (1.6.10)
n=0

Then there exists a function g(z) analyticin S, and such that,as z—0 in S,
(f=9)~0 (1.6.11)

with respect to the asymptotic sequence {z"}.

1.7. Operations with Asymptotic Expansions
of Poincaré Type

We shall now consider several operations that can be perfo.rmed.on asymp-
totic expansions of Poincaré type. No attempt to be exhaustive .w111 be made
and indeed, we shall limit our considerations to those operations that are
most likely to prove useful in future chapters. )

Throughout this section x is a complex variable unless othc?rw1se stated
and all asymptotic expansions are assumed to hold as x— X, in the sector
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Sep={x:0 <|x — xo| < p, x <arg(x — xo) < B}. We first prove the following.

THEOREM 1.7.1. Let {¢,(x)}},n=1,2, ..., be an asymptotic sequence as
X~ Xg in S,q and let

N N
SO~ Y a,6,x), g~ Y. by pa(x) (17.1)
n=1 n=1
be, respectively, asymptotic expansions to N terms with respect to {¢,} of
the given functions f(x) and g(x). If y and u are arbitrary complex constants,
then an asymptotic expansion to N terms of h=yf + ug with respect to
{¢,} is given by

N
h(x) ~ Z (va, + ub,) pp(x). (1.7.2)

PROOF. The proof follows directly from Definition 1.6.2.

If the expansions in (1.7.1) are valid for arbitrarily large N, then so is (1.7.2).
Also, Theorem 1.7.1 can under certain conditions be extended to infinite linear
combinations of asymptotic expansions. The extension to finite linear combi-
nations is immediate.

A generalization of Theorem 1.7.1 is obtained in the following.

THEOREM 1.7.2. Let {¢,},n=1,2,... and {y,,},m=1,2, ... be asymp-
totic sequences as x —x, in S,5. Suppose that for a given positive integer N
there exists a positive integer M such that ,, =O(¢y) as x — Xoin S,4. Suppose,
further, that

N
Um= 2 Con@ptoldy), m=12 ... M’ (1.7.3)
n=1
Finally, let f and g be given functions having the finite asymptotic expansions
f~Zi.1a,¢, and g~Z¥_ b, y,, respectively. Then, for any complex
constants y and p,

N M
rug~ Y [van + #( Zl b, cmn>] G- (1.7.4)

n=1

PROOF. Here again the proof follows directly from the definitions of Section
14.

We can conclude from Theorems 1.7.1 and 1.7.2 that addition and subtraction
of asymptotic expansions of Poincaré type are readily justifiable procedures.
Unfortunately the same cannot be said for the operations of multiplication

" Because {¢,,} is an asymptotic sequence certain of the constants Cmy Must be zero.
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and division. In fact, suppose that {¢,} and {y,} are asym.ptgtic.sequences
d that f~Za,¢, while g~Zb,, The t'"ormal multlpllcgtxon of .the
?:vlo asymptotic expansions doe§ not, in general, yield an asymptotic expansxcén
of fg because, in general, neither can the set {¢,Yp}, n, m=1,2, f he
arranged so as to form an asymptotic sequence, nor can each member of the
set be expanded with respect to some common asymptotic sequence.
There are conditions which, when satisfied, are sufficient to justify _the
multiplication of two asymptotic expansions. Indeed we have the following.

THEOREM 1.7.3. Let {¢,}, n=1,2, ..., {1//,,,.}, m=1,2,..., and {6},
k=1,2,... be asymptotic sequences as XX, in S,5. Assume that for a
given positive integer K there exist positive integers N(K), M(K) such that

the relations
Sy 1 =0(0x), (1.7.5)
&1 Yy =0(0k), (1.7.6)

K
batim= Com O +00g), 1<n<NK), 1<m<M(EK) (17.7)
k=1
hold. Let f and g be given functions having the respective asymptotic
expansions

N(K) M(K)

.f= Z a, ¢n + 0(¢N(K))’ g= Z bm ‘l/m +.0(l//M(K))' (178)

Then .
fa=73 &0+ o(0x), (1.7.9)
k=1
where
N(K) M(K)
G=3 Y Comnbm k=12..K (1.7.10)
n=1 m=1

PROOF. We first assume that N(K), M(K), and K are finite and write

19=['3 ardut obnin)] [ 3, bubmt o) 0711

n=1

N(K) M(K)

= Z Z a, bm (i’n lpm'b'o(d)N ‘f’1)+0(¢’1 l/’M)

n=1 m=1
Now upon inserting relations (1.7.7) into (1.7.11) and collecting terms we obtain

F0= 3 S S b cuns Ou 084 + 0l )+ 0ly ). (1L712)

k=1 n=1 m=1
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Finally by using (1.7.5), (1.7.6), and (1.7.10) in (1.7.12) we obtain (1.7.9).

If any of the integers N(K), M(K), and K is infinite, then the theorem
remains valid so long as the constants ¢, are well defined, that is, so long as
each of the infinite series (1.7.10) converge.

Theorem 1.7.3 is a rather general result concerning the multiplication of two
asymptotic expansions. In many problems the sequences {#.}, {¥m},and
{6} are the same, that is,

N
$nbn=2 Comitoldy), 1<n<N, 1<m<N. (1713
k=1

If, in addition, ¢, =0(1) as x> x, in S,g, then {¢,} is said to be a multi-
plicative asymptotic sequence. We note, for example, that {x,n=0,1,2, ...,
is a multiplicative asymptotic sequence as x— 0. If two functions f and ¢
each have an asymptotic expansion with respect to a given multiplicative

asymptotic sequence, then clearly Theorem 1.7.3 applies. We also have the
following.

THEOREM 1.74. Let {¢,}), n=1,2,... be a multiplicative asymptotic
sequence and let ¢, =o(l) as x> x,. Let N bea given positive integer and
assume that there exists a finite positive integer M such that (@) =0(¢y). If

g(2) = i e 2"+ 0(2M), 20 (1.7.14)
and if "
z=z(x)= i a, b+ 0(dn), (1.7.15)
then i
J(x)=g(z(x)) = ,.Z: Ay @, + o(dy). (1.7.16)

Here the coefficients 4, are obtained by formally substituting (1.7.15) into
(1.7.14) and collecting terms by making use of (1.7.13).

PROOF. Because M is finite, we have by hypothesis that
N
=3 buo,toldy), m=12..,M (1.7.17)
n=1

and that z¥ =0(¢y). The theorem then follows upon inserting (1.7.17) into
(1.7.14) and collecting terms.
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COROLLARY. Let {¢,} be a multiplicative asymptotic sequence satisfying
the hypotheses of Theorem 1.7.4. Let

h(x)=c+ i a, ¢, + o(dy), c#0, (1.7.18)
n=1

N
w(x)=d+ ) b, d,+o(dy). (1.7.19)
n=1
Then v=w/h has an asymptotic expansion to N terms with respect to {¢,].

pPROOF. To establish the corollary we only need show that f=h"! has an
asymptotic expansion of the form (1.7.18) because the result would then follow

by Theorem 1.7.3. If we set z=h — ¢, then we have
N
Z(X) = Z a, d)n + 0(¢N) (1720)
n=1
and
feo=ht = 218y () o), (1.7.21)
- z+c ¢.& ¢

Upon applying Theorem 1.7.4 we obtain the desired result concerning f which
completes the proof.

The final operations we shall consider are integration and diﬂ‘ereptiation of
asymptotic expansions. Let us first suppose that f(x,v) is a function of the
complex variable x and the real parameter v. We suppose that as x— x,

in S,y
fem~ S a6) éa ) (1.7.22)
n=1

is an asymptotic expansion of f to N terms which holds uniformly in v for
vo < v <v,. We now prove the following.

THEOREM 1.7.5. Let s(v) be any integrable function of v such that the
integrals

by=1{, st)a,0)dv, n=1,..,N (1.7.23)
exist and such that for all x in S, the integral
g(x)= [} s)f (x.¥) dv (1.7.24)
exists. Then, as x—x, in Sy

b, ¢,(x), (1.7.25)

1

1=

g(x}~
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that is, the asymptotic expansion (1.7.22) can be integrated term-by-term with
respect to the parameter v.

PROOF. We have

vy N
g(x) = j s(v) [ Y, (¥) dy(x) + Dy(x,v)| dv (1.7.26)
where @ (X, V) = o(py(x)) uniformly in v for v & [v,, v,]. It then follows that
j:; Dy(xv) s(v) dv = o(dy(x)),  x-xo in S,y (1.7.27)
and hence
N
g(x) =,.; by ¢n+0(dy),  Xx—xo in Sy (1.7.28)

This completes the proof.

of p_erhaps more interest is the question of whether or not an asymptotic
expansion can be integrated with respect to the independent variable term-
by-term. We first establish the following.

LEMMA 1.7.1. Let x be a real variable and let R be the interval (a,x,).
If {¢,} is an asymptotic sequence of integrable functions as X=X, in R
then the sequence {®,} where ’

D,(0)="|¢a(0)]dt, n=1,2,... (1.7.29)

is also an asymptotic sequence as x —x, in R.

PROOF. We have by (1.7.29) that
D, (x)= jj" |6ns1 (@] dt = o[ [°|$,(0)] dt] = 0o(@,(x)), n=1,2,... (1.7.30)

as x—x, in R. This completes the proof.

We now prove the following,
THEOREM 1.7.6. Let x be a real variable, R =(a,,x,), and {¢.} an
asymptotic sequence of positive functions as x—x, in R. Suppose that the

integrals (1.7.29) exist for x ¢ R. If f is a given function such that

N
S~ 2 @du(x)  x—x in R (1.7.31)
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and if
gx)=§"ftyde (1.7.32)

exists for x & (b,Xo), a <b < x,, then
g~ Y B0 X% (17.33)
is an asymptotic expansion of g to N terms with respect to {®,}.
PROOF. We have
f= il ay b+ Uy (1.7.34)

where Yy(x) = o(¢y) as x—x,. Upon integrating both sides of (1.7.34) from
X to x, we obtain

g S Ij a, q‘),,dx+§:0 Wy dx (1.7.35)

n=1

a,‘(I),,+o(j °|¢N|dx>

a, q)n + 0((DN)
1

b

2

3
[}
-

Il
M=

3
Il

which completes the proof.

We remark that although Lemma 1.7.1 and Theorem 1.7.6 deal only with
functions of a real variable, they can without difficulty be extended to the
case where x is a complex variable and where (1.7.29) and (1.7.32) are line
integrals in the complex x plane.

Just as with convergent series, term-by-term differentiation of an asymptotic
expansion is more difficult to justify than term-by-term integration. Indeed,
an asymptotic expansion of the derivative of a function cannot, in general,
be obtained by differentiating its asymptotic expansion term-by-term. That
this is so is due mainly to the fact that differentiation of an asymptotic sequence
does not, in general, yield an asymptotic sequence. To illustrate this, let xo, =0
and ¢, =x"[cos(x "*Y)+a], «>1, n=1,2,.... We have that {¢,} is an
asymptotic sequence as x —0. However, because

¢, =nx""" [cos(x"*!) + «] + (n— 1) sin(x~"*1)

we have that {¢,} is not an asymptotic sequence as x — 0.

It may also occur that f(x) has an asymptotic expansion with respect to
{¢,} but its derivative does not have an asymptotic expansion with respect to
{¢,} even when {¢,} is an asymptotic sequence in the limit under considera-
tion. To see this consider f(x) = e~* sin(e*). As x — co we have that f(x)~ 0
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with respect to the asymptotic sequence {x™"}, n=0,1,2,.... But
f'(x)=cos(e*) — e”* sin(e*) has no asymptotic expansion with respect to
this sequence.

We can establish conditions sufficient to justify term-by-term differentiation
of asymptotic series. Indeed, we have the following.

THEOREM 1.7.7. Let x be a real variable, R = (axo),and {¢,},n=1,2, ...,
be an asymptotic sequence as x —x, in R. Suppose that ¢, = o(1) as X=X,
in R and that each ¢, is differentiable in (a,x,). Suppose, further, that {¥.}
with ¥, = ¢, is an asymptotic sequence as x— X, in R. Finally, let N be
a fixed positive integer and assume that y is positive in the interval (b,x,)
for some b > a.

If f is a given differentiable function in R such that

SRS~ 3 0,6, x=x, (1.7:36
andif f’(x) hasan asymptotic expansion to N terms with respect to {¥,}, then
Sx)~ .,il ay Y, 1.7.37)

PROOF. By hypothesis there exist constants b, ..., by such that
Sx)= "2 b, ¥, + w(x) (1.7.38)

where w(x)=o0(¥y) as x-» x,. Furthermore,
X0

N X0 X0
S &) =1 (xo) = —j f(0)de=— ; b, j W) dt-L wt)de.  (1.7.39)
If we take b <x < x, in (1.7.39) and use (1.2.17), then we obtain
N
f)= flxo)= ; b, $u(x) + 0(@n(x)), X=X, (1.7.40)

Here we have used the fact that ¢,(x,)=0 for all n because, by assumption,
#1(x) = o(1), x— x,. Upon comparing (1.7.36) and (1.7.40) and applying the
uniqueness theorem (Theorem 1.4), we find that a,=b,, n=1,2,...,N and
the theorem is proved.

We might point out that there are two key assumptions made in the statement
of Theorem 1.7.7. The first is that {¢,} is an asymptotic sequence as x — x,
and the second is that f’ has an asymptotic expansion with respect to this
sequence. The first condition is readily verified and, for example, is satisfied
for the important case ¢,=(x —x,)", n=1,2,.... The second condition,
however, is not so easily verified and in fact the verification itself often involves
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the direct determination of the asymptotic gxpansion of_ S’ It may occur
that we have good reasons, either mathematical or physical, to suspect thgt
f' has an asymptotic expansion of the desired form and can proceed on this
basis. Furthermore, additional information about f, such as the facF that
f satisfies a differential equation of a given class, can often be used to directly

verify the second condition. N o .
There is one case where the second condition can be eliminated entirely and

we offer without proof the relevant theorem.

THEOREM 1.7.8. Let x be a complex variable and let f(x) be a given
function analytic in the sector
Sep={x:0<|x—xo| <p, a<arg(x—xo)<p}.

Suppose that

N-1

f)~ Y a,(x—x)" (1.7.41)

is an asymptotic power series expansion of f to N terms which holds as
X—>Xg in Seg. Then

N-1
i)~ Y na, (x—x0)""! (1.7.42)

n=1
is an asymptotic power series expansion of f' to N — 1. terms. It holds,
however, in a smaller sector about x = x,. Indeed (1.7.42) is valid as x—x,
in a — 6 <arg(z—z,) < — 96 for any 6>0.
1.8. Exercises
1.1. (a) Show that the function I(x)defined by (1.1.1) can be written in the form

B 1.8.1
I(x)—xJ;t+xdt. ( )

(b) Use the exact expression
x N — A" N+ /1 t)
" = - - + —
x+t ,,;, X T \x x

I(x) = Sy(x) + &(x ,N) (1.8.2)

with Sy(x) given by (1.1.9). o _
(c) Discuss the error integral &(x,n) in this representation.

in (1.8.1) to obtain

1.2. (a) Show that (1.8.1) can be rewritten in the form
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me—xt
I(x)= xjo Lt (18.3)
(b) Integrate by parts N +1 times in (1.8.3) to obtain an expression of the
form (1.8.2). Show that the approximation Sy(x) obtained here agrees with
that obtained in Exercise 1.1.
(c) Discuss the remainder integral in the form it arises in the present exercise.

1.3. (a) Again consider I(x) defined by (1.1.1) and in particular the error
&(x,N) made in approx1matmg I by Sy(x). Use either (1.1.10) or the expres-
sions for & obtained in Exercises 1.1 and 1.2 to show directly that

N!

CALR (1.8.4)

|6(x,N)| < .

(b) Use (1.8.4) and a table of values for n! to obtain the following upper
bounds on the minimum error.

X &(x,[x])

5 4% 102
10 3.7 x 1074
50 3x 102!
100 9.4 x 10°43

Note that the results for x=35 and x=10 given in Table 1.1 indicate that
the actual minimum errors are approximately one-half of the bounds listed
above.

1.4. Repeat the analysis carried out in Section 1.1 for I(x) for the integral

ci(x) = —f costy (18.5)

In particular:

(a) Integrate by parts repeatedly to obtain approximations of ci(x) in terms
of the partial sums (of a divergent series). Also obtain an explicit expression
for the error mtegral that arises after N+ 1 integrations by parts.

(b) Show that N the optimum number of terms of the divergent series to
use in approximating ci(x), that is, the number yielding the smallest absolute
error, is given by

N= [x].

(c) Given the exact numerical values below, construct a table analogous to
Table 1.1 for the function ci(x).

X ci(x)
1 0.33740
2 0.42298
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4 —0.14098
5 —0.14205
10 —0.04545

100 —0.00513

1.5. Repeat Exercise 1.4 for the function
si(x) = — J‘ L . (1.8.6)

Here the table of part (c) is to be replaced by

X si(x)
1 —0.62471
2 0.03462
4 0.18741
5 —0.02086
10 +0.08755
100 0.00858
1.6. Consider the function
Flx) = xe® erfc(x) = —xe f - g, (187)
(a) Introduce the change of variable of integration 1 =1t> to obtain
X 1 20 e T
-t dt=x 1.8.8
L e~ dt 3], \/_ ( )
Integrate by parts N + 1 times in (1.8.8) and show that
—1y"1-3----(2m - 1)
F(x)= {1 + Z o)
— ¥ (1-3- - c@N+1) [ e
L EDM = @N+1) J’ L d,}. (189)
(b) Show that the infinite series
i (-3 -2m+1)) (1.8.10)
@x*)"
diverges for all x and that the optimum number of terms to use here is
N=[2x?]+1.
(¢) Show how to derive (1.8.9) directly from (1.8.7) by using the fact that
- _lie—lz
et = "2d

(d) Develop a table analogous to Table 1.1 for F(x) using the exact values
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x F(x)
1 0.42758
2 0.51079
5 0.55352
10 0.56140

1.7. Show that if f(x)=0(g(x)) and g(x)=0(f(x)) as X — Xx,, then neither
is f(x) = o{g(x)) nor is g(x) = o f(x)) as x - x,.

1.8. Show that if f(x)=0((x — x0)*) as x—x, then f(x)=0((x— x)?)
for all 6 <6, as x — x,.

1.9. Give an example in which f(x)=o(g(x)) as x— x, and yet f(x) and
g(x) both vanish to the same order, at x =x,, with respect to the powers
of (x — x,).

1.10. Prove the statements (1) to (7) at the end of Section 1.2,

L11. Verify the following sta.tements:

(a) sin x'* =0(x'?), x>0+,
(b) sin x =0(x cos x), x—0.
(€} x cos x =0(sin x), x—=0.

(d) e=*=0(1), x—0.

(&) n!=o(m"), n— oo,

(f) log x = o(x*), XxX— 0, £>0.

(8) (log x)* = o(x*), x—-w, £>0.

(h) log(log[log x]) = o(log(log x)), x—0+.
i) e*=0Q), X = Xq, any x.

() six)=0(x""), x-oo0.

L.12. Verify that (1.8.10) is an asymptotic power series for the function F(x)
defined by (1.8.7).

1.13.  Suppose that f(z) has a Laurent expansion for |z] > a and has at worst
a pole of order k at z= 0. Show that z*f(z) has an asymptotic power
series as |z| - co.

1.14. Verify that {¢,(x)} is an asymptotic sequence in the indicated
limit when

@) ¢,=x"" e, Re(ro) <Re(r;) <+, x-— 0.
(b) ¢, =x" sin ax, any o # 0, Re(ry) < Re(r)) < -+, x—0.
(c) ¢,=e ">, Re(ro) < Re(r)) < -+, X— 0.

d) ¢,=e"*,  Refrg)<Re(r))< -, x— — o,
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€ ¢.= (F(x) - ﬁ)n, F given by (18.7), x—o0.

f) ¢,= (F—S(—)y, F given by (1.8.7), X— 0,

1.15. In each of the following cases explain why {¢,} is not an asymptotic
sequence in the indicated limit.
(@) ¢,=x"e">, Re(ro) < Re(r)) <+, x— 0.
(b) ¢, =x""cos nx, Re(ro) < Re(ry) < -+, X— 4+ 0.
_fx""cos x, neven,
(©) d)""lx"" sinx,  nodd,

X > Q0.

1.16. Suppose that
S x)~ io a,x™, x—0.

Here all the a,’s are nonzero and Re(ry) < Re(r,) <. Suppose further that
S{x)~ io b,x", x—0.

Here all the b,’s are nonzero and Re(so) < Re(s,) <---. Show that a,=b,
and r,=s, for all n

1.17. The Bessel function Jyi(2x) has the following (convergent) power series
about x =0:
_ © (_ 1)")(2"
Jo(2x) = go NG

When possible, find at least two nontrivial terms in the asymptotic expansion
of Jy(2x), as x — 0 with respect to the asymptotic sequence {¥,(x)}, n=0, 1,
2, ..., defined by

(@) ¥, = (sin x)".

(b) ¥, = (sin x)*".

(c) ¥, = (sin x)*".

(1.8.11)

1.18. For each of the sequences {f,(x)} defined below, find an asymptotic
sequence {,(x)} which is such that, for n=1,2, ..., f(x)=0(,(x)) but
fo(x) # o(y,(x)) in the indicated limit.

sin nx
(a) fu= T X — .
®) fo= M, x— o,  o,f constants.
X
(¢) f,=e """ cos nx, Re(ry) < Re(ry) < ..., X— 0,
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1.19. (a) Consider the expansion derived in Exercise 1.4. Identify a useful
auxiliary asymptotic sequence and show that the derived result is an asymptotic
expansion with respect to this sequence.

(b) Repeat part (a) for the expansion derived in Exercise 1.5.

1.20. Suppose that (z — zg)* f(z) has an asymptotic power series as z — Zp,
valid for all values of arg(z — z,). Prove that f(z) has at worst a pole of
order k at z = z,,.

1.21. Let

aoe—x
I(2)=z J‘oH_zdt, larg(z)] < . (18.12)

(a) Derive an asymptotic expansion of I(z) as |z] > oo in the given sector.
(b) Show that

© =t

., e

I(z) = —2mize* + z fom dt, |arg(z) — 2| < 7. (1.8.13)

(c) Show that the result derived in part (a) cannot be valid for arg(z) = 37/2 and
hence the ray arg(z) = 37/2 is a Stokes line for the expansion.

(d) Show that the result in part (a) is valid for z < arg(z) < 37/2.

(e) Show that arg(z) =3n/2 is a Stokes line for the asymptotic expansion
of I(z) with respect to the asymptotic sequence {z "} but is not a Stokes
line for the asymptotic expansion of I(z) + 2mize* with respect to this sequence.

1.22. (a) Show that {y,(2)} ={z""e®*®I} n=0,1,2,... is an asymptotic
sequence as |z| - co.

(b) Let ci(z) be defined by (1.8.5) with x replaced by z and the path of
integration being Im(z) = const. Show that -ci(z) has an asymptotic expansion,
for |z2] - co in the sector defined by |arg(z)| < =, with respect to the auxiliary
sequence {i,(z)} of part (a).

(c) Show that

cos t

ci(z) = 2mi cos z — J S8ldr,  farg(e) - 2] <, (1.8.14)

and hence that ci(z) has an asymptotic expansion with respect to {¢,} in
this sector. Show, however, that this expansion differs from the one in part (b).

1.23. (a) Suppose that {¢,(x)} is an asymptotic sequence as x — x, and that
each ¢, is integrable. Prove that {®,} with

@, = |¢0)]dt

is an asymptotic sequence as x — x,,.
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(b) Show that if f(x)=0(g(x)), as x—x,, with f and g integrable func-
tions, then

§. f(de =0, lg0lds),  x-xo.

1.24. Consider the sequences {¢,(x)}, {®.(x)}, and {Y,(x)} as x—>0+.
Here, n=1 and

b=xcost, o= a0 w00= [ 60l

Show directly that {¢,(x)} and {y,(x)} are asymptotic sequences but that
{®,} is not. [Hint: Examine the zeros of ®,(x) and ®@,.,(x)]

1.25. Suppose that

fx)=e*" cose* .
Find an asymptotic power series for f(x) as x—0. Differentiate the series
and show that it is not an asymptotic power series for f'(x).
1.26. Consider the integral
1=, ¢ dt.

(a) Integrate ¢ counterclockwise around the rectangle in the complex
z plane having vertices z=0, z=4 z=1+iR, and z=IiR Let R—o0
and show that

1) =5 —if eo-n ay (18.15)
0
(b) Note that
—2(y — ide-t-in? :%(e«yww ). (1.8.16)

Use (1.8.16) to derive an asymptotic expansion of the integral in (1.8.15) with
respect to the asymptotic sequence {e* /A"}. .

(c) Note that each term in the asymptotic expansion derived in part (b) is
real as is I(4) itsell. How then can the presence of the purely imaginary term
i/7/2 be explained?
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Asymptotic Expansions
of Integrals:
Prelimmary Discussion

2.1. Introduction

In the chapters to follow, our main objective shall be to determine asymptotic
expansions for functions defined by definite integrals. For the most part we
will be concerned with one-dimensional integrals although Chapter 8 deals
exclusively with a certain class of multidimensional integrals.

In one dimension, the integrals we shall study have the general form

13)={_H(z:d) dz. (2.1.1)

Here C is a given contour in the complex z plane. A typical problem will
be to approximate I(1) for A in some neighborhood of a prescribed point A,.
Stated in this generality, that is, with no further restrictions placed on H
and C, this problem cannot be solved by analytical methods.

It often occurs, however, that conditions can be placed on H which guarantee
that the major contributions to the asymptotic expansion of I, as i- 4,
are determined by the behavior of H in small neighborhoods of certain isolated
points in the z plane called *“critical points.” Indeed, the ‘“asymptotic evaluation
of integrals” is almost entirely concerned with the development and application
of techniques for the determination of the contributions from such critical
points.

The particular techniques that we shall discuss in this book have been
selected because of their widespread utility in the analysis of applied problems.

41
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In the remainder of this chapter we shall consider several examples to illustrate
how integrals of the form (2.1.1) arise in rather diverse areas of application.
We expect that not only will these examples serve to motivate the discussions
in future chapters, but also they will indicate the wide scope of the subject
matter itself.

2.2. The Gamma and Incomplete Gamma Functions

There is a class of functions, the so-called special functions, that are of great
importance in applied analysis. What makes them special is the fact that out
of the multitude of functions, these have been singled out for detailed investi-
gation; in other words, they have been well studied. Of course the reason
they have been well studied is that they arise quite often in applications.

Of the existing special functions, the gamma function, denoted by I'(z), is
one of the most important. This is due to the fact that it not only arises in the
analysis of physical problems but also in such diverse mathematical areas as
number theory, approximation theory, and probability theory just to name
a few.

I'(z) is a complex-valued function with the property that, for n a non-
negative integer, I'(n + 1) = n! and hence it serves to interpolate the factorial
function. Of special interest to us are its integral representations which, in fact,
can be used to define it. One of these is given by

T+ )= Fetdi= etz let gt 22.1)

which is valid for Re(z) > — 1. We shall eventually be concerned with the
asymptotic behavior of I'(z + 1) as |z| > . In order to obtain an integral
representation more suitable for determining this behavior we introduce

A=lz, z=2¢€° (2.22)
and set ¢= /s in (2.2.1) which then becomes
Fz+1)=1(1;0)=1**! j: exp{/ f(s;0)} ds, Re(z)=Acosf>—1. (223)

Here

f(s;0)=¢€®logs—s (2.2.4)
and the multiplicative factor 4**! is defined by
7+ 1 = exp{(Ae"® + 1) log A}. (2.25)

By using (2.2.3) our problem now is to determine an asymptotic expansion
of I(A;f) as A—oo with §=arg(z) viewed as a parameter. The utility of
(2.2.3) is lessened by the restriction Re(z) > —1. To avoid this, we introduce
a slightly different integral representation due to Hankel and given by

_ efniz -
P+ =gt L e tdr, 2.2.6)
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Figure 2.2 Contour of Integration for Representation of Gamma
Function

Here C is a contour which originates at + co, runs in toward the origin just
above the real axis, circles the origin once counterclockwise, and then returns
to +oo just below the real axis. (See Figure 2.2.) This representation is valid
for all complex z except integer values. At the nonnegative integers it has
removable singularities, while at the negative integers it has simple poles,
which reflect the actual behavior of I'(z + 1).

Again suppose that we are interested in studying I'(z+ 1) as |z|=1—
Upon introducing t = As in (2.2.6) we obtain

—miz

I'z+1)=

z+1 .
s A L exp{A f(s;0)} ds. 227
Here f is given by (2.2.4) and we have used Cauchy’s integral theorem to
replace the new “stretched” contour by the original contour C.

The function
Fx)=f_ e "t>"1dt (2.2.8)

is seen to be closely related to the gamma function and, indeed, is often referred
to as an incomplete gamma function for obvious reasons. It also arises often in
applications and, in particular, I'(0,x) = E,(x), which is the exponential
integral considered in Section 1.1, plays a key role in the analysis of the diffusion
of light in a one-dimensional “‘milky” or “foggy’’ medium. (This latter problem
is sometimes called the Milne problem.)

T'(v,x) is, of course, a function of the two variables x and v. For v fixed,
the analysis of its behavior as x — oo is straightforward and indeed has been
carried out for the case v=0 in Section 1.1. It often occurs, however, that
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we are interested in the behavior of I'(v,x) as both v and x get large. It then
proves convenient to set

t = sx, v=ox (2.2.9)
in (2.2.8) which yields
T(vx)=x" {7 s exp{x f(s;a)} ds. (2.2.10)
Here
f(s;0)= —s+alogs. (2.2.11)

As we shall find, the asymptotic behavior of I'(z) will be repeatedly consi-
dered throughout this book. Not only will we develop methods to determine
this behavior, but also this information will prove useful in the asymptotic
analysis of other functions.

2.3. Integrals Arising in Probability Theory

Let us consider an experiment whose possible outcomes are idealized as
points in a set S called the sample space of the experiment. Let the function
X be a mapping of S onto the extended real line. Such a function is called a
random variable in probability theory. In order for the concept of a random
variable to be of use, we must associate with its values a measure of probability.
This is accomplished via what is known as the probability distribution function
F(t) of X which is defined by

F(t) = Prob{X < t}. 3.1

We shall assume here that F(t) is a given function and that it is sufficiently
smooth for what follows. We note that F(t) must be a nonnegative, monotoni-
cally nondecreasing function and such that

lim F(t)=0, lim F(t)=1. 232
| Sad- e

= -

It is also convenient to introduce the associated probability density function
f(t) defined by

fo=4% (2.33)

Indeed, it is often the case that we are given f(¢) rather than F(¢). Itisimportant
to note that f is nonnegative. Furthermore, because

Foy={"_ f(&d¢ 234
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we have, by (2.3.2),
jl f(é) dé =1 (2‘3.5)

Of course, there are infinitely many random variables that can be considered
for any given experiment. Of special importance is the notion of independence.
Indeed, let X, and X, be two random variables defined on the same sample
space. Let F;(f) and F,(t) denote their respective distribution functions.
We now introduce G(t), the joint probability distribution function of X, and
X,, defined by

G(t) =Prob{X, <t; X, <t}. (2.3.6)
Then X, and X, are said to be independent random variables if and only if
G(t) = F(r) F5(0). (2.3.7)

Intuitively, we can say that X; and X, are independent when, for all ¢,
the probability that X, <t is completely unaffected by the value of X, and
vice versa.

Suppose now that X, and X, are independent random variables with
distribution functions F(t), F,(¢) and corresponding density functions f,(t),
f>(t). Suppose further that X is positively distributed, that is,

[0 =0, —oo <t<0.

Let us consider a new random variable X; = X, X, and attempt to determine
its distribution function F;(t). As is readily shown

F3(t)=Prob{X; = X, X, <t} = [, fi({y) fo((;) dE, dE,. (238)

Here D is the domain defined by &, &, <t, £, =20. Upon writing (2.3.8) as
an iterated integral we have

/61

Fs(t) = j: fl(él) U_m fz(éz) déz] dél = I: f1(é1) Fz(é)dél- (2'3-9)

A problem of interest is to study the behavior of F;(t) as t— co. It then
proves convenient to write (2.3.9) as

Fy)=1f fi(eX) F z@ dé. (2.3.10)

Of course, we know that lim,_, . F5(t) = 1. However, it is desirable to determine
just how F; approaches 1 in this limit.

Another useful concept in probability theory is that of the characteristic
Junction of a random variable. It is simply the Fourier transform of the corres-
ponding density function. Thus, if X is a random variable with density f(£),
then
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o= r@enta @311

is its characteristic function.

Now suppose that we have a sequence of mutually independent random
variables X, X,, ..., X,, ..., each having the same distribution function F(f)
and hence the same density function f(t). Such a sequence is said to consist
of identically distributed random variables. An important problem in proba-
bility theory is to consider the new random variable

Ye=X,+X,+ "+ Xy (23.12)

and study the behavior of its density function f(f) as N — cc.
It can be shown that

fN(t) = _‘.;j_e;fif(t - é1)f(f1 - fz)'”f(flv—z - éN— 1) f(fN—:)
dé,..dEy_y. (23.13)

It then follows by the convolution theorem for Fourier transforms that

ona)= fw fu@) et dt=[op@)]", (2.3.14)

where ¢(x) is given by (2.3.11). Upon applying the Fourier inversion formula
we obtain

Sa)= 5= S [B@]" ™ da. (23.15)

Because we are interested in the behavior of fy(f) as N — oo, it will prove
convenient in our later analysis to set f=t/N and write

So(BN) == . exp[NY(a:p)] de, (23.16)

where

Y(a;B) = log d(a) — inf. (2.3.17)

The asymptotic behavior of fy as N— oo will be studied in Section 7.6.
There we shall show that, under suitable restrictions on f(t), the density
function f, approaches the density function of a special distribution called
the normal distribution. This result is well known in probability theory and,
indeed, is a simple version of the fundamental central limit theorem.

2.4. Laplace Transform

The ordinary differential equation

d*x  , dx
agt—{+ba+€x—f(t) (241)
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%o L

| lc

Figure 24.1. RLC Network

with a, b, and ¢ given constants and f a prescribed function of ¢, can be
used to model many physical phenomena. For example, if x represents the
current flowing in the simple RLC circuit depicted in Figure 2.4.1, then in
(24.1) a is the inductance of the coil L, b is the resistance of the resistor R,
c is the admittance [(capacitance)™'] of the capacitor C, and f(t) is the
derivative of the applied potential V(t).

Alternatively, if x represents the displacement from equilibrium of the mass
in the damped spring-mass system depicted schematically in Figure 2.4.2,
then a is the mass m, b is the coefficient of damping, c is the spring constant,
and f(t) represents an externally applied force. We note that, in both of these
problems, ¢t represents time.

Let us now consider (2.4.1) and assume that x satisfies the homogeneous
initial conditions x(0) = 0, x(0) = 0. Moreover, in order to illustrate certain

Figure 2.4.2. Mass on Spring
with Damping
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points, we further assume that the forcing function fis given by
)=yt e, o>0. (24.2)

Here 7 is a constant whose dimensions are those of the left-hand side of (2.4.1)
x (time)~!/2, while « is a constant whose dimension is (time)™'. We note
that a~! is often referred to as the relaxation time of f(t).

By using the standard Laplace transform method, we can express the solution
to (2.4.1) as a contour integral:

x() =7 \y/ﬁ L (s+a) 3 (as? + bs+c)"* e ds. (2.4.3)
Here I' is any infinite vertical contour in the complex s plane that lies to the
right of every singularity of the integrand.’

Our next objective is to obtain a more suitable integral representation than
(2.4.3) for analysis by the asymptotic methods to be developed in future chapters.
To accomplish this, we first assume that the roots of as® + bs+ ¢ =0 do not
lie on the branch cut for (s + a)~ %2 Then, upon applying Cauchy’s integral

Res=0

_____4__/-\ Ims=0

Figure 2.4.3. Contour of Integration for (2.4.4)

1 We take the branch cut for (s + a)~¥? to extend from —a to — o along the real s axis
and define (s + o)~ %2 to be positive for s > —a.
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theorem, we find that x(t) is given by the residue contributions corresponding
to these roots plus the integral

1= ai—yﬁ jr, (s+a) %2 (as? + bs+¢)"! & ds. 2.4.4)
Here I' is the loop contour depicted in Figure 2.4.3.

If we integrate by parts once in (2.4.4) to replace the factor (s +«)”¥? by
(s + @)™ '/2, then we can shrink the circular part of [ onto the branch point
s= —a with no additional contribution to I(t). Let us assume that this has
been done and set

. {—a + pe'™, above the branch cut,
~ | —a+ pe~i*, below the branch cut.

Then we finally obtain

I(t)= 7:;;’ :9( _‘0(}/2_ J)] e~ dp, (24.5)
where
_ t _2at+b )
9= {afz +bE+c (@B +bE+ o) (248)

We might want to study the behavior of x(t) for both “large” and ‘“‘small”
times. This, of course, requires that we investigate I(¢) and the residue contri-
butions in these limits. Because the residue terms are easily obtained and
analyzed, we need only concern ourselves with the integral I(¢).

The question arises, however, just what is meant by either large or small
time? Upon reflection, we realize that, as they stand, such expressions are
meaningless. The problem is one of dimensionality. Indeed, we cannot talk
of the largeness or smallness of a dimensional quantity, rather only of its size
relative to some unit of measurement. In a given problem, this unit would
presumably be selected to reflect typical values attained by the quantity in
question.

In asymptotic analysis, we often study functions whose arguments are
dimensional quantities. To avoid the difficulties just discussed, dimensionless
variables must first be introduced. This is usually accomplished through
changes of variables which are most often simple stretchings. If the scales
induced by these stretchings are appropriate for the problem at hand, that is,
if they are defined by “characteristic values” of the dimensional quantities
involved, then we can proceed with the asymptotic analysis in terms of the
constructed dimensionless variables.

To illustrate the procedure, we return to the integral I(¢) defined by (2.4.5).
Here the relevant dimensional variable is time. There are several quantities
that could serve as the characteristic time in this problem. Indeed, a/b, b/c,
and o~! are all reasonable possibilities. For the purpose of exposition, we
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arbitrarily choose the latter, namely the relaxation time of the forcing function
£(t). Thus, we introduce in (2.4.5)

A=at, p=0a0. 24.7)

Here 1 is clearly dimensionless and because the exponent pt must be dimen-
sionless, then ¢ is also.
In terms of A and o, (2.4.5) becomes

- 1/2 —~A P - e
1=iw =2 | L (248)
where
go(0) = g(—a(l + 0)). (2.4.9)

We note that to study I for either large or small 4 is a meaningful problem.
It must be emphasized, however, that the results obtained from any such
analysis must be interpreted in terms of the time unit a”!. For example,
the behavior of I(1).for large A yields the behavior of I(t) for times large

compared to the relaxation time of the forcing function.

2.5. Generalized Laplace Transform

In the previous section we considered an ordinary differential equation with
constant coefficients and obtained an integral representation of its solution
via the standard Laplace transform method. Here we shall consider a general-
ization of that method applicable to cases where the differential equation
under investigation has coefficients which are polynomials in the independent
variable. As we shall see, the method is most useful when the degrees of these
polynomials are all less than the order of the differential equation itself, but
can be adapted to other cases as well. (See Exercises 2.7 and 2.8.)

The main reason for introducing this generalized Laplace transform method
is to obtain integral representations for many of the special functions of mathe-
matical physics. Indeed, we shall describe the method by applying it to obtain
integral representations for the solutions to Airy’s differential equation

d2
d—z;_ 2f =0. (2.5.1)
This equation arises in diverse areas of applied analysis.
Suppose now that we seek solutions to (2.5.1) of the form
f@)=[.F(s)e” ds (2.5.2)

assuming, of course, that such representations exist. In (2.5.2) the complex
contour C and the function F are to be determined. If we formally substitute
(2.5.2) in (2.5.1), then we obtain
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j'c (s* —z) F(s) e ds = 0. (2.5.3)

The presence of z in the factor (s2 — z) of the integrand is undesirable, but
it can be removed by one integration by parts. Indeed, we then obtain
SZ 2 dF
—F(s) e + fc ST F() + 5 | €7 ds=0. (2.5.4)
Here, the first term is to be interpreted as the difference of the values of — F(s) ¢**
at the endpoints of the contour C (or the difference of limiting values when
these endpoints are at infinity).
In order to satisfy (2.5.4), we first require that F(s) satisfy the differential
equation
dF
5+ F=0 (2.5.5)
in which event the integral vanishes identically. Once F(s) is determined, the
next step is to select C so that the endpoint contributions are zero as well.
Because (2.5.5) is an ordinary differential equation of first order it is easily
solved. Indeed we find that to within a multiplicative constant

F=e-s, (2.5.6)

G

&)

Figure 2.5. Contours for Integral Representations of Airy Functions
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Hence, we must choose C so that
G(siz)=F(s) e =e "3 52 (2.5.7)

vanishes at its endpoints. To accomplish this we consider the three sectors
defined by
-z Tcargs) <3, Ol cargs) < =L (2.58)
6 P e 6 g I

We note that, as [sl—» oo within these sectors, Re(s®)— + . Thus, we can
conclude that, for all complex values of z, we may choose C to be any infinite
contour which starts at infinity in one of the sectors (2.5.8) and ends at infinity
in either of the other two.

In this manner we obtain three distinct nontrivial solutions to (2.5.1) given by

< arg(s) < %,

fi(2) = i;l'ﬁ Le‘mm ds, n=123. (2.59)
In (2.5.9) the contours C,, C,, and C, are as depicted in Figure 2.5. Any two
of the functions f,(z), n=1, 2,3 can be shown to be linearly independent
solutions to (2.5.1), while their sum is immediately seen to be zero by Cauchy’s
integral theorem. The solution f;(z) is usually denoted by Ai(z) and is called
the Airy function of the first kind. Furthermore, for z real, say z =x, the
contour C, can be deformed onto the imaginary axis with the result

3 __1_J sx—s7/3 — 1 J.m 13 >
Ai(x) = > C‘e ds —2E B cos \3- + x| dt. (2.5.10)

The remaining solutions f,(z) and f3(z) can both be written in terms of
Ai(z). This is accomplished by introducing a change of variable in (2.5.9)
which transforms C, (C;) into C,. Indeed, we then find that

fin)=e =23 Aj(ze ~2713)
f3(z) = e21n'/3 Ai(zelm'd )'

Finally, we mention that the function

Bi(2) = i[ £>(2) — £5(2)] (25.12)

is called the Airy function of the second kind and is often used together with
Ai(z) to form a set of two linearly independent solutions to (2.5.1).

Before proceeding, let us consider the main feature of the method. In the
present case, the unwanted polynomial coefficient z in the integrand of (2.5.3)
was eliminated via a single integration by parts, thereby introducing the first
derivative of the transform F(s). If polynomials of higher order than one had
been present, then they would have been eliminated by successive integrations
by parts. This process, however, introduces derivatives of F(s) of higher order
than the first. In fact, the degree of the polynomial coefficient of highest order
in the original differential equation equals the order of the differential equation

(2.5.11)
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we have to solve to determine F(s). Therefore, we can expect this technique
to yield a simplification only when that degree is less than the order gf the
original differential equation. There are cases, however, where after a sxmple
change of dependent variable this condition is satisfied by the new equation
whereas it is not satisfied by the original equation.
As an example, let us consider Weber’s differential equation
2

‘%;”+<r+%—j—>w =0, r=oconst. (2.5.13)
This equation is of second order while its polynomial coefficient is of second
degree. A direct application of the generalized Laplace transform would result
in a differential equation for F(s) that is essentially the same as (2.5.13) and
hence no easier to solve. On the other hand, suppose that in (2.5.13) we set

w=e "%y, (2.5.14)
Then, after a simple calculation we find that u satisfies the differential equation
W —zu +ru=0 (2.5.15)

which, in turn, satisfies the required condition. We could now proceed to apply
the method of this section to determine the solutions to (2.5.15) and hence
through (2.5.14) the solutions to (2.5.13). We choose, however, to leave this
analysis to the exercises.

Let us now return to our discussion of Airy’s equation and, in particular,
to the integral representations of its solutions. In many problems it is important
to know the asymptotic behavior of these solutions for large |z|. To prepare
for such an analysis, it is convenient to set

A=z?,  @=arg(2) (2.5.16)
and to then introduce the change of variable
s=A1"¢ (2.5.17)
in the integrals (2.5.9). In this manner we obtain
e ® 8
fi2)= o L"exp [l (t e —3—)) dt, n=1,273. (2.5.18)

Here we have continued to denote the contours of integration by C, because
only a simple stretching was performed. The actual asymptotic analysis of the
Airy function Ai(z) will be carried out in Chapters 4, 6,and 7. See also Exercise 4.3.

2.6. Wave Propagation in Dispersive Media

Let us consider the function u(x,t) defined as the solution to the initial-value
problem



54 | CHAPTER 2 Asymptotic Expansions of Integrals: Preliminary Discussion
2 A 2, —
c* Au—u, —b*u=0, (2.6.1)
u(x,0) = f(x), u,(x,0) =g(x), u(xz)=0, t<O. (2.6.2)
Here x =(x,, x5, ..., X,) is a position vector in an n—-dimensional coordinate

system, A is the Laplacian operatorin x space,and t represents time. Although
in the discussion that follows n can be any positive integer, in physical problems
n=1,2, or 3.

The partial differential equation (2.6.1) is called the Klein-Gordon equation.
It is of great interest in mathematical physics, being the simplest of the energy-
preserving dispersive hyperbolic equations, and serves as a useful mathematical
model for several physical phenomena. In particular, the solution u can be
used to describe the propagation of electromagnetic waves in certain plasmas.
In that event, ¢ is the speed of light in a vacuum and b is the plasma frequency
having therefore the dimension of (time)~!. Alternatively, we can look upon
u as the vertical displacement of a vibrating string or membrane under the
influence of a restoring force which is proportional to this displacement.
Here again c is a speed and moreover ¢2 = 1/p with 7 the tension in the string
and p the linear mass density. Because b?u must have the dimensions of
acceleration, we find, as before, that b has the dimension of (time)~!.

The solution to (2.6.1)-(2.6.2) is most readily obtained via the Fourier
transform method applied in several dimensions. We shall merely quote the
result here and leave the details of its derivation to the exercises. We find that

u(x,f) = yAi(k)exp{i[k-xiw(k)t]}dk, k=(kyky o k). (263)

Here

wk)=/*k* + b, K =kk (2.6.4)

and

Az (k)= ﬁ f [f(x) F (iw)~ ! g(x)] exp{ —ik-x} dx. (2.6.5)

In (2.6.5) the domain of integration is all of real x space. In (2.6.3), however,
the domain of integration is somewhat harder to define. For the present,
suffice it to say that it is infinite in extent and is to be chosen so that the condition
u =0 for t <0 issatisfied. We might mention that (2.6.4) is called the dispersion
relation for the problem. The quantities k and w are seen to have the dimen-
sions of (length)™! and (time)™!, respectively.

Because the arguments of u are dimensional quantities, we must introduce
dimensionless variables before investigating its behavior in any asymptotic
limit. With this purpose in mind we introduce

A=bt, x=b"'ck 0=,
ct

v)=/KX+1, k*=xx, (2.6.6)
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which we note are all dimensionless quantities. We wish to point out that we
have selected b~ as the “characteristic time” of the problem. We now rewrite

(2.6.3) as
UR0) = ux,t) =y j B, (k) exp{id [x8 — v(x)]} dx. (26.7)

Here
B, x)=( c 1y A, b c k). (2.6.8)

As we shall see in future chapters, this form is particularly appropriate for the
study of U(4,8) as 41— oo, that is, for the study of u(x,) for times large com-
pared to b~!. In the electromagnetic problem mentioned above, a typical
value of b is 6 x 101° (sec)™ !, so that on a time scale with b~' as unit, a
microsecond must be considered a large time.

A large dimensionless parameter can be introduced into our problem in
other ways. Indeed, let us suppose that the initial data, that is, the functions
f(x) and g(x) in (2.6.2), are nonzero only for |x| < r < co.(We then say that the
initial data has compact support; the support of a function h(x) being the
closure of the domain in x space where A is nonzero.) By introducing in (2.6.3)

k=rk, 0= L,

x|

and an appropriate nondimensionalization of ¢, we would then obtain an
integral representation of u similar to (2.6.7) except now

x| = (xx)"/? (2.6.9)

A= M (2.6.10)
r
Thus, a study of the behavior of the transformed integral, as A— oo, would
yield information about the behavior of u(x,f) at points whose distances from
the origin |x| =0 are large compared to the size of the support of the initial
data. We might mention that such results constitute what is called the far-field
approximation.

We have introduced the Klein-Gordon equation not only because it is
relevant to several interesting physical phenomena, but also because it serves
as a motivation for the asymptotic analysis of the multiple integrals discussed
in Chapter 8.

2.7. The Kirchhoff Method in Acoustical Scattering

In this section we shall describe the Kirchhoff method as applied to the
problem of scattering of an acoustical wave by a closed convex body. Despite
certain analytical inconsistencies in its derivation, the method is in wide use.
We shall not attempt to explain or justify these inconsistencies here, but shall
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rather be content with showing how the application of the method leads to
integrals which can be studied by the asymptotic techniques to be developed
in this book. In doing this, we are taking the point of view that, when treating
a physical problem, the worth of any analytical method is measured ultimately
by how well the results predicted by it agree with those obtained by experiment.
The Kirchhoff method has been shown to yield good agreement with experi-
mental results in certain limits to be indicated below. We wish to point out
that our presentation is based on an unpublished note by R. M. Lewis.

Suppose that an acoustic wave U, called the primary field, is incident on
a finite, closed, convex body whose surface we denote by S. Upon incidence,
U, is scattered (reflected and diffracted) giving rise to a new wave called the
scattered field and denoted by U,. For simplicity, we shall assume from the
outset that both U; and U, have harmonic time dependences and write

U; = u(x) e,

U — ) oo @7.1)

Here x =(x,, x,, x3) is the spatial coordinate vector, ¢ is time, and ‘@ is the
frequency of the two waves.

Linear acoustical theory tells us that there exists a total field U which is
the superposition of the primary and scattered fields, that is,

U =u(x) e, u(x)=u; + u, 2.7.2)

Moreover, u(x), u;(x), and u/(x) must all satisfy the Helmholtz or reduced
wave equation

A+kHu=0 (2.7.3)

in the region exterior to S. Here the quantity k is proportional to the frequency
of the time harmonic wave u,.

Given u(x), our problem is to determine u (x) such that (2.7.3) and one
of the following two boundary conditions [denoted by (+)] are satisfied :

(+) u(x)=0, that is, uy(x) = —u;(x),
, XeS. (2.74)
Ouy(x) _ —Ouy(x)

that is, s it

(=) ) _, 1fx)_ =0
i n n .

on

In the second of these conditions, §/0n =n 'V with n the unit outward normal
to S. In addition, we must require that, in both cases,

. . Ou, .
}1_1.1’010 ug =0, 11_120 r<F —ikug} =0. (2.7.5)
Here r represents the radial coordinate of a spherical coordinate system
whose origin lies in the region interior tc S and these conditions must be
satisfied uniformly in the remaining two angular variables.

A few remarks concerning the various conditions given above are perhaps
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in order. In (2.7.4), the (+) boundary condition corresponds to what is called
an “acoustically soft” or perfectly absorbing surface, while the (—) boundary
condition corresponds to an “acoustically hard,” “acoustically rigid,” or perfectly
reflecting surface. Of course, we could consider a combination of the two which
would result in a boundary condition of the form

au + p Z—Z =0, x¢&S, a f=const (2.7.6)

We shall, however, restrict our considerations to (2.7.4). The first of conditions
(2.7.5) guarantees that u, will have certain required regularity properties at
infinity, while the second, called the radiation condition, ensures that at large
distances from S the scattered field represents an outgoing travelling wave.

To solve our problem, we first introduce the free-space Green’s function
G(x,§) for the Helmholtz operator A+ k? given by

Gxd) =%}|ﬁ’ x| = ()2, 27.7)

Then, upon applying Green’s theorem and using the known properties of G,
we find that at points exterior to S, u, is given exactly by

uy(x) =L {u(é)‘%‘—’g - G(x,c)a’(f)—f) dA. (2.7.8)

Depending on which of the boundary conditions (2.7.4) is used, one of the two
factors in the above integrand vanishes while the other is unknown. The
Kirchhoff approximation consists essentially of a priori assuming that both
u and du/on are known on S no matter which of conditions (2.7.4) is used.
We shall now proceed to describe the approximation in some detail. In doing
so we shall introduce terminology suggested by that used when considering
problems in optics.

Let us consider the wave fronts or equiphase surfaces of the incident field.?
The orthogonal trajectories to these surfaces are curves which we shall call rays.
These rays impinge on a portion L of the surface S called the lit region. That
portion D of § not touched by incident rays is called the dark region. Finally,
we denote by C the curve on S separating D from L. See Figure 2.7.1.

The key step in the Kirchhoff approximation is the replacement of the exact
boundary conditions (2.7.4) by the approximate conditions
Ou du;

on =i5r—l_ on L,

U=ty 2.79)

2The actual construction of the phase ¢ of u;, its level surfaces and corresponding orthogonal
trajectories, involves what is called the geometrical optics approximation. Because u; (x) must
satisfy (2.7.3), it must be of the form e/*%y for k “large.” This requirement serves to determine ¢.
We note that, in some sense, we are considering waves of high frequency.
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Figure 2.7.1.  Lit Side and Dark Side of a Scattering Surface Separated
by a Boundary Curve C

Oou _ Ou;  Oug
u=u;+u, =0, %—67+B—n~—0 on D. (2.7.10)
In (2.7.9), the () factors correspond to the (+) boundary conditions in (2.7.4).
In order to motivate this replacement we assume for the moment that u,

1
is a plane wave propagating in the direction of the unit vector u. , that is,
u = olkhy - x (2.7.11)

and that S is a planar surface. In this event, both (2.7.9) and (2.7.10) are exact.
In any other case they are inexact and are even incompatible in the sense that
the assumed values of u; are not compatible with the assumed values of du,/n.
Suppose, however, that the incident field is such that § is “nearly” planar
over one wavelength. Heuristically, this means that S “appears” to be a
planar surface so far as u; is concerned. We can express this analytically
quite simply in terms of p, and p,, the principal radii of curvature of S.
In fact, we need only require that k be such that

kpi>1,  j=1,2 (27.12)

at each point of S. If these conditions are satisfied, then we might expect that
the error introduced by using (2.7.9) and (2.7.10) in place of (2.7.4) will not
be great. Unfortunately, even when (2.7.12) holds, (2.7.9) and (2.7.10) are good
approximations to the true boundary conditions on only part of S.

It can be shown, however, that there exists a region D contained in D on
which both u and du/dn are very “small.” Moreover, we find that D — D
consists essentially of a “band” on S one of whose boundary curves is C,
the other being a closed curve C contained in D.3 If we denote by d the
maximum distance from C to € on S, then it can be shown that the surface
area of the band will be small compared to that of D whenever

(kd)'® » 1. (2.7.13)
3See Figure 2.7.2.
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S

Figure 2.7.2. The Region D

Thus, if in addition to (2.7.12), (2.7.13) is satisfied, then the use of (2.7.10) in
(2.7.8) should not seriously affect the result. We might also mention that for
certain surfaces S, there will exist a *“bright region” in D, but not in the ban(_i,
throughout which (2.7.10) is a poor approximation. Here again this area is
small so that the error introduced in (2.7.8) is negligible.

In the lit region there is another band bounded by C and a closed curve
in L such that (2.7.9) is a good approximation except in this band. Again we
find that if k satisfies (2.7.13) where d is now the maximum width of this new
band, then the surface area of the band is small compared to that of L and
we can use (2.7.9) in (2.7.8) with little error. .

Suppose then we apply (2.7.9) and (2.7.10) in (2.7.8). We then obtain

u, (%) zL {ui(f) 1788 _Gup®@asniaa @119

which presumably yields a good approximation to u, when (2.7.12) and (2.7.13)
are satisfied. We now propose to further simplify our expression for u, .by
assuming that u; is a plane wave of the form (2.7.11) and that the observat{on
point x is “far” from the scattering body. To make this latFer assumption
more precise, we first suppose that the origin of our coordinate system 1s
interior to S. Then we suppose that

lf—(( <1, EeS. (2.7.15)
When (2.7.15) is satisfied we can simplify the expressions for G(x,§) and
(0G/on)(x,&). Indeed, we have
x—&~r—p_-&

Here u_ =x/r and r=|x| so that u_ is a unit vector in the direction of x.
Then, after straightforward calculations, we find that

explik(r—p_-8)}
G(x$) =~ o )
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oG ik (r—u_-
S X —ikp_ n({)w (2.7.16)

These approximations become more accurate, of course, as [€|/Ix| gets smaller.
If we now use (2.7.11) and (2.7.16) in (2.7.14) we obtain

w — ik exp(ikr)

X 1, 2.7.17)

where

I'={, @) u, exp{ik&[u, —p_]}dA. (2.7.18)
The integral I is essentially our final result. We shall in Chapter 8 study
I for “large” k. Because both k and ¢ are dimensional quantities, in order

to effectively study I in the desired limit it will prove advantageous to introduce
dimensionless variables. We let p, be the average of |é| on S and set

$=pon,  i=kp, (2.7.19)
Then (2.7.18) becomes

1) = p§ fu.u, <o () p) explidn-[u, — p_]} dA. (2.7.20)

Here dA is the nondimensional differential element of area in the n coordinates
and the condition nu, <0 is equivalent to requiring that n lie on the lit
side of S.

As we have indicated, the asymptotic behavior of I (A), as 1> oo, will be
considered in Chapter 8. We should point out that because (2.7.17) is already
an approximation with an inherent error, it would make no sense in the acoustic

problem to approximate I to any greater degree of accuracy than that afforded
by (2.7.17).

2.8. Fourier Series

The use of Fourier series to approximate solutions of problems in mathe-
matical physics is of fundamental importance. For a function f(x), Riemann
integrable on [—m,n], such a series is defined by

f(x) =;—° + i (a, cos kx + b, sin kx). (2.8.1)
k=1
Here
1 Y
q=_) f@coskids, k=012, (2.8.2)

=1 sesinkide k=12, (283)
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Let us introduce the partial sum of (2.8.1)
sy(x)= ;—0 + gl (a, cos kx + b, sin kx). (2.8.4)
Upon inserting (2.8.2) and (2.8.3) into (2.8.4) we obtain
5,(%) =% S_ 1) [% + ; cos k(x — c)] dé. (2.8.5)

If we use the formula for the sum of a finite geometric series, then we readily
find that

N =

D,(t)=

+ 2‘1 cos kt = % +Re <Zl e““)

k=
en/z —e in +§)r>

\ " 2isin(t)?)

_sin(n+ 9t

~ 2sin(t/2)

=

= —
—
(2.8.6)

Finally, upon assuming f periodic on (— o0,00) with period 2, s,(x) becomes
s,(x)= };j f(x+1t)D,(t) dt. (2.8.7)

We might mention that D,(t) is usually referred to as the Dirichlet kernel.
For any fixed x we want to study the behavior of s,(x) as n— . Indeed,
we want to ascertain under what conditions

lim s,(x) = f(x). (2.8.8)

Sufficient conditions for (2.8.8) to hold can be found in almost any book yvhich
discusses Fourier series and will not be discussed here. Another question of
interest is, granted that (2.8.8) holds, what is the rate of convergence of s,(x)
to f(x). To answer this question we seek an asymptotic expansion of the
integral in (2.8.7) as n-» co. ' . _

Ags is well known, there are continuous functions f for wh_lch (2.8.8) is not
true. In such cases, by summing the Fourier series in a special way, a useful
approximation can nevertheless be obtained. Indeed, suppose we consider the
sequence

M, =l»§ s n=12 ... (2.8.9)
nj=o

Thus, M, is the arithmetic mean of the first n partial sums of (2.8.1).
To express M, as an integral, we first note that
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17 1% sing + 4t
F(t)== D:=-’Z B e L 2.8.10
0= &, PAO=3 2 Tona) 28.10)

If we express the right side of (2.8.10) in terms of exponentials and sum the
resulting geometric series, we then obtain

- 2 2
F(t)= %; (::z f?/'{) )) (2.8.11)
From (2.8.7), (2.8.8), and (2.8.10) we have
M, (x) = %[ FOe+ 1) Fy0) de. 28.12)

Here the function F,(t) is called the Féjer kernel.

The limit of M,(x) as n— oo is called the Cesaro sum of the Fourier series
(2.8.1). It can be shown that the Cesaro sum of the Fourier series expansion
of a continuous function, periodic with period 2z exists and is equal to the
function for every x. Again, we must study the asymptotic behavior of the
integral in (2.8.12) to determine the rate at which M, (x) approaches f(x).

2.9. Exercises
2.1. Let

* exp[—¢*] dt

w(z) = exp[ — z%] erfc(—iz) = 1:1 J_ o7 Imz>0. (29))

(a) Determine the change of variable of integration and the definition of 1
under which this integral becomes

W)= 1 fw a(s:6) exp[ — 4 f(s)] ds. 29.2)

Here, 0 <8<, f(s)=5% g(s;0) = (e® —5)" L.
(b) Discuss the analytic continuation of w(z) to other values of 6.

2.2. Let the function I'(v,z) be defined by the integral (2.2.8) for |6] < =;

O=argz, A=z
(@) For A#0 and any v, show that

Tv,2)=4" oo st exp[A f(s:2)] ds, (2.93)
f given by (2.2.11) and 4" appropriately defined.
(b) Discuss the analytic continuation of the defining integral (2.2.8) and of

(2.9.3) to other values of 6.

2.3. For z not on the real axis between — 1 and + oo, the associated Legendre
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function of the second kind has the following integral representation :
e 27" Tv+pu+1)
Tu+HT—p+1)

(2% = 12 I(z;uv); (29.4)

0/@)=

Iz:uy) = 5 [2+(z* — 1)!/? cosh t]7'* " (sinh £)* dt, Re(v+tp+1)>0.
Recast I(z;u,v) in a form similar to (2.9.2) with v playing the role of 4.

2.4. If x and y are independent random variables with probability densities
p.(s) and p(s), respectively, and z=x/y, then show that

p(s) =7 (€| P<(s8) p,(&) dE. (29.5)

2.5. Suppose that X = (x,y) ={(r cos 6, r sin 0) is a vectoF .in the p.lgne with
r and 6 independent random variables having probablht_y. dens1t1f:§ p.(s)
and p,(s), respectively. Let p,(s) and p,(s) be the probability densities for
x and y, respectively.

(a) Show that

p«8) =1 p.(Ap) alp.) dp, A= lsl, w=signs. (29.6)
Here B
po(cos ™! u/p) + py(—cos We
Jr =1
g(p.p) = (29.7)
0, 0<p<l

(b) Find p,(s).

2.6. (a) In (24.1) setf(t) = (1 + «f)"*? and reduce the analysis of the solution
to the analysis of an integral of the form (2.4.8).
(b) Repeat for
0, t<a™l,

f@)=

(@t =112, t>a”t
2.7. (a) Apply the generalized Laplace transform method to solve (2.5.15).
Obtain the solutions

2
WU)(Z)= a; -L sty exp {_% + SZ} ds, j=12,3. (2.9.8)
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Cs

\Sp)

G
N\

Figure 2.9.1. The Contours of Integration for Exercise 2.7

Here the a;’s are constants and the contours Cj, j=1,2,3 are shown in
Figure 2.9.1.
(b) Introduce appropriate scalings of s and z to recast (2.9.8) in the form

WO =q, 4712 -‘.C,- gis)exp{A f(s;)}ds, j=1,2,3. (29.9)
Determine f and g.
(c) Use Cauchy’s theorem to show that the three solutions are linearly

dependent.

2.8. Consider Bessel’s differential equation

d dw 2,2 _
2z (z E) +(z* = v)w=0. (2.9.10)
(a) Introduce u=z"w and find « such that the equation for u is
d’u du

(b) Solve (2.9.11) via the generalized Laplace transform method and obtain
the integral representations

uW=a; { 1+ Hewds, j=1,23 (29.12)

with the aj’s being constants and the contours C; shown in Figure 2.9.2.
(c) Show that the three solutions are linearly dependent by Cauchy’s theorem.

2.9. Let F(§), G(¢) be functions whose support is || < 1; that is, F and G
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Figure 2.9.2. Contours of Integration for Exercise 2.8, the Bessel
Functions (Dashed Curves Are on Lower Riemann Sheet)

are identically zero for || > 1. Let u satisfy (2.6.1) subject to the initial condi-
tions

It

u(x,0)=F(5>; u,(x,O)—_-G(’—r‘>, ;

r

0, t<0. (29.13)

Then show that the solution u has the following integral representation :

U4:0) = ux,t) =) { B (k) exp{iz [x0 — v(x)z]} dx. (29.14)

Here
b
A:@, 9=ﬁ, v(K) = VK% + B2, /3=%’
(29.15)
=g
%"
and

r\" F( T i
B,(x)= (5) LM [F(C)+ (m) G(‘f)] oxpl—ied) (1(62..9.16)

2.10. Obtain a Fourier integral representation of the solution to the inhomo-
geneous Klein-Gordon equation

U — thy —DPu=05(x)t 71 ™" (29.17)

with “zero initial data.” Here, 8(x) is the Dirac delta function. Discuss the

scaling to dimensionless variables on the time scale b~' and on the time

scale a” 1.
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2.11. Suppose that u is an n-vector solution of an initial-value problem for
the system of equations

P
u+ ) 4;u,+Bu=0. (29.18)
i=1

Here the As and B are constant n x n matrices, with the 4 ;'S symmetric
and B antisymmetric.
(a) Show that the solution u has the integral representation

=3 (V&) explilkx — w01} dk, .. dk,. (29.19)
=1

Here w;k),j=1,2,...,n are the eigenvalues of the matrix Zh.1k;jA;—iB
and the Vs are the corresponding eigenvectors with
" 1
Vik =——ju(x,0) exp{—ik'x} dx
,Zi 1K) 2np p{ }

the Fourier transform of the initial data.

(b) Assumingthat x,, ..., x, are spatial coordinatesand ¢ is time, introduce
dimensionless variables in (2.9.19). Repeat the scaling discussion of Section 2.6
for (2.9.19).

2.12. For the integral (2.7.20), suppose that the body is an ellipsoid of
revolution

y

Figure 2.9.3. The Coordinate System for Exercise 2.12
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X =acos o cos f, y=asina cos f3, z=bsin f. (2.9.20)

Here o and B are the polar and azimuthal angles, respectively. Suppose,
further, that the field is transmitted and received in the y, z plane at an angle
¢ with the y axis. See Figure 2.9.3. The observed signal is called the back-
scattered field. Show that

I)=%F§,, s, @pu_)(@®cos® B+b?sin® f)sina
x exp[—2iAn-u_] da df, nu. =0, (29.21)

_bsina cos fcos ¢ + asin fsing
Ja® sin? B +b? cos® B

nu_
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Integration
by Parts

3.1. General Results

In Section 1.1 we derived an asymptotic expansion, as x — co, for the function

w ,—t
I(x) = xe* j St (3.1.1)
There we used the straightforward procedure of repeated integrations by parts.
The expansion we obtained in this manner served to motivate the entire theory
developed in Chapter 1.

In this and the sections to follow we shall discuss various aspects of the
integration by parts technique. In particular, we shall show how this technique
can be used to systematically derive asymptotic expansions for integrals in a
fairly wide class. Furthermore, the method is fundamental to the development
of more sophisticated techniques for the asymptotic expansion of integrals.

Let us begin by considering the integral

IA) = {° h(t; ) f(t;4) dt. (3.1.2)

For the present we shall assume that the interval (a,b) is finite. Our objective
is to study the behavior of I(1) as A approaches some prescribed point A,.

It will prove convenient in the discussion that follows to introduce, for any
function g(z), the symbols g™ (¢) and g{~"(t), which denote respectively the
nth derivative and the nth repeated integral of g. Thus,

69
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_dg" " g(_,,“,:dg“")_
da dt

The quantity g~ is defined by (3.1.3) only to within n constants of integration.
Choosing these constants is equivalent to choosing the n fixed limits of inte-
geration in the n-fold integral ¢g‘™™. In many problems the proper choices
for these constants are obvious. In general, however, the selections are not so
obvious and prove to be pivotal steps in the application of the integration by
parts technique. This point will be clarified in the examples below.

Let us now return to (3.1.2) and assume that, for each value of 1 in a given
interval A, f(t;2) has N +1 continuous derivatives with respect to t in
[ab] and that h(t;4) is locally integrable on [a,b]. Then, upon integrating
by parts m+ 1 times in (3.1.2), with m < N, we obtain

(3.13)

I(A) = i S,(A) + R, (2), AeA. (3.1.4)
n=0
Here

S, = (=1 [ B:0) K"V (b;4) — £ (a;4) K" D (a;4)] (3.1.5)
and

R, (A =(-1*1 j'a’ FoED @A) R Y (¢5) de. (3.1.6)

Our goal is to approximate I(1), in an asymptotic sense by the finite sum
in (3.14) as -4, in A. So far we have made no assumptions that would
enable us to achieve this goal. Indeed, at this juncture, we have no reason to
expect that R,(4) is “small” compared to X7_, S, forany 4 in A. Suppose,
however, that, as 21— 1, there exists an asymptotic sequence {¢.(4)} whose
terms are such that

R,()=o0(¢,(4), m=0,1,...,N. (3.1.7)

Then by the generalized definition of an asymptotic expansion given in Section
1.5, we can conclude that, as 1— 1,,

1) ~ ﬁ S,(4) (3.1.8)
n=0

is an asymptotic expansion of I(1) to N + 1 terms with respect to the auxiliary
asymptotic sequence {¢,(4)}.

We have no guarantee that the expansion (3.1.8) is useful in the sense of
Section 1.5. That is to say the scale induced by the sequence {¢,(4)} may
not be fine enough to yield accurate estimations. To obtain the desired utility
we must require that

1(2) # o(¢o(4)) (3.1.9)
and that if S, (1)#0, then
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R, (%) # 0(dm+1(2))- (3.1.10)

As an alternative to the use of auxiliary sequences, we might require that,
as A—Ag, {Sa(4)} itself form an asymptotic sequence. This,.in turn, would
require that the functions S,(4) be bounded away from zero in some deleted
neighborhood of A,. This, however, will not be the case in geperal.

In any case, to establish the asymptotic nature of (3.1.4), estimates must be
made of the remainders R, (4), m=0,1,2,..., N, in the limit 41— 4,. Unfor-
tunately, it is difficult to formulate general theorems concerning the behavipr
of R,, in such a limit and we must be content here with the treatment of special
cases. One special case is considered in the following.

THEOREM 3.1. Suppose that I(1) is defined by (3.1.2) with f independept
of 1. Suppose further that f®(¢) is continuous for n=0, 1, ..., N + 1, while
f®+2)p) is piecewise continuous in [a,b]. Finally suppose that, as A— 4,,

[R50 S () $(2), m=0,1,...,N+1, (3.L11)

the functions a,(t) are continuousin [a,b] and the functions ¢,(1) are elements
of an asymptotic sequence. Then, as A—4,,

1) ~ ‘_ZO S,(A), (3.1.12)

with S,(A) given by (3.1.5), represents an asymptotic expansion of I(1) to
N +1 terms with respect to the auxiliary asymptotic sequence {¢,(4)}.

Simply stated, the theorem asserts that if f is independent of A and suffi-
ciently smooth, while the iterated integrals of h are bounded by the terms of
an asymptotic sequence, then the integration by parts procedure yields an
asymptotic expansion with respect to that sequence.

PROOF. In order to establish the theorem, we shall show that in (3.1.4),
R.(A=0(@ps (D)) =0(dpn(A) m=0,1,...,N, as A—4, For m<N—1,
this is easily accomplished upon integrating by parts once more in (3.1.6).
Indeed, we have

Ra(d) = (= )" [0 0) K2 b3) = 11 (@) K" (@3]

+ (=1 b fr D) RCm=2(¢;7) dt, m<N-1. (3.1.13)
From (3.1.11) and (3.1.13) we can immediately conclude that
R () =0@n+1(A)), A-4, mSN-L (3.1.14)

For m= N we start with (3.1.6) and decompose [ab] into subintervals
throughout each of which f®*2)(¢) is continuous. We then express Ry as a
finite sum of integrals over these subintervals. Finally, upon integrating by
parts once more in these integrals and upon using (3.1.11), we obtain the
estimate (3.1.14) with m = N. This completes the proof.
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Remarks. Tt should be emphasized that the purpose of Theorem 3.1 is to
establish the asymptotic nature of (3.1.4) in the case under consideration and
not to obtain sharp estimates for the remainders R, Also, the theorem yields
only a finite expansion since we assumed only a finite number of continuous
derivatives for f and estimates (3.1.11) for only a finite number of interated
integrals of h. If f is actually infinitely differentiable on [a,b] and if (3.1.11)
holds for arbitrarily large N, then we can let N go to infinity in (3.1.12).

Again we have that conditions (3.1.11) do not guarantee that {¢,} is a
useful asymptotic sequence in the sense of Section 1.5. However, if, as 41— Aoy
either |h""" Y (a,4)| # o(¢,(4)) or (K" D (b:4)| # o(dn(A),n=0,1,..., N +1,
then there exists at least one f, satisfying the hypotheses of Theorem 3.1,
for which

I(2) # o(¢o(4)),
(3.L.15)

m-1
Q= ) S,\M#odnd) m=1,2. ,N+1
n=0
To illustrate the use of the theorem we offer the following examples.

EXAMPLE 3.1.1. Let
IWD=[tfd, 0<a<bh, i-ow. (3.1.16)
Here h(t;A)=t* and

t).+n+1
h(_"_l)(t;l)=T—-’ n =0, 1, e . (3].17)
I Ga+j+1

Note that we have selected the fixed limits of integration in the repeated
integrals of h to be zero.
The conditions (3.1.11) of Theorem 3.1 are satisfied with {¢.(2)} defined by

bl+n+l
Puld) = —— (3.1.18)
AL G+j+1)

and a(t)=1,n=0,1,2, .... Thus, for any f satisfying the hypotheses of the
theorem, we have

N —1\
jb o fdi~ S — TV gy prenrs _ pongg) A+ (3.1.19)
. G+

where, of course, the underlying asymptotic sequence is {¢,} with ¢, given
by (3.1.18).
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EXAMPLE 3.1.2. We now consider

I(A)=fb e Mcos(A/20) f(ydt, a<b, i (3.1.20)
We leave it to the exercises to show that
R V(@A) = (—%_;T)”:e'“ cos[A/2t+(n+1)6],
(3.1.21)
0 = tan™'(/2),

are iterated integrals of h=e ™ cos(1./2t). Here the constant limits of
integration are all taken to be + . .

For any fixed ¢ in [ab], each of the functions h‘™""'(¢;4) vanishes at a
sequence of values of A having limit + co. Furthermore, no two of these
functions vanish simultaneously. Indeed, the iterated integrals (3.1.21) behave
much like the sequence of functions {cosnx/x"} which illustrated the use of
auxiliary sequence in Section 1.5. Consequently, we can expect to obtain an
asymptotic expansion here only in the generalized sense. In contrast, the re.sult
of Example 3.1.1 could be viewed as the sum of two asymptotic expansions
of Poincaré type. '

To determine a useful auxiliary asymptotic sequence we use the easily
established estimate
e HE=d) ,=ha
—_— A>u, n=0,1,2,....
34Ty g (3.1.22)

Thus, for any f satisfying the hypotheses of Theorem 3.1 we have that

§2e™cos(A\/21) (1) dt

W= D(es)| <

N
~ > (BT f®@) e ™ cos[A2a+(n+1) 6]
n=0
— f™®B)e *cos[A/2b+(n+1)0]} (3.1.23)
represents an asymptotic expansion of (3.1.20), as 21— oo, with respect to the

auxiliary asymptotic sequence {¢,(4)} defined by

e—M
¢"=W—T" n=0,1,2,.... (3.1.24)
EXAMPLE 3.1.3. Let us finally consider

IA) = L‘, A=) f)de (3.1.25)

as A— . Here h(t;4)=(1 —t?)". The iterated integrals of h now cannot
be expressed in terms of simple functions. Indeed, as we shall see, the besF we
can do is express (""" Y(t; 1) as an integral between a fixed and variable limit
of integration. One problem is to make the proper choice of the fixed limit.
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(-

Increasing A

Figure 3.1

Before proceeding, we offer the following heuristic discussion : In Figure 3.1
we depict the graph of h(t;4), 0 < r < 1, for an increasing sequence of 1 values.
We note that h(0;1) =1 for all 4, but that, as 4 increases, the region where
h(¢;) = &, for any fixed positive ¢, becomes a smaller and smaller half-interval
about r=0. Therefore, we might anticipate that the behavior of f only at
and near ¢t=0 will be important, that is, ¢t =0 is the only critical point for
(3.1.25) as 1 — oo.

We now turn to the implementation of the integration by parts technique.
The (n+ 1)st repeated integral of h has the general form

WD) = (= 1) [Prde, (Pr-vdr, [P dto (1 — ),
n=0,1,2,... (3.1.26)

We note that (3.1.26) is greatly simplified by selecting all of the fixed limits of
integration equal to the same constant B. Indeed, in that event, and upon
reversing the order of integration in (3.1.26) we obtain

(_“l)n-rl

R D(2) = nl

B
j‘ (to — 8" (1 — to2)* dt,. (3.1.27)

The proper selection of f is perhaps not obvious. It should be clear, however,
that we should not set =0 in which event A"~ 1(0;1) =0 for all n. We
have anticipated that ¢ =0 is the only critical point for I and if we set =0,
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then we will get no contribution from t=0 .at.all. ‘

The most natural selection for p is 1. This is so for tvw./o. reasons. Flrstly,
with B=1, """ (1;1)=0 for all n and hence, as anticipated, .there will
be no contribution from t=1. Secondly, with g=1, K="~ D0 ;A? is propor-
tional to a well-studied special function known as the beta function. Indeed,

n+1
M——Jr@4a+1n
gt 17 _
K= D(030) = , p=1, (3.1.28)
2(n)! F(n;3+i>

where we have expressed the beta function in terms of the more familiar gamma
functions. ‘ .

Let us take =1 in (3.1.27). The integration by parts procedure then yields
the formal expansion

. r(#) TU+1)

n=0 2(")! r(n;3 +A>

Here we have assumed that f is infinitely differentiable on [0,1].

Although the terms in (3.1.29) are rather complicated functio.ns of 1, we can
nevertheless obtain a useful and simple underlying asymptotic sequence. In
fact, we can show (see Exercise 3.5) that

|n D A < Ih(""”(o M <C, Az 0<t=<1, (3.1.30)

n=0,1,2, ... for some constants C, Thus, we can select {¢,} = (A2}
as the auxiliary asymptotic sequence for (3.1.29). ' .

We do not wish to imply that the only possible choice for # is 1. Indeed,
if we take 0 < < 1, then we have

10)~ (3.1.29)

1

R () = —%—'_'—1)—'”1 S (to — £ (1 — to?)* dt,

N (;}l j‘ (o — £ (1 — to2)* dio. (3.1.31)
n! Jg

But

1 _ B2y (1 _ pynt1
\L'J (t—to) (1 — o) dty| < &ﬂ’f—}i—— =o0(A7") (3.1.32)
nlJp !

for all r. Hence, we see that using 0 < <1 yields a result that differs from
that obtained with § = 1 by a quantity that is asymptotically zero with respect
to the asymptotic sequence {4~ ™*1/2},

The above examples illustrate the use of Theorem 3.1. Of course, this
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theorem yields only sufficient conditions for the asymptotic nature of the
integration by parts procedure. Hence, even in cases where Theorem 3.1 is not
applicable, integration by parts might still yield an asymptotic expansion.

There are several extensions to Theorem 3.1 that can be made. Indeed,
we can allow the interval of integration in (3.1.2) to be semi-infinite or infinite
so long as the functions a,(t) in (3.1.11) are such that a,(¢) f®(t) are integrable
on (ab). Also, we can allow A to be complex. Indeed Theorem 3.1 holds
as A- 4, in some sector of the complex A1 plane, if the functions ¢,(4) in
(3.1.11) form an asymptotic sequence as A — A, in that sector.

Finally, we note that it is unnecessary to assume that f is independent of A.
This assumption was made in Theorem 3.1 so as not to obscure the essential
features of the result.

3.2. A Class of Integral Transforms

Everyone who studies linear differential equations beyond an elementary
level quickly learns to appreciate the power of the so-called integral transform
techniques. Of course, special mention must be made of the Fourier and
Laplace transforms and, indeed, we have formulated several problems in
Chapter 2 for which integral representations of the solutions were obtained
via their use. These representations have the form

Id)=f_e™™ f()dt (32.1)

where C is a given contour in the complex ¢ plane.

It is important to note that 4 appears in (3.2.1) only through the product 1.
This suggests that, as a generalization, we might consider the wider class of
integrals

1) = jc h(it) f () at. (3.22)

In what follows we shall look upon any function defined by an integral of the
form (3.2.2) as an integral transform. Moreover, unless some name is already
in use, we shall call (3.2.2) the h-transform of f. The function h will be called
the kernel of the transform.

To completely define any h-transform, the contour of integration C must
be specified. Thus, in order to conclude that (3.2.2) is the Fourier transform
of f we require that h=e" and C is the real axis.

It should be emphasized that not all h-transforms have proven to be useful
in solving problems. In fact, relatively few have been systematically exploited
in applications. We shall list some of the more important ones below. Before
doing so, however, we wish to point out that integrals of the form (3.2.2) can
arise naturally in problems, that is, not through the application of some integral
transform. Indeed, we recall the problem discussed in Section 2.3 of determining
the cumulative distribution function for the product of two independent
random variables.
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We now list some of the more useful h-transforms and their inversion formulas.
In all cases we denote the function being transformed by f (¢} and the transfprm
itself by I(4), in keeping with the present notation. We shall not state conditions
on f(¢) sufficient for the validity of the inversion formulas stated.

(1) Complex Fourier transform.
o] . 1 o ,
= [" e roas q0=g [ Frama 029

with the upper signs or lower signs respectively forming a transform pair.

(2) Fourier sine and cosine transforms.

1= s s0=2 ]

At
cos

w{sm ,1,} 10)dh. (324)
COS

0

(3) Laplace transform.
® -u ) _ 1
1= ["e fdes 10 =55

Here, the constant ¢ must be such that all singularities of I(4) lie to the left
of the vertical line Re(l) = o.
(4) Hankel transform.

1) = [2 T, (3) (G072 f(0) dr; (3.2.6)

o+ i
eM I()) dA. (3.2.5)

g—ico

fo= j: J(A) (AD)Y2 I(A) dA.
Here, the kernel h =J, (¢t) is the Bessel function of the first kind of order v.

(5) Generalized Stieltjes transform.

e IU)
IA)=4 Nigrry dt. (3.2.7)
For this transform we have not exhibited the inversion formula due to its
compiex nature. For the case v=1, the reader is referred to the book by
Widder.
There is another important integral transform known as the Mellin transform.
It is defined by

W= {07 [ (3.2.8)

The Mellin transform was not included in the above list because it is not an
h-transform. Nevertheless, as we shall find in subsequent chapters, the Mellin
transform plays a key role in the asymptotic analysis of h-transforms.

It would be difficult to overstate the importance of the specific integral
transforms listed above. Motivated by this, we shall now embark on a detailed
investigation of the asymptotic behavior of h-transforms in certain limits.
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In the remainder of this chapter we shall consider only the application of the
integration by parts technique. This will limit the cases treated. In future
chapters, more powerful asymptotic methods will be developed to handle cases
of greater generality.

As in the previous section, we are unable to formulate an integration by
parts theorem of any great generality. However, to indicate the type of result
that can be obtained we prove the following.

THEOREM 3.2. Consider
I(A)= j': h(At) f(¢) dt. (3.29)

Here the interval (a,b) is a finite segment of the real axis. Suppose that f(t)
has N + 1 continuous derivatives while f®*2)(t) is piecewise continuous on
[ab]. Suppose, further, that the iterated integrals of h satisfy

P00 <an®) dad) n=12,..0 (32.10)
where the functions «,(t) are continuous on [a,b] and
A7 dpii(A) =0(d,(R),  A— 0. (3.211)

[This last assumption implies that {17" ¢,(4)} forms an asymptotic sequence
as A—o0.] Then

N — 1\
10~ Y, G L0 K00~ (e K- 0a)]

N
=2 S (3212)

represents an asymptotic expansion of I, as A—»w, to N+ 1 terms, with
respect to the auxiliary asymptotic sequence {17" ¢,}.

PROOF. Upon integrating by parts m times in (3.2.9) with m < N, we obtain
m—1
I(A)= Z S,(A)+ R, _ 1 (A). (3.2.13)
n=0
Here
(— l)m b ( -
Ro-s()=" g @ R™dt, m=1,2,..,N.
Another integration by parts yields

Ro ()= L10) K"~ 98) ~ @) K"~ (ha)]

!Here K™ (A) = " ()| c= e
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(_1)m+l

+ lm+l

Sb f(m+ ”(t) h(—m— ”(lt) dt. (3214)

It now follows from (3.2.10) and (3.2.14) that, as 41— oo,
R, ;()=0A""™*D¢ .A), m=12..,N. (3.2.15)

To see that (3.2.15) holds for m = N + 1 we must, as in the proof of Theorem 3.1,
decompose (a,b) into subintervals throughout each of which f®*?(t) is
continuous. Then a final integration by parts in Ry yields the desired result.
This completes the proof.

Upon comparing Theorems 3.1 and 3.2, we see that they are quite similar
and, indeed, their proofs are essentially the same. There is one key difference
however. In Theorem 3.1, the functions ¢,(4) introduced in conditions (3.1.11)
are assumed to form an asymptotic sequence as A-»Ay. In Theorem 3.2,
because of the special way A appears in the integrand of (3.2.9), namely through
the product At, the weaker assumption that {1™" ¢,} isan asymptotic sequence
as A — oo proves sufficient. We further note that Theorem 3.2 does not guarantee
that {17" ¢,} is a useful asymptotic sequence for (3.2.9) in the sense of Section
1.5. To obtain the required utility, at least to leading order, we must further
require that I(3) # o(A~! ¢,(4)), A — .

There are, of course, several generalizations of Theorem 3.2 that can be made.
The extensions to complex A and more general contours of integration are
two that come immediately to mind. We shall not discuss these here. There
is one extension, however, that is worthy of special consideration.

Let us consider the following.

EXAMPLE 3.2.1.

1) = [ (4 ¢(x)) f(2) dr, (3.2.16)

where the kernel h satisfies the hypotheses of Theorem 3.2. For ease of dis-
cussion, we suppose that ¢ and f are both infinitely differentiable on [a,b].
Finally, suppose that ¢ is strictly monotonic on [ab], that is, ¢'(z)#0,
7¢[a,b].

This seemingly more general case can, with [ittle effort, be reduced to that
treated in Theorem 3.2. Indeed, if we set ¢t = ¢(z) in (3.2.16), then we obtain

I(A) = jz h(At) f(¢) dt. (3.2.17)
Here, a = ¢(a), b= ¢(b), and

f@
) ="~ 3.2.18
f 7@ ( )
t=¢7'n
Because ¢'(7) is nonzero on [a,b], we have that f(f) is infinitely differenti-
able on [a,b]. Thus, an infinite asymptotic expansion of (3.2.17) can be obtained
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by applying the result of Theorem 3.2 with N = co. In terms of the original
functions ¢ and f, this expansion is given by

~ o (=1 [ (—n—1) [l i]"<£> ]r:b
10~ ), e e 55 ) (3.2.19)

This last result could have been obtained by directly integrating by parts
in (3.2.16). In fact all we need do is multiply and divide the integrand of each
remainder integral by ¢’ before integrating by parts. (See Exercise 3.7.)

If ¢(1) is strictly monotonic only over subintervals of [a,b], we might be
tempted to decompose [ab] into those subintervals and to then seek an
expansion of the form (3.2.19) for each integral that arises. However, because
¢’ =0 at the endpoints of the subintervals, f(t) is undefined at these points
and Theorem 3.2 cannot be applied. In later chapters we will treat these non-
monotonic cases in great detail. At this juncture, we wish merely to point out
that the straightforward integration by parts procedure applied to (3.2.16)
breaks down whenever ¢’ vanishes at points in [a,b].

In the following examples we illustrate the use of Theorem 3.2.

EXAMPLE 3.2.2. Let us consider
1) = [>e™ f(rydt (3.2.20)

which, for obvious reasons, we call an integral of Fourier type. Here h= ¢
and we choose

P =@""e, n=12 .. (3.2.21)

as its iterated integrals.2 Observe that in (3.2.10) we can take a,(t)=1 and
o, ()= 1.

If f satisfies the hypotheses of Theorem 3.2, then we have
. No(=1yp
j'z elltf(t) dt ~ Z ( )

- 7 (n) b iAb ' ) ira o 5
2 T [f @) ™ — f™(a)e™], 4 (3.2.22)

Here the auxiliary asymptotic sequence is {A™"}, n=1,2, ....
We note that if f is piecewise differentiable on [a,b], then we can conclude
from a single integration by parts that

lim {*e™ f(t)dt=0. (3.2.23)
A=

This result is actually a weak version of the Riemann-Lebesgue lemma which
states that (3.2.23) holds whenever f is absolutely integrable on [a,b].
Let us now suppose that, in addition to the hypotheses of Theorem 3.2,

2The fixed limit of integration here is taken to be i%.
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f satisfies the conditions
lim f@@)=lim f®@)=0, n=01..,N-1 (3.2.29)
t—a+ t-b—

Then it immediately follows from (3.2.22) that, as A— o0, I{) = o(A™Y). We
shall exploit this result in the following section.

EXAMPLE 3.2.3. We now consider integrals of Laplace type which have
the form

IA)=[>e™ f(t)dt. (3.2.25)
Here the kernel is h = e ™' and the obvious choices for its iterated integrals are
K" =(-1e™", n=1,2,... (3.2.26)

In (3.2.10) we can take a, = e **"¥ and ¢, = ™, with 1 > p.
It follows from (3.2.12) and (3.2.26) that if f satisfies the hypotheses of
Theorem 3.2, then

b N e—).a
fe‘“f(t)dwz lmf‘"’(a), A= 0. (3.227)
n=0

Here the auxiliary asymptotic sequence is {_e'*“/l"}.

We note that in (3.2.27) the contribution from the upper eqdpoint t.=?) is
omitted. This is due to the fact that this contribution is asymptotically negligible
compared to each term in (3.2.27). Indeed, we have

lim 1"efe =0, n=12.... (3.2.28)

A=
We should point out, however, that when doing a physical problem, we often
want to retain asymptotically negligible terms because, although small, they
may have some meaningful physical interpretation.
If a=0 and b= co in (3.2.25), then I(4) is actually the Laplace transform
of f Now, for I{4) to exist for i sufficiently large, we must require that,
ast— oo,

f(H)=0(e*), o =const.

The asymptotic expansion of (3.2.25) in this case is obtained by setting a=0
in (3.2.27).

EXAMPLE 3.2.4. In subsequent chapters it will prove important to know
an asymptotic expansion of the I' function for complex argument. In Section
2.1, we found that T'(z) has simple poles at the points z= —n,n=0, 1, 2, ...,
and is otherwise analytic. We therefore seek an asymptotic expansion of I'(z),
as |z]— co, that remains uniformly valid in the sector |arg(z)| < =.

We start from Binet’s representation for log I given by
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logI'z)=(z—4%)log z— z+ 4 log 2z + I(2). (3.2.29)
Here Re(z) > 0 and
I(z)=§:f(t)e"‘ dt;  fO=[-1)"t—t1+4]7 1. (3.2.30)

The function f(t) has simple poles at t= +2nmi, n=1,2,..., and is
otherwise analytic. Moreover, we have
© (_ l)k+1 Bk t2k_2

fey=3

L @y [t <2, (3.2.31)

where the constants B, are the Bernoulli numbers. For reference we list the
first four Bernoulli numbers:

1 1 1 1
Bl=6a Bz=ﬁa B3=ﬁ9 B4=E

To utilize (3.2.29) for our stated purpose, we must first consider the analytic
continuation of the right-hand side into the region |arg(z)| < n. Certainly,
the continuations of the first three terms are explicit and need not be discussed
further. To analytically continue the integral I(z) we set z = le'®. As @ increases
or decreases from zero, we simultaneously rotate the contour of integration
through the angle — 6/2. The justification that this does not alter the value
of I is a simple problem in complex function theory and is left to the exercises.

We are thus led to consider

IAe®) =™ [° f(c e7 ") exp{ — 04 €¥?} do,  |0|<f<n. (3232

For each # in the indicated range, the integral converges uniformly and
absolutely. Furthermore in the complex o plane, we are justified rotating
the contour of integration in (3.2.32) onto the ray arg(s)= — 6/2. We do so
while maintaining arg(z) fixed at 6. If |#| ==/2, this process introduces

residues from the poles of f(ge™'*2) at the points e '*? = — sgn [0] 2nni.
However, due to the exponential in the integrand, such residue terms are
O(|exp{ — 2nnA @O DY ), n=12 ... (3.2.33)

Because these terms are all exponentially small, as 41— oo, and because we
anticipate that I is algebraic in 4 we write

I0e®) =™ | fze” Y exp{ — e} dr,  [0]<n  (3234)
to within an exponentially small error. This then is our desired analytic conti-

nuation of I.
We now use (3.2.27) with a=0 and N =« to obtain

I(Ae®) ~ e 18 io AT@rD (Z—)ﬂ f(re™ )

T

=0 (3.2.35)
& (mQ
-5 (A%)(_)f i, |0]<m.

n=0
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1t follows from (3.2.31) that

(_l)k Bk+l
(2k+2) Ck+1)°

fe+D() =0, k=0,1,2,....
Thus, if we reintroduce z = 1e’®, then we find
< (_l)kBk+l —2k—1
I~y ——a el :
@ ,;, 2k +2) 2k+1)

Upon combining (3.2.29) and (3.2.37) we obtain an asymptotic expansion of
log I'(z):

100 =
(3.2.36)

|z| » 0, |arg(z)| <. (3.2.37)

tog ['e)~ (z— Niogz —z+ Liog 2n 4 3 W Bre 1 780 55 3
og I'z) 2)18 2082+ L oy kD O
Finally, if we exponentiate (3.2.38),3 then we obtain the desired expansion of
I'(z) itself. Indeed, we have to leading order,

r'e) = /?(g) [1+0<15>], lz| >, largz)|<m  (3.239)

This last result is often referred to as Stirling’s formula. We shall rederive
this formula in subsequent chapters to illustrate the applications of other
asymptotic techniques.

There are two limits that are of particular interest. If we set z = x + iy with
x and y real, then these are x—> o with y=0 and |y|—co with x finite.
The behavior of T in the first limit is trivially obtained from (3.2.39).

re- /2 (f) 1 +o(§) } s (3:240)

From this result we, of course, obtain an approximation of n! for large n.
The behavior of I' in the second limit is somewhat more complicated.
After some calculation we find that

T(x + iy) = |y e~ @2 { 2 e szt (IX[)W} {1 +0<l) } |y| - .

€ g, (3.2.41)
Thus we see that I'(z) grows quite rapidly along the positive real axis, but
decays quite rapidly along vertical lines.

All of the expansions obtained in this section have been for 41— 0. We
might argue that it is unreasonable to devote so much effort to this single limit.
We recall, however, that the results of any asymptotic analysis are most inte-
resting from a mathematical point of view when one studies a function near
its points of nonanalyticity and, in particular, near its points of essential

3 See Exercise 3.10.



84 |/ CHAPTER 3 Integration by Parts

singularity. For h-transforms, A=0 and 1= oo are points at which we would
most expect I to have an essential singularity.

Furthermore, A-0+ and A— oo are the limits of greatest practical
interest. Indeed, suppose that 4 is real and positive. An asymptotic expansion
obtained for 41— o often yields accurate estimates when 24 is of moderate
size. Thus, in Section 1.1, we found that the expansion of I(x) = xe* E(x),
obtained for x— oo, yields three significant figure accuracy for all x = 10.
Analogous remarks can be made concerning the limit A—0+.

We could develop an integration by parts formula which, under suitable
conditions on h and f, would yield an asymptotic expansion of (3.2.1) as
A—0+. We prefer to delay an investigation of this limit until future chapters
where more general cases will be considered.

3.3. Identification and Isolation of Critical Points

When we examine the expansions obtained in Sections 3.1 and 3.2 via the
integration by parts procedure, we find that, in each case, they involve iterated
integrals and successive derivatives of the integrand functions evaluated at one
or both of the endpoints of integration. It will be recalled that, when discussing
integrals of the form

I = j"; H(x;A) dx,

we indicated that in some instances the major contributions to I(4), as 1 - 4,
are determined by the behavior of H in arbitrarily small neighborhoods of
certain points in [a,b]. These points we called critical points. We might
therefore conclude that whenever an infinite asymptotic expansion is generated
by the integration by parts procedure, the endpoints of integration are the
only critical points.

There is one difficulty, however. It is readily seen that the iterated integrals
of a function f, even when evaluated at a particular point, can actually involve
the global behavior of f. [See, for example, (3.1.27).] For this reason we alter
somewhat our definition of critical point. Indeed, we shall say that whenever
an asymptotic expansion of an integral involves the local behavior of at least
one of the integrand functions at a point,* then that point is critical for the
expansion.

As we have seen, the integration by parts technique does not, in general,
yield an infinite expansion; that is, the process must cease after a finite number
of steps. We claim here and shall later show that, in many cases, this is merely
a reflection of the simple way in which we have applied the method. In fact,
our methods so far enable us to derive contributions to the asymptotic
expansion of a given integral only from endpoints of integration. That other
points can be critical is seen from the following simple example.

4 Here we have in mind that H(x;J) is often a product of functions.
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EXAMPLE 3.3. Consider
I(A) = §2h(Ar) £ (1) dt (3.3.1)

as A—oo. Here h(t) satisfies the hypotheses of Theorem 3.2 and f(f) is
infinitely differentiable on [ab] except at t=c¢, a<c<b, where f"*V
has a jump discontinuity for n=> N.3

It follows from Theorem 3.2 that

N—l(_ l)n

s ln+l
n=

is an asymptotic expansion of I, as 41—, to N terms. Here the underlying
asymptotic sequence is {@,(4)/A"} with the functions ¢,(A) as defined in the
hypotheses of the theorem. We note that t =a and t=b are the only critical
points for the finite expansion (3.3.2).

Now suppose we write

1) = [ h(3) £(0) dt + [ h(ae) £(0) ar. (3.3.3)

By assumption, f is infinitely differentiable throughout each of the subintervals
[ac] and [c,b]. Upon applying Theorem 3.2 to both of the integrals in (3.3.3)
we obtain the infinite expansion

I(j_)~ [f(n)(b) h(—n—!)(,{b)_f(n)(a) h(—n—l)(ia)] (332)

10~ Y S0 oy b b - 1@ Ko Ga)]

n=0

-} _ln
+ 2 (W)l K20 {f P (eo) - f (e )}] (334)

n=N+1

Here
fe.) = lim £°0) (335)

We see that an infinite asymptotic expansion of (3.3.1) can be obtained only
so long as the contribution from the point t=c is included. Because this
contribution involves the local behavior of f at t=¢, we must conclude
that t=c is a critical point for the infinite expansion (3.3.4).

The above example suggests that any point in [a,b] at which f ceases to
be infinitely differentiable will generate a contribution to the asymptotic
expansion of (3.3.1)as A— oo, and hence should be considered critical. Although
this is indeed the case, we cannot determine by the methods discussed so far
contributions corresponding to singularities of f more severe than the one
treated in the example. In subsequent chapters more general techniques will
be developed that will enable us to obtain such contributions.

5 More precisely, we mean that lim f™ (1) exist for all n, but are not necessarily equal for
t—=ct
nz2N.
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In the previous section we considered integrals of the form

1) = * b $(1)) £(0) dt (3.3.6)

and observed that, if ¢ is strictly monotonic on {a,b], then (3.3.6) is immedia-
tely reduced to the form (3.3.1) by introducing t = ¢(f) as a new variable of
integration. Indeed, in this manner we obtain

1()) = {? h(i7) F(7) dr, (3.3.7)
AU
FO= 0| . (339)

Here o= ¢(a) and = ¢(b).

Because points in [a,b] at which ¢ or any of its derivatives is discontinuous
correspond to points at which F(z) is not infinitely differentiable, it is reason-
able to anticipate that such points will be critical for the asymptotic expansion
of (3.3.6) as 14— co. Furthermore, as we shall see in future chapters, points in
(ab) at which ¢’ vanishes are also critical. This is strongly suggested by the
fact that when the change of variable © = ¢(t) is formally introduced in (3.3.6)
points at which ¢’ vanishes correspond to (integrable) singularities of F(t).

As Example 3.3 indicates, contributions from interior critical points cannot
be obtained via the standard integration by parts procedure. Moreover, this
example and the proof of Theorem 3.2 suggest that the best way to proceed
when interior critical points are present is to first partition the original interval
of integration into subintervals so that, in each, only the endpoints are critical.
We would then have a finite sum of integrals to consider, none having interior
critical points.

The next problem of course would be to obtain asymptotic expansions for
each of the integrals that arise because of the partition. It may or may not be
possible to derive such expansions via integration by parts. Let us suppose for
the present that this can be done. Then our result for each integral would
consist of two series both involving functions evaluated at one or the other
endpoint of integration.

The separation of the contributions from the critical points allows us to
study them independently. This is very desirable in applied problems where a
specific physical phenomenon is associated with each critical point. It therefore
seems reasonable to seek a means of isolating the contributions from critical
points even in cases where the integration by parts technique is not applicable.
We shall see in later chapters that not only is this useful for the purpose of
physical interpretation, in addition an isolation of the critical points often
facilitates the asymptotic analysis in more complex situations.

As a result of the decomposition described above, we find that we need only
concern ourselves with isolating the endpoints of integration. We shall now
describe a mathematical device, due to Van der Corput, which results in such
an isolation. The essential step in the process is the introduction of certain
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appropriately constructed functions called neutralizers.

The simplest type of neutralizer is a function g = g(x,;,2,) which depends
on two parameters o, and a, with o, >a,, which belongs to C*(— o0, 0),
and which is such that either

0, x<ua,
qlx,0p,05) = (3.39)
1, x2a,,
or
1, x<ay,
q(x,000,05) = (3.3.10)
0, x2a,.

Neutralizer functions can be constructed in a variety of ways. However,
because we shall not make use of any of their properties other than those
already mentioned, it suffices to exhibit a single example. We first introduce

0, x <0,
p(x) = (3.3.11)
e Vx x>0,
which we note belongs to C®(— «,00). We then set
plx—a,) .
plx —ay) + plo; — X)
It is readily seen that § ¢ C®(— oo, ) and that (3.3.9) is satisfied with ¢ =7.
Also, we have that

Q(xaalaaZ) = (3312)

g(x,005,05) = 1 — q(x,0,,0,) (33.13)

belongs to C®(— o0 ,0) and (3.3.10) is satisfied with g = g. In Figure 3.3 we
depict the graphs of these two functions.

To illustrate the role played by neutralizers in the isolation process, let us
consider (3.3.1) as A— oo in the case where t=a and t=>b are the only
critical points. In particular, f ¢ C®(a,b). We first observe that we can

q(x,0,) q (x,ap,0)

a, «y

Figure 3.3
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rewrite (3.3.1) as
1() = 1(A) + I,(A), (3.3.14)

where
I,(A) = j: glto,0o;) f(t) h(At) dt (3.3.15)

and
I,(A)= _f: glto,,0,) f(8) h(At) dt. (3.3.16)

Here «, and «, are such that a <a; <a, <b.
We now write

f;l(taalaaz) = ﬁ(t’al’aZ) f(t),
(3.3.17)

fl.)(tsal’a2) = q(tﬂlsaz) f(t)

Both f, and f, belong to C®(a,b) so that no new critical points have been
introduced. Moreover, f, =0 in [a,a,] and f,=0 in [«,,b].5 Hence, we
can conclude that ¢ = a is the only critical point for I, while ¢t = b is the only
critical point for I,. In other words, we have succeeded in isolating the two
critical points. The asymptotic expansion of I, yields the contribution to the
asymptotic expansion of I from t = a, while the asymptotic expansion of I,
yields the contribution to the asymptotic expansion of I from ¢ = b.
In the special case where f ¢ C*[a,b] we have thatforn=0,1, 2, ...

lim f® ()= lm f® (),  Lm f®(5)=0,

=a+ t—a+ (=b—
lim f;,") =0, lim f;,") (¢) = lim f(,,) @). (3.3.18)
imat b~ (—b—

Moreover, if the integrands of I, and I, satisfy the hypotheses of Theorem 3.2
perhaps with a different sequence {¢,(4)} for each of them, then we can apply
that theorem to these integrals to obtain

© _1n+1 h(_"_l)/l
Ia('l)"' Z ( ) ln+1 ( a) f(n)(a)9
n=0
(3.3.19)
@ — 1l
a3 CLEE e, i

We note that the neutralizers § and § do not enter the asymptotic expansions
(3.3.19) in any way. Indeed their roles in the derivations of these expansions
are qualitative rather than quantitative in nature. This is the reason we stated

SIn our future discussions we will have occasion to say that f, and f, represent the function f
neutralized about t = a and ¢ = b, respectively.
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above that we need only be concerned with the existence of neutralizer functions
and not with detailed descriptions of their behavior. This will always be the
case even when considering critical points of a more complex nature than
those already discussed. Again we emphasize that the major advantage of the
neutralization process lies in the fact that it enables us to study the contributions
to the asymptotic expansion of an integral from the various critical points
separately and independently and, in particular, to apply for each critical point,
whatever technique is appropriate for the determination of the corresponding
contribution.

At times it is practical to obtain only an asymptotic estimate for one of the
integrals, say I,. In a case where I, is asymptotically negligible compared to
I(A), such as for the integral I(1) given by (3.2.25), this would indeed be the
case. It is our general experience that neutralization is most useful in dealing
with integrals in which h(t) is an oscillatory function such as in I(1) defined
by (3.2.20).

There is one final point that we wish to discuss. For any given integral,
we do not, in general, know a priori that a particular point is critical for the
asymptotic expansion of interest. Indeed, we can only ascertain which points
are critical after the expansion has been derived. What we do, however, is
determine a priori a set of possible critical points, that is, the set of points which
are likely to yield contributions to the asymptotic expansion. We then proceed
to apply the neutralization process based on the assumption that these are,
in fact, the only critical points. Finally, asymptotic expansions are sought for
each of the neutralized integrals. The remainder of this book will be essentially
devoted to the identification of the critical points for certain classes of integrals
and the development of techniques for the determination of the corresponding
asymptotic contributions.

3.4. An Extension of the Integration by Parts Procedure

When considering the Fourier-type integral
1) = e™ f(r) dt (3.4.1)

as A— oo, we found that the derivation of the asymptotic expansion of I(4)
via integration by parts relied heavily on the differentiability of the function
f(t). Suppose, however, that

fO=@t—a ' b-tyf ' F@), (34.2)

with F(t) e C*[a,b] and a, B not integers. Then the best we can achieve by
our straightforward integration by parts process is the estimate

1(2)=0(A"M), (3.4.3)

where N is the largest integer less than or equal to min(x,f). In particular,
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if <1 and <1, then we can only conclude that I{1)=0(1) as A— oo,
whereas in fact I(1) = o(1) in this limit.

It is possible to extend the standard integration by parts procedure and to
obtain thereby an infinite asymptotic expansion of (3.4.1) with f(¢) of the
form (3.4.2). This extension, however, has somewhat limited applicability and
indeed we shall consider here Fourier-type integrals only. In the next chapter
we shall present a more extensive technique. We wish to point out that the
present method is due to Erdélyi.

We begin by isolating the contributions from the endpoints ¢t =a, t=b via
the neutralization process introduced in the preceding section. In this manner
we obtain

1(2) = 1,(A) + I,(4), (3.4.4)
where
I,(A)= j’; (t—a)* L™ F (1) dt (3.4.5)
and
I = j: (b—tf L™ Fy(t) dr. (3.4.6)

Here F,(t)¢ C*[a,b] vanishes infinitely smoothly as r—b - and identically
equals (b —£)*~! F(t) in some positive half-neighborhood of ¢ = a. Similarly,
F,(t) e C®[a,b] vanishes infinitely smoothly as ¢ —a+ and identically equals
(t — @)~ ! F(t) in some negative half-neighborhood of t = b.”
Let us first consider I,(1). We define

h(t:A) = (t — a)*~ ! e, (34.7)
For reasons that will become clear below we select
RomD(EesA) = (=1 i de, i d, jj:*"‘” dty (to — a)*~ 1 e,

n=0,1,2, ..., (3.4.8)

as the iterated integrals of h to be used in our integration by parts analysis.
Here the paths of integration are the rays

by =tpey + 10y 6,20, m=0,1,...,n, L,yr=t (349
Upon interchanging the order of integration in (3.4.8) we obtain

(_i)n+1 0

oy j (ie+t—a) to"eM+iMgs n=012...,
*oCe (3.4.10)

which is seen to converge absolutely due to the exponential decay of the inte-
grand as ¢ — oo, If we set t =a in (3.4.10), then we find (see Exercises 3.18,19)

B D(852) =

7 Note that without loss of generality we can assume 0 < a < 1 and 0 < B < 1 because the smooth-
ness of F is unaffected by factors of the form (¢t — a)’ (b — ¢y with i and j positive integers.
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(- )"+ ! I'in+ “) orii2) (n+ @ +ira,
n! ant

KD (a2 = (3.4.11)

Now, repeated integration by parts in (3.4.5) yields the formal result

@

L~ 3 g ([b—al "' Fa@) e

(34.12)

Note that no contributions from the upper endpoint =05 arise in (3.4.12)
due to the fact that F™(b) =0 for n=0, 1,2, ... . It is readily seen (see Exercise
3.18) that

[ (37} | R () Ly et (3.4.13)

and hence the asymptotic nature of the result follows from Theorem 3.1.
The integral I,(4) can be treated in a completely analogous manner. In this
case we have

h(t;)=(b —tf~t ™ (34.14)

and®

K D(e:0) = J‘”"”(b )P (r— 1 e dr. (34.15)

(_ 1)u+1
n'

In particular,

(=1)T(n+p) o(mI2) (=P +irb

R D(bs0) = T

(3.4.16)

so that

0

Ib(l) Z db" ([b a]“_1 F(b)) ::'(';':; f) e(ﬂi/Z) (n—B)+ikb (3417)

Finally, the asymptotic expansion of I is obtained by combining (3.4.12)
and (3.4.17).
The above procedure is also applicable to integrals of the form

LW=f@—a ' MY F)dt, p>0, (3.4.18)

with F,(f) as above. The crucial difference here is the form of the exponent.
We shall find that integrals of the form (3.4.18) are fundamental to the analysis
of Fourier integrals with general nonmonotonic exponents. Indeed, we shall
reconsider them in Chapter 6 in connection with our discussion of the method
of stationary phase.

Suppose now we consider (3.4.18) and define

h(t;2) =(t —a)* ™t eM=a", (3.4.19)

8 By setting © — t = ig, we would obtain exactly the form (3.4.10).
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We take as its iterated integrals

(- 1)n+ 1 St+we"’/2“
t

' (t—ap t(r—1r M9 dr,
n!

B D50 =

(3.4.20)
To evaluate A"~ 1(a;1), we introduce a new variable of integration ¢ defined
by

(t—a)y=A"1r gl gim/2, (3.4.21)

We then find that

n+o
(_1)n+l r( U ) )
h""_”(a;l)= em(n+u)/2u‘

nl o Anrom (3.4.22)
The integration by parts formula (3.1.5) then yields
] F( n+ a)
LA - ’go ;lm % ([b — a)?~! F(a)) _;j;hf:T einntoz - (3.4.23)

Again the asymptotic nature of the result can be established via Theorem 3.1.
We leave the details, however, to the exercises.

Also left to the exercises is establishing the validity of the asymptotic expan-
sion

L= -0 * " Fyn)dt (3.4.29)
Iﬂ(n+ﬁ)
eV a1 K/ intn+pyon
W (b= al*™" FO) = € '

We note from (3.4.23) and (3.4.24) that as the order of vanishing of the exponent
in the corresponding integral increases, the order of vanishing of the integral,
as A — oo, increases.

In summary, an extension of the standard method of integration by parts
has been developed at least for integrals of Fourier type. This extension allows
for the amplitude function f(¢) in (3.4.1) to have singularities at the endpoints
of integration and involves the incorporation of these singularities in the
definition of the kernel function h.

3.5. Exercises

3.1. (a) For the function I(x) defined by (1.8.3) show that I(x) = 0(1), x » o
but I(x)+# o(1) as x— co.

(b) For &(x,N) defined by (1.1.10), show that &(x,N)= 0(x~™™) but
E(x,N)# o(x~ V), x— .
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(c) Identify the functions f, h, K*""~" of Theorem 3.1 for this integral and
verify that the conditions of the theorem are satisfied.

3.2. Suppose that ‘""" Y (¢;4) satisfies the conditions of Theorem 3.1 and,
in addition, suppose that A"~ Y(a;4) # o(¢d,(4)). Let
fO)= —e 79 q(t,a,,2,). (3.5.1)

Here g is the neutralizer defined by (3.3.13) with a<a; <a, <b. Then
show that

1)~ h"%a3d) (3.52)

n=0

and hence, for this choice of f(¢), (3.1.15) is true.

3.3. (a) In Example 3.1.1, suppose that
[fP@O|<M, n=0,...,N. (3.5.3)
Then show that

-y L gy

n=0 .
I @a+j+1)

()
AN+ ar! “\IF
<M\-7 51 P . (3.5.4)
j90(1+;+1) =155
(b) Show that
Atn At+m
“T = o(bT), Ao for b>a, (35.5)

and any fixed m, n, j, and k. Thus verify the claim that ¢,(4) is given by
(3.1.18) for this example.

3.4. Let
h(t;A) = M —IZ =1 +i¢D)ar
(t;h)=e coslﬁt_i+e SN (3.5.6)
(a) Show that
—p— 1 -1 n+1 =1 +i D
L ”(t;l)=§z [1.}.;\/2] ¢ T : 3.5.7)

(b) Define 6 by tan = ./2, 0<0<mn/2, and rewrite h'""" ") as
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R 0) = % 2 [%]"H e—(x:iﬁuﬁ i(n+1)0 (3.5.8)
+

and verify (3.1.21).
(c) Verify (3.1.22); that is, show that

e Ht—a)—ia

(—n—1)(¢.
|h (l,l)'S (\/51),,.;.17

A>p,  n=0,1,2 ... (359

3.5. (a) With """V (¢;4) given by (3.1.27), show that [h"" "D (t;2)] is a
monotonically decreasing function of ¢ and hence that

JREP= (8, 2)) < | D(05A)|. (3.5.10)
(b) Take B =1 and use the estimates

e—zx‘ <1- 2 < e—!’

IA
IA
O

, 0 (3.5.11)

to show that
HEPIY0;4) = O(A~ ¢+ 1r2), hEP=1(0,4) # (A~ D7), (3.5.12)

Note, here we must verify that
Ko UE ) =0(47h (3.5.13)
for all k.

3.6. Derive an asymptotic expansion of

IH=f 1= f@yd, a>1 (3.5.14)
3.7. Consider
_ (' S0

with fe C® [0,1]. Show that a *‘useful” asymptotic expansion of I as A — oo
cannot be obtained via the integration by parts procedure.

3.8. Each of the integrals below is of the form (3.2.16). Obtain three terms of
the asymptotic expansion in each case, as A — co, by multiplying and dividing
by ¢’ and integrating by parts.

~2 eilt’
(@) .‘, 1+t

(b) {3 e >t cos ¢ dr.

© 1% Ai(Ae) Ai(—1) dr.

dt.
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3.9. Justify the rotation of contour used to deduce (3.2.32). In particular,
show that for

J=§c f®)e *dt (3.5.16)
with C an arc of radius R on which arg(f) ranges from 0 to —#6/2,
lim |J|=0.

R— 0

3.10. Justify the exponentiation of the result (3.2.38) to obtain (3.2.39) and
show that we can obtain in this manner as many terms as desired in the asymp-
totic expansion of I'(z).

3.11. The complementary error function is defined by

2 ® ‘ul
erfe(s) = j e du, (3.5.17)
(a) From this definition, derive the representation
e a=z 35.18
erfc(z)=\/%glf L, =z° (3.5.18)

(b) Use the method of Theorem 3.2 (or Example 3.2.2) to derive the asymp-
totic expansion

Figure 3.5
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( 1)n+1
”"ZO ooy J@-1, 2w (35.19)

(c) Show that for 1 complex, we may rotate the contour in (3.5.18) in a
manner similar to that used in Example 3.2.4 to obtain in general

erfc(z) ~

Jie—*-i¢ e e
“erfc(z) = 7 S T do, =argA=2argz; 16| < =.

(3.5.20)
Thus, conclude that (3.5.19) is valid for jarg(z)| < m/2.

(d) Show that to consider erfc(z) in the wider sector —3n/4 < arg(z) < —n/2,
we need only replace the contour of integration in {3.5.18) by the contour of
Figure 3.5. [A similar result holds for the sector n/2 < arg(z) <3n/4.]

(e) Show that the integral over the “keyhole contour’ in Figure 3.5 is
asymptotically zero with respect to the asymptotic sequence {e™%'/z2**1},
n/2 < arg(z) < 3n/4. Hence, conclude that (3.5.19) is valid for |arg(z)| < 3n/4.

(f) What happens when arg(z) = 3n/4?

3.12. The digamma function y(z) = I"'(z)/I'(z) has the integral representation

Y(z)=log z — %E —J.O [(¢ = 1)~ 1 —¢~t +3] exp[ —tz] dr.
(3.5.21)

(a) Use the method of Example 3.2.3 to obtain an asymptotic expansion
of Y(z) as |z|— o, |arg z| < 7.

(b) Justify integrating this result term-by-term to obtain an asymptotic
expansion of log I'(z), valid in the same open sector, modulo a constant of
integration.

(c) Use the identity I'(z) I(1 —z)=n csc nz, for arg z=n/2 and |z| - oo,
to find the constant of integration.

3.13. Let
IA)=f et —)* L f(dt, s>0. (3.5.22)
(a) Set
h(g; )=~ (1 -t ! (3.5.23)
and introduce
(_1)n+l 1
hr=D(t;2) = py f rli(r— (1 —t¥'dr, n=0,1,... (3.524)
t

(b) Show that
[R (0] < [ P(034)] (3.5.25)
(c) Use the result (see the Appendix)
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(=1 Ts+n )

K R(034) = n! I's+n+4)

(3.5.26)

and the asymptotic expansion of the T' function to show that {A'~"~V(0;4)}
forms an asymptotic sequence.

(d) Derive the asymptotic expansion of I(4) for f(¢) a C* function.
3.14. Identify the set of possible critical points for each of the following integrals:

a) f, log(l + t) exp{iA sin® t} dt.

b) {5 Ai(—4 cos? 1) |1 —¢*| 712 dt.

(
(c) _\.:o cos [A(t;- - t)]dt.

3.15. The Bessel function of order v has the integral representation

FRME (V8
J(A) = H -/ v (3.5.27)
ﬁr(v+§>
where
16w =[" M1 —2ytdt,  Re()> -1 (3.5.28)

(a) Suppose that the neutralizers §(¢) and §(t) introduced in Section 3.3
are chosen so that g(—t)=g(t). Then show that the neutralized integrals

I,y =" LqeM (- )Y "tdt, Re(v)> —4, (3.5.29)
L =[" L ger(1- 2~ tdr,  Re(v)> —4, (3.5.30)

have the property that I_(1;v)=1,(—4;v).
(b) Following the method of Section 3.4 for 1_,(4;v) introduce the iterated
kernels

( 1)"+‘ i v—1 n id(t+1)
KD (e0) = [ Grprt@mtrethae, =012,
¢ (3.5.31)
and derive the asymptotic expansion
I_(Ay)= —exp { it +Z i +5”2-“} (3.5.32)

N-1

(iIYTO+HTE+3+n) —v-n-hyl
mdlV ALV ALY I“(v+%—n)+0a )

(c) Derive a similar expansion for I,(4;v) and thus obtain the expansion
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/2 —1T(v+4+2n
Jv(l) = /{ lCOS l)» [ ZO (271 (2/)271 F(V'Zi' 1 _ 271)

+0(A»2N)]—sin{},—%_¥}

N-1 (~1)"I"(v+;+2n) . ]
* [m 2n + 1)1 22y 1 Ii(v MG 2w ‘)], (3.5.33)

3.16. The Bessel function of the third kind (Hankel function) and order zero
has the integral representation

HBU(t):(%)mM ‘[ﬂe—u u_l/z,,(l +£,>—1/2du,

n 0 2t

<ar t<3
2 g 27

with the second square root defined to be positive when arg t = n/2. Consider
the integral

(3.5.34)

I3 = f; h(2e) £ () dt (3.5.35)
with h(t) = H{ (¢) and define the iterated integrals of h(z) by

P D (1) = = THS (t— 18" HY (1) dr, n=0,1,... (3.5.36)

(a) From the representation (3.5.34) show that
[HE (1)) =< \/%, emO,  O=<argr=gp, (3.5.37)
and thus conclude that the integrals (3.5.36) converge absolutely and that

KU ()5 0ast— oo,

(b) Suppose that f(¢) is a C* function on [0,c0) , identically zero for t > ¢,
Then show that

1)~ }; 71— L (o) h-n 1 (0). (3.5.38)
(c) From (3.5.36), show that
n+1 ~n— =_2£l_ ” n
(— )"+ pEn=D () nn!](; s" Ky (5) ds (3.5.39)

with K, (s) the modified Bessel function, related to H{" by K, (s) = (mi/2)
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H(V (se™?). Then use the Appendix to show that

I (21) n+ l) 3.540
(— Lyt R ) == (-—2 : (3.5.40)
(d) Finally conclude that
o b Qi) . fnt1 3541
10~ 3 e /O O T 5= (3.541)
{e) If Ry(4) is the remainder after N terms of the sum, show that
LJET o, (3.5.42)
R (/1) = A.N 1 o \/|_|‘
3.17. Repeat Exercise 3.6 for the kernels
@ HY @)=HG ).
(b) HY ().
3.18. In (3.4.10), show that
IRC D (A= S_t;aT)“_“ fmf e *do (3.5.43)
n! o

and perform the indicated integration to obtain (3.4.13).

319. Consider the integral
—_ 1)n+l s-l+cne"“" 1 ,
o =0 —apT (-t
K¢ () ="—7—) (t—af "t~
x exp{il (r — a)*} dr, O0<a<l, (354
where the path of integration is taken to be the ray t —t = g ¢™?¥,0 real.
(a) Show that
s ATt
Re {lj skt ds}>0
H)r—a
for 7 on the path of integration. Then use this result to show that
lexp(id(t — @)} <lexplilz — )}, A>0, t=a, p=l (3.5.45)

(b) Show that

—n— . (t __a)ﬂ-lj‘w n ,~Ao* 3.5.46
]h( b (t,l)ls 7— 0 g e do ( )
and evaluate the integral to obtain
. t—a)y! n+1
|RE™=D (01 = 2 nl AT T ) (3.5.47)
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(c) Use_ the estimate above to prove that (3.4.23) is the asymptotic expansion
of 1,(2) with respect to the auxiliary sequence (At for0<as1lu=1.
(d) Why need we only consider this restricted range on a?

3.20. The purpose of this exercise is to verify (3.4.24).
(a) Let
SO =@b-1» (3.5.48)
yvith the branch cut of (¢} lying on the real axis from b to + . Show that
ifarg(b—t)=«, thenarg t - n + o as |t| -+ o0 and thus verify that
h(—n—l) (t /1 _( "" 1)".”
y )_ n!
©expli(n +n/2p)]
xj, (b=t (g -y explidb — 1)} du

. . (3.5.49)
serve as iterated integrals of the kernel
h(t;2) = (b — )P~ ! exp{iA(b — t)*}. (3.5.50)
(b) Show that
I,(n + ﬂ)
—n— 1 ” in(n
Kb A) = ol A et (3.5.51)

(c) Verify (3.4.24).
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h-Transforms with

Kernels of Monotonic
Argument

4.1. Laplace Transforms and Watson’s Lemma

Throughout Chapter 3, asymptotic expansions were derived exclusively via
the integration by parts procedure. We saw there, however, that the procedure is
somewhat limited in its application and, in particular, required certain smooth-
ness properties of the integrand functions. In Section 3.2, for example, under
the assumption that f(t) is infinitely differentiable at the origin, we obtained
an asymptotic expansion of its Laplace transform

IQ)=f, e ™ f(t)dt ' 4.1.1)

as A— oo. Indeed by Example 3.2.3, this expansion is given by
@ (n) 0
10~ ¥ L9,

Suppose, however, that f(t) is not infinitely differentiable at the origin. Then
the straightforward integration by parts procedure breaks down and (3.2.27)
is not valid. There are several ways we might attempt to handle the more general
situation. This entire chapter shall be devoted to the development of a systematic
asymptotic theory for the specific integral (4.1.1) and further for a wide class
of h-transforms in cases where the smoothness conditions required for the
integration by parts method are not satisfied. The present section will serve
as a partial motivation for this development.
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Here we shall only consider integrals of the form (4.1.1). Moreover, we shall
restrict our considerations to the behavior of I in the two limits A— oo and
1—0 + because, as we have remarked in Section 3.2, these limits are the most
interesting from the point of view of asymptotic analysis. For the present, we
shall focus our attention on the case A — . We shall assume that f(¢) is locally
absolutely integrable! on (0, ») and that, as = =,

S(t)=0(e™) (4.1.2)

for some real number a.
In order to study I(A) for large A, let us further suppose that, as
t—-0+,

S~ zo Cp 1. (4.1.3)

Here Re(a,,) increases monotonically to + oo as m— oo [a condition we shall
henceforth abbreviate by Re(a,) 1 o] and, of course, Re(ap) > — 1. If the
exponents a,, are not all positive integers, then f(t) is not infinitely differentiable
as t—0+. In that event we cannot expect to obtain an infinite asymptotic
expansion by the integration by parts procedure. An infinite expansion can
be obtained, however, by a different process whose validity is established in
the following.

WATSON’S LEMMA. In (4.1.1) let f(¢) be a locally integrable function on
(0, oc) bounded for finite ¢ and let (4.1.2) and (4.1.3) hold. Then, as 41— o,

1() ~ }jo c,,,jo e di= Y c,.,_g(a_,htl) (4.1.4)

Remarks. Under the stated hypotheses, this lemma says that an infinite
asymptotic expansion of I is obtained by replacing f(t) in (4.1.1) by the expan-
sion (4.1.3) and then integrating term-by-term. Thus, we see from (4.1.4) that
the asymptotic expansion of f(t), as t — 0 +, is directly related to the asymptotic
expansion of its Laplace transform, as 1 — co. We shall find in the sections to
follow that this type of relationship holds, in some sense, for a class of
h-transforms.

PROOF OF WATSON’S LEMMA. Let R be a fixed positive number and set
1) =[ReMf(eyde+ [ e ™f(t)dt
=I1,() + 1,(). (4.1.5)
It follows from (4.1.2) and the boundedness of f that there exists a positive

! By “locally integrable” on (a,b) we mean that the function in question is absolutely integrable
on all closed finite subintervals of (a,b).
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constant k such that
|f] < ke

for all t = R. Hence,

lfz(i)|Sj': e™™|f(t)|dt < k_ —a-ar

i-a°
=oe™™), 1o . 4.1.6)
Now for each positive integer N we set
N
f@)= Zo Cm ™ + pA(t) 4.1.7)

and observe that (4.1.3) implies

o) =0 ), 50+, 4.1.8)
If we write
N
L(})= m; Cnfhtm e Mdt+ R pye ™ dt 4.1.9)

and note that
jﬁ e TMdr= (Pt e Mdt— [ 1 e7Mdt

I +a,
=%+0(e'“‘), 1o, (4.1.10)

then it follows from (4.1.5), (4.1.6), and (4.1.9) that
N
1) = ZO Cn T(@y + 1) 270 4 [R o) e™™ dr +0fe ™). (4.1.11)

To‘ complete the proof we observe that because (4.1.8) holds and because
px(t) is bounded in (0, R), there exists a constant ky such that | py| < kyt R+
for all ¢ in [0,R]. Hence,

1R pafe) e de| < kyJ 2t o= gr = Kn 1}&35?{113) D @i

It now follows from (4.1.11) and (4.1.12) that
1) = mio Cn D(@n+ 1) A0 po(mRle* )y ) L0, (4.1.13)
Because (4.1.13) holds for any nonnegative integer N, the lemma is proved.
The above result can be generalized in several ways. For example, we can

show that it holds for A complex. Indeed, (4.1.4) is valid as |4| - oo in the sector
larg 4| < n/2. Also, f(t) can be allowed to have an asymptotic expansion, as

/
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+— 0+ , with respect to a more general asymptotic sequence than that assumed
in (4.1.3). Finally, as we have previously remarked, analogous results can be
obtained for other integral transforms. These generalizations will be considered
in the remaining sections of this chapter.

Now let us turn to the study of I(4) as 1 — 0 + . We might expect, in analogy
with the preceding results, that the asymptotic expansion of I, as A—0+, is
determined by the asymptotic expansion of f; as t—» + co. That this is only
partially true will be shown in subsequent sections. For the present, let us
try to obtain an expansion by the formal process of expanding the kernel
¢~ ™ in a Taylor series about the origin and then integrating term-by-term.
This yields the rather dubious result

o

S (=4 L B i@ d, A0, (4.1.14)

W=~ )

n=0

Here we have used the symbol ~ rather than ~ to indicate that, in general,
(4.1.14) is not a rigorous asymptotic statement. In fact, in most cases 4.1.14)
makes no sense at all. This is so because the coefficients involve integer moments
of f(t), none of which need exist, because f(t) need not be integrable on (0,c0).
Actually, we can only conclude here that (4.1.14) is a correct asymptotic result
if £(£) = o(t™®), as t — o, for all R.

Despite the fact that the utility of (4.1.14) is rather limited, it does suggest
that the integer moments of f will play a role in the asymptotic analysis of I()
as A— 0 +. We recall that the expansion of I for large 4 involves the quantities

T(ay+1)= {7 e ¢ dt. 4.1.15)

If a,, is a nonnegative integer, then clearly I'(a,, + 1) is a moment of the function
e~'. Even if a,, is not a nonnegative integer it is convenient to view I'(a,, + 1)
as the a,th moment of e~*. This leads us to conjecture that when studying the
asymptotic behavior of the general h-transform,

1) = 2 Wae) f (1) dt (4.1.16)

as either A—» 0+ or 1 — + oo, moments of the integrand functions h and f will
come into play.

Any moment of a function can be viewed as the Mellin transform of that
function evaluated at a particular point. Indeed, as we have indicated in Section
3.2, the Mellin transform of f(¢) is given by

M[fiz]=f5 e~ f(®) dt 4.1.17)

which can be directly interpreted as the (z — 1)st moment of f. Thus, we can
restate the above conjecture and anticipate that the Mellin transforms of f
and h will play important roles in the asymptotic analyses of the h-transform
(4.1.16) in the limits A— cc and A >0 +.
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4.2. Results on Mellin Transforms

Because the following sections rely heavily on the theory of Mellin transforms,
we shall present here a summary of the needed results. As we shall see, the
Mellin transform is intimately related to the Laplace transform whose basic
theory is assumed familiar to the reader. Because of this, much of the present
section will consist of results stated without proof.

It is well known that if g(7) is such that

§o l9&)] dé < o (4.2.1)
for all finite positive 7, and
g(r)=0(e""), (4.22)
as 1 — oo for some real constant o*, then the one-sided Laplace transform
L* [g;z] =g ™™ glr) dt (4.23)

converges absolutely and is holomorphic in the right half-plane Re(z) > o*.
Similarly, if

folg(=08)]d¢ < oo 4.24)
for all finite positive 7 and
g(7) =0(e™ ™), 4.2.5)
as t— — oo for some real constant §*, then the one-sided Laplace transform
L [g:z]=(°, e =glt)di=], e*g(—1)de (4.2.6)

converges absolutely and is holomorphic in the left half-plane Re(z) < *.
Let us now define

a = inf {oa*|g(t) =0(e* "), as 1 — + 0},

B =sup {B*|g(r) =0(e?""), as 1 > — 0} 4.2.7)
We observe that, if 8 > «, then the two-sided (bilateral) Laplace transform
L9z} =", €= g(x) de (4.28)

converges absolutely and is holomorphic in thé vertical strip a < Re(z) < .
However, if a > f, then #[g;z] does not exist for any z.

We first assume a < f§ and set T = — log t, g( — log t) =f(¢) in (4.2.8). This
yields

gzl =[ 7' fdt
=M[f;z] 4.29)

Thus we see that, when it exists, the bilateral Laplace transform of g(t) is the
Mellin transform of f(t)= g( —log ¢). It then follows from (4.2.7) that the Mellin
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transform of a function f(t) converges absolutely and is holomorphic in the
strip « < Re(z) < § where

a=inf{a*| f =0(t™), ast>0+},
B =sup{B*|f =0(t"*),as t—> + o0}. (4.2.10)

From (4.2.10) we can conclude that when the Mellin transform of a function f
converges absolutely, it does so in a vertical strip whose boundaries are deter-
mined by the asymptotic behavior of f in the limits t—+0+ and t— + 0.

The inversion formula for Mellin transforms follows directly from that for
the two-sided Laplace transform. Indeed, if #[g;z] is defined by (4.2.8), then
we have

c+ioo
i.j - e P[gz] dz 4.2.11)

2mi

g(r)=

wherever g(t) is continuous. Here o < ¢ < f with « and § defined by (4.2.7).
Upon setting T = — log ¢ in (4.2.11), we find from (4.2.9) that

c+iw

1(0) = g(— log z):zim.g ML S 2] dz 4.2.12)
Equation (4.2.12) is the desired inversion formula valid at all points ¢t =0
where f(¢) is continuous.

N

N\ 7

xX=a x=f
Half-plane constraint on convergence
S/ / of Mif;z1,(4.2.9), due to nature
of fnear 0 +(4.2.10)

Half-plane constraint on convergence

\\\ of M[f,z] (4.2.9), due to nature
of f near ° (4.2.10)
>OO<Stﬁp of analyticity of M[f; z]

Figure 4.2.
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In our future work, we shall need to estimate the behavior of M[ f;z] =
M[ f;x +iy], as y— £ co with x fixed; that is, along vertical lines. It can be
shown that for any x, witha < x < f8,

Illim |M[f;x+iy]l=0.2 (4.2.13)
yl— o

In other words, M[ f;z] goes to zero as z goes to infinity along any vertical
line within the strip of absolute convergence. As we shall see in later sections,
when additional assumptions are made concerning the behavior of f, more
specific statements concerning the rate of decay can be made.

A result whose importance cannot be overemphasized is an identity known
as the Parseval formula for Mellin transforms. We shall first obtain this identity
formally and shall then state conditions sufficient for its validity. Thus, suppose
that the functions f(¢) and h(f) are such that

I= j;" f(©) h(t) dt 4.2.14)

exists. Suppose further that M[f ;1 —z] and M[h;z]are holomorphic each
in some vertical strip. We shall assume that these vertical strips overlap which
will be the case whenever I is absolutely convergent. If Re(z) = ¢ lies in the
overlapping strip, then we have
c+ioo
%Lw M[hiz] M[f ;31 — 2] dz
1 c+ico ©

=T§ M[f;x—z]j Wty = de dz. 4.2.15)

T Je—iw 0
Let us suppose that we can interchange the order of integration in (4.2.15)
to obtain

c+im
o L.-w MihiZ) M[f ;1 — 2] dz
1 o c+i
=5 L h(e) dt L_

which, upon using the inversion formula (4.2.12), yields the desired Parseval
formula

13

f £ bty dt = jj: M[h;z] M[f 31~ 2] dz. 4.2.17)

In order to validate (4.2.17) we must justify the above interchange in the order
of integration. There are several sets of conditions that are sufficient for this
purpose, but we will state only two.

M If M[fil—c—iy] is in L(—o <y<oo) while £7! h(f) is in

This actually follows from the Riemann-Lebesgue lemma stated on page 80.

,w M[fil-z]¢# Ydz (4216)
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L(0 <t < 0), then the interchange is justified by absolute convergence.
(2) Suppose that, as a — oo,

Fa)=[},f0r " d, A (za)=[], W di

tend to M[f;z], M[h;z] at x=1—¢, x = ¢, respectively, for all y and
in such a way that e "' (z,a), e~ ! #(z,a) are for some positive d bounded
independently of a. Let

1-¢

é b
ZFWaL L h(t) f(¢) dt
be bounded for all a, b, £ and as a— 0, b— «© converge to a continuous
limit in a neighborhood of £ = 1. Then

© ¢+ io
1= j f(2) h(¢) dt =$ lim j M[f;1 —z] M[h;z] dz (4.2.18)
0 020 Je—ig
whenever the right-hand side exists. We note that I need not be absolutely
convergent here.

All of the results in this section concern properties of the Mellin transform
M( f ;z] only within its strip of analyticity. In the next section we shall investigate
the possibility of analytically continuing the transform outside of this strip.
Indeed we shall obtain conditions on f that are sufficient to not only guarantee
the existence of such a continuation but also to allow for the locating and
classifying of any singularities that might arise. The results obtained in the
following section are extremely important to the development of our asymptotic
technique. To motivate some of these results, we wish to consider here three
particular functions and their Mellin transforms. Each of these functions serves
as a prototype for a class of functions with which we shall be concerned.
The three functions are e ™', €, and (1 + )~ !. We note that, as t— + 0, e™*
decays exponentially, ¢* oscillates, and (1 4 t)~! decays algebraically and
monotonically.

From the Appendix we have that

M[e™";z] =T(2), 4.2.19)
M[e';z] =e"2 I(2), (4.2.20)
M{(1+07t;z]= sin"nz. (4.2.21)

Moreover, we find that M[e™*;z] is analytic in the right half-plane Re(z) >0
while M[e®;z] and M[(1 + ¢)~* ;z] are both analytic in the strip 0 < Re(z) < 1.
In this strip M[e";z] exists only as a conditionally convergent integral.

The main point of interest here is that both M[e";z] and M[(1 +¢t)~!;z]
can be analytically continued into the right half-plane Re(z) = 1. Indeed, these
continuations can be accomplished via formulas (4.2.20) and (4.2.21) directly.
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We note that the analytic continuation of M[e”;z] is holomorphic in Re(z) > 1
while that of M[(1+1¢~';z] is meromorphic in this region. In fact,
M[ (1 +t)~';z] has simple poles at the positive integers.

As we shall show in Section 4.3 the above continuation properties carry
over to the Mellin transforms of the functions in the corresponding classes. In
particular we shall show that

(1) If f decays exponentially as t — + oo, then M[ f;z] is holomorphic in
a right half-plane.

(2) Iffis oscillatory as t — + oo, then M[ f ;z] can be analytically continued
into a right half-plane as a holomorphic function.

(3) If f decays algebraically and monotonically as t — + oo, then M[ f ;z]
can be analytically continued into a right half-plane as a meromorphic
function.

4.3. Analytic Continuation of Mellin Transforms

Let us suppose that M[f;z], the Mellin transform of the function f, is
absolutely convergent and analytic in the vertical strip a < Re(z) < . We wish
to consider first its analytic continuation into the right half-plane Re(z) > 8.
For this purpose we assume that, as t — co, f(t) has an asymptotic expansion
of the form

o N(m)
f(6) ~ exp( — dt*) ; ZO Coun (loOg £ 277 (4.3.1)

Here Re(d) =0, v >0, and Re(r,,) T oo . It is also assumed that the nonnegative
integers N(m), m=0, 1, 2, ... are all finite. We wish to emphasize that the form
(4.3.1) allows f to have almost any behavior, as t— «, that might reasonably
occur in applications. (Exponential growth of f, however, has been excluded
because otherwise M| f';z] would not exist for any z.) We also note that (4.3.1)
includes the important special case where f(¢) has an asymptotic power series
ast— o,

Our results will naturally fall into three cases depending on the constant d.
We shall present these cases in three lemmas which are proven immediately
below.

LEMMA 4.3.1. If Re(d) >0, then f= + oo so that M[f;z] is absolutely
convergent and hence holomorphic for Re(z) > a.
PROOF. We clearly have

| £(0)] =O{exp[ — Re(d) *] t = Reo) (log £)¥ O} 4.3.2)

as t— oo and hence f = + oo in (4.2.10). We might point out that in this case
(4.2.13) holds for any x > a.
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In the proofs of the next two lemmas, it is convenient to make use of the
functions s,(t) and f,(¢) which, for any k > Re(r,), are defined by

0, 0<t<l,

si(t) =

N(m)
exp( —dt") Z i Con t 7' (lOg t)", I1<t< o, (433)

m n
Re(r,) < k

and

JOy=1(t) = st). (4.3.4)

We note that, for t > 1, 5,(t) involves only a finite number of terms and that,
as t—co, fi(t)=0(e~ "t~ (log t}*) where j is the least integer such that
Re(r) = k.

LEMMA 4.3.2. If d= —iw with w real and nonzero, in which event f is
oscillatory at infinity, then M[ ' ;z] can be analytically continued into Re(z) >
as a holomorphic function. Moreover, for the continued Mellin transform we
have

M[fix+iy]=0(y"), |y]-o o0,  x>Refry), (4.3.5)

where n(x) is the smallest integer greater than or equal to Re([x — ry]/v).2

PROOF. It is readily seen that M[f;z] is holomorphic in the strip
a < Re(z) < Re(ry) with (4.2.13) satisfied in this strip. Furthermore, in a similar
manner, f,(t) defined by (4.3.3) and (4.3.4) has a Mellin transform holomorphic
in the strip a < Re(z) < k with

lim M[f;x+iy]=0 (4.3.6)

[¥l= o

for any x in the interval («,k). Because

M[f;z] = M[ fi;z] + M[5;52], 437

in order to continue M[ f ;z] into the strip « < Re(z) < k, we need only continue
M[s, ;z] into this same strip.

The desired continuation is accomplished via an iterative process which we
shall now outline in some detail. Let us first set

N(m)
tTho)= ) i Con £~ (log )" (4.3.8)
Re(r':) <k =0
so that g,(t) =0((log y"?), t—» o0, and
Re(x —rol/v —1/2

3 Actually, we can show that the continuous estimate, M[ f ;x +iy] =0()y|
x > Re(ro) holds. See Exercises 7.24 and 7.25.

) [y} = o,
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M[s;;2] = {7 e 7" g,(1) dt

— * ; v- lU)l tz Y al(t)
= j , liovt ) "y (4.39)
Upon integrating by parts in (4.3.9) we obtain
zZ—ro—v e'
Mis, ;z|= -
[sis2] oy 1
© o . do,] dt
— z—ro—v-=1 ,iwt" _ — “Y%1
L t e [(z ro—V) o, +t dt] o (4.3.10)

For Re(z) < Re(ry) +v we have expressed M[s,;z] as the sum of a constant
term and an integral which we write as

M,[s;;z] =7 gFrromvT L gl g (¢) dt

do
[(z —ro—V)o, +t dtl]

0y = _ 43.11)
1wV

We observe that M [s, ; 2] is holomorphic in the left half-plane Re(z) < Re(rg) + v
and moreover is an integral of the same form as (4.3.9). [ Note that, as t - 00, 6,(f)
is of the same order as ¢,(t).] In this manner we have continued M([s,;z] into
the strip Re(r,) < Re(z) < Re(ro) +v as a holomorphic function and hence,
through (4.3.7), the same result holds for M[ f;z]. In addition, because g, is a
polynomial of first degree in z, we have that M[f;z] =0(|y|) as |y| > in
this strip.

The same process may now be applied to M,[s,;z]. Indeed, it is clear from
a simple inductive argument that the process can be applied repeatedly. Each
integration by parts yields an analytic continuation of M[s,;z] and hence of
M[ f;z] a distance v to the right. Moreover, the continued functions are all
holomorphic in the extended strips. Because at each step terms in the continua-
tion are multiplied by factors linear in z, we can conclude that, after p steps, the
continued M[ f;z] isO(]y|?) as | y| = oo in the strip Re(r) + (p — 1) v < Re(z) <
Re(r,) 4+ vp. The lemma now follows from the fact that, in order to continue
M[ f ;z] into the strip a < Re(z) < k, we need only apply the procedure j times
where j is the smallest integer greater than or equal to Re(k — r)/v.

LEMMA 4.3.3. If d=0 in (4.3.1), in which event we say that f is algebraic at
infinity, then B = Re(r,) and M[f;z] can be analytically continued into the
right half-plane Re(z) > Re(ro) as a meromorphic function, with poles at the
points z=r,, m=0,1,.... Moreover, about z=r,, M [f;z] has a Laurent
expansion with singular part

N(m) ( _ 1)n+1 Conn n!

(Z _ rm)n+ 1 (4312)

n=0

SECTION 4.3  Analytic Continuation of Mellin Transforms | 113

Finally, for x > «,
llm M[f;x+iy]=0.

lyl=
prOOF. For any k> Re(r,) we have that (4.3.7) holds where M[f;;z] is
holomorphic in o < Re(z) < k. In addition, we have that (4.3.6) holds for
a < x < k.If Re(z —r,) <0, then we find directly that

n ( —_ 1)n+ 1
( m)n+1

For all other z, (4.3.13) defines a meromorphic function by analytic continuation.
Thus, by computation we have

M[f;z] = M[s,z] +M[fk;2]
- ; o (z—r )n+1 + [fisz]. (4.3.14)

Re(r,) < k

L 1771 (log t) dt = 43.13)

Because k is arbitrary, the lemma is proved. (Note that lim M[s.;x +iy] =0
for all x.) Iyl

Under the single assumption (4.3.1) and through Lemmas 4.3.1, 4.3.2, and
4.3.3, we have succeeded in analytically continuing M[ f ;z] into the right half-
plane Re(z) > o as a meromorphic function at worst. Moreover, we have been
able to locate the poles, if any, of the continued function and have determined
the singular parts of the corresponding Laurent expansions about these poles
solely in terms of the constants that appear in the assumed asymptotic expansion
offast— .

The analytic continuation of M[ f;z] into the left half-plane Re(z) <a is
accomplished in a completely analogous manner. Indeed, if we assume that,
ast—0+,

0 (m)
f(2) ~ exp(— qt™*) Z Z P (lOg 1) % (4.3.15)

with Re(q) =0, x>0, Re(a,) T ©, and 0 < N(m) finite for each m, then this
continuation is described in the following three lemmas. We shall omit the
proofs of these lemmas because they are essentially the same as those of Lemmas
4.3.1,4.3.2,and 4.33.

LEMMA 4.3.4. If in (4.3.15) Re(g) > 0, in which event f decays exponentially
as t— 0+, then o« = — oo in (4.2.10) and M[ f ;z] is holomorphic in Re(z) < .
Moreover, (4.2.13) holds for any x < §.

LEMMA 4.3.5. If in (4.3.15) g = — ir with r real and nonzero, in which event
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fis oscillatory as t—0 +, then & = — Re(a,) and M[ f;z] can be analytically
continued as a holomorphic function into the left half-plane Re(z) < — Re(ay).
Furthermore, for the continued Mellin transform we have

M fx +iy] =0(|yI™), |y|=>®©, x<Rea,, (4.3.16)

where n(x) is the smallest integer greater than or equal to — Re((x + ao)/u).*

LEMMA 4.3.6. If =0 in (4.3.15), in which event f is algebraic as t >0+,
then o = — Re(a,) and M[ f ;z] can be analytically continued as a meromorphic
function into the left half-plane Re(z) <o with poles at the points z= — q,,.
The continued M[f;z] has a Laurent expansion about z= —a, with
singular part

Nom) pmn ( - 1)'l n!

Y (43.17)

Also, forany x < lim M[f;x +iy] =0.

fyl= o

Upon combining the six lemmas of this section we find that under the assump-
tions B> «, (4.3.1) and (4.3.15) we have defined, by analytic continuation, the
Mellin transform M[ f;z] on the entire z plane as a meromorphic function at
worst. In addition, we have been able to locate all of the poles that arise in the
continuation and have determined the corresponding singular parts of the
Laurent expansions about these poles in terms of the constants that appear
in the assumed asymptotic forms (4.3.1) and (4.3.15). We wish to emphasize
that whenever f has exponential behavior (either exponential decay or oscilla-
tion) in both of the limits t » + oo, t >0 +, there are no finite singularities of
the continued Mellin transform. On the other hand, if f is algebraic in either
or both of these limits, that is, if either d, g, or both vanish in (4.3.1) and (4.3.15),
then poles arise in the continuation of M[ f;z]. Moreover, the order of any
given pole is determined solely by the highest power of log ¢ that appears in
the corresponding terms of the relevant asymptotic expansion of f.

Let us now suppose that a > § in (4.2.10) so that the defining integral of
M[ f;z], namely (4.2.9), does not exist anywhere. We might point out that this
can occur even when (4.3.1) and (4.3.15) are both satisfied. Indeed for the
function

fO=1+y (4.3.18)
with v any constant with real part greater than zero, we have « =0 and
B = — Re(v). Hence (4.3.18) does not have a Mellin transform in the ordinary

sense. Because we anticipate that the Mellin transforms of the integrand
functions in (4.1.16) are going to play a significant role in the asymptotic analysis

. . . . - 12
4 Asin Lemma 4.3.2 we canshow that the continuous estimate M[ f;x +iy]=0(y| Relx +ao)/u—112)

|y| > 20, x < — Re(ao), holds. See Exercises 7.24 and 7.25.
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of that integral, it is disturbing that we cannot, at present, include such simple
functions as (4.3.18). The following discussion shall show, however, that by
using the preceding results on analytic continuation we can introduce a
generalization so that the Mellin transforms of functions such as (4.3.18) can
be meaningfully defined.

Thus, let us assume that f(¢) is locally integrable on (0,00) and that (4.3.1) and
(4.3.15) are satisfied. If we set

f(©, te[01),
fHle)= (4.3.19)
0, te[l,00),

and

0, t£[0,1),
L) = (4.3.20)
f@©), te[lo),

then clearly

f@=£0) +1£0)7 (4.3.21)

Furthermore, we have that M[ f; ;z] is holomorphic in Re(z) > o while M[f;;z]
is holomorphic in Re(z) <f with a and B defined by (4.2.10). Of course, if
o < B, then

M[fz] = M[f:z] + M[ f, ;2] (4322

is defined and holomorphic in the strip o < Re(z) < . We are concerned
now with the case a > § so that (4.3.22) does not directly define an analytic
function anywhere. We can, however, under the assumption that (4.3.15) holds,
analytically continue M[ f;;z] into the left half-plane Re(z)< o and under the
assumption that (4.3.1) holds analytically continue M[f,;z] into the right
half-plane Re(z) = f. Indeed, from Lemmas 4.3.1 through 4.3.6, we can conclude
that these continued functions are at worst meromorphic functions in the
entire z plane.

Our generalized definition of the Mellin transform is now immediate. For
any locally integrable function with asymptotic expansions (4.3.1) and (4.3.15),
its Mellin transform is given by (4.3.22) where we mean by the right-hand side
the analytic continuation of M[ f; ;z] plus that of M[ f,;z]. Thus, although the
Mellin transform of such an fneed not exist for any z as originally defined, with
our new definition it now exists in the entire z plane. From now on we shall
interpret the symbol M[ f ;z] as the Mellin transform in this generalized sense
unless otherwise stated. We might further point out that, because estimates
have been made concerning the behavior of M| f;;z] and M[ f,;z] as z goes to

5 The selection of ¢t = 1 as the point at which to truncate f is completely arbitrary. Indeed, any

positive value of ¢t could be used. We shall find, however, that for many purposes, t =1
is a particularly convenient point.
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infinity along vertical lines, corresponding estimates for the behavior of M[ f ;z]
in such limits follow.

We should point out that the analytic continuations necessary to define
M[ f ;z] can often be obtained directly from known formulas for M[ f; ;z] and
M[ f,;z]. This, of course, would result in a simplification and should be exploited
whenever possible. In order to clarify this and some of the other points dis-
cussed above, let us consider the following.

EXAMPLE 4.3. Suppose that
f@O=|1—t", Re(»>0. (4.3.23)

Hence « =0 and = — Re(v) in (4.2.10) so that M[ f;z] does not exist in the
ordinary sense. We have

1-1, 0<t<l,

fil)=
0, 1<t< o,
0, 0<t<l1,
L=
t—1), 1<t<w, 4.3.24)

from which we can define M[ f;z] in the generalized sense. The lemmas of this
section predict that M[f,;z] has simple poles at z=0, —1, —2,... and
M[ f,;z] has simple poles at z= —v+n,n=0,1,2,.... From (4.3.22) we see
that the same statements hold for the generalized Mellin transform of . Indeed
we have from the Appendix

v re+1)T
MU= [ -0 de= L R >0, w329
M[fy:z) = fﬁ-l -1y di=10 +1121F:)V =9 Re(z) < — Relv).

(4.3.26)

The analytic continuations of M[f,;z] and M[f,;z] are immediately
obtained from the known analytic continuations of the gamma functions that
appear in (4.3.25) and (4.3.26). Moreover, because the gamma function I'(z) has
simple poles at the nonpositive integers, and does not vanish at any finite point,
the results of our lemmas are substantiated. Finally, we have from (4.3.22),
(4.3.25), and (4.3.26) that

I'(z)
v+z+1)

I'(—v-—2)
I1-:2)

M[]l—t|“;z]=1‘(v+1){r +
for all z.

We conclude this section by noting an important feature of these results
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from the point of view of practical application. Suppose we have a function f
for which the Mellin transform is not known in closed form and for which the
value wo = M[f ;zo] is desired. If z, is in the strip of analyticity of M[ f ;z], we
can calculate w, directly on a computer. If z, is not in the strip of analyticity of
M[f ;z] or, alternatively, M[ f ;z] exists only in a generalized sense, then we
first perform the decomposition of f as indicated in the relevant lemma of this
section and compute the Mellin transforms of each of the decomposed func-
tions, again by computer, if necessary. We claim that, in this sense, the results
of this section are constructive.

4.4. Asymptotic Expansions for Real 4

The theory of the Mellin transform outlined in the preceding sections will
now be used to systematically develop a method for the asymptotic analysis of

H[fA) =3 h(0) f(0) dt, (4.4.1)

the h-transform of f(¢). In Section 4.7 we shall allow 1 to be complex, but here
we assume A real and seek asymptotic expansions of H[ f ;1] in the limit A — co.
The limit A -0+ will be considered in Section 4.6. Although we shall require
below that the integrand functions f(¢) and h(f) satisfy certain conditions, for
the present we merely assume that these functions are locally integrable on
the open interval (0,00) and that H[ f ;4] exists for sufficiently large A.

Before proceeding with the development of the technique we observe that
upon setting A = ¢! and At =7 in (4.4.1) we obtain

H[f;e ']1=¢ ]} f(ex) h(z) de = ¢ F[h;e] 44.2)

so that the h-transform of f equals ¢ times the f-transform of h. From this last
identity we can conclude that if, in the development of an asymptotic technique
to determine the large 1 behavior of H[ f ;A], the conditions placed on fand h
allow us to interchange their roles, then the same technique can also be made
to yield the asymptotic expansion of H[ f ;1] for small 1. Therefore, we shall
concentrate on the limit A— oo and shall find it a simple matter to obtain
analogous results when 1 -0 + .

Let us first suppose that h(t) and f(¢) have Mellin transforms which are initially
holomorphic in the vertical strips « < Re(z) < f and y < Re(z) < , respectively.
We also suppose that the Parseval formula

H[f 1] = 5 j’“w 27 M[hsz] M[f 51 — 2] dz

1 r+ico
5| A G@dz (4.4.3)

is valid. (Sufficient conditions for these suppositions to be true are given in
Section 4.2.) The constant r, of course, is such that Re(z) = r lies in the common
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strip of analyticity of the Mellin transforms M[h;z] and M[ f;1 — z]. Also, in
deriving (4.4.3) we have used the fact that

M[h(it);z] = 3 h(at) £~  dt = A7% [ h(z) 1~ 1 de
=A"* M[h;z]. (4.4.4)

Although the actual procedure for obtaining the asymptotic expansion of
H[ f ;] for A — oo is quite straightforward, we shall first describe it in formal
terms and shall then proceed to rigorously establish the validity of the formal
results. Thus, suppose that G(z) in (4.4.3) is actually defined in the right half-plane
Re(z) = r as a meromorphic function at worst. Also, suppose that the behavior
of G(z) is such that we can displace the contour of integration to the right, say
to the vertical line Re(z)=R>r and apply Cauchy’s integral theorem to
conclude

1 R +ico
H[f;A]=— Z res{A * G(z)} + 5— j A7*G(z)dz. 4.4.5)
r <Re(z) < R 2mi g
It is assumed here that no poles of G(z) lie on Re(z) = R.
If the above process is legitimate, then it is reasonable to expect that

1

R+io . _1 © R— R _ _R
z—mj P G(z)dz—%'[_wl Y GR +iy)dy=00"%)  (446)

R-iow
as A— oo, and hence that the sum of residues in (4.4.5) represents a finite
asymptotic expansion of H[ f ;4] in this limit. Of course, if we can allow R
to go to + oo, then an infinite expansion would be obtained.

Our immediate objective is to rigorize the process just described. Let us
begin, however, by outlining what has to be shown.

(1) The function G(z) = M[h;z] M[f;1 — z] is defined as a holomorphic
function only in the strip max(x,1 — ) < Re(z) < min(f,1 — y). In particular,
with no further information, it is not known to be a meromorphic function
in the region Re(z) = min(f,1 — y). Our first problem then is to continue
G(z) into this half-plane as a meromorphic function at worst. We note that
this, in turn, requires that M[h;z] be so continued into the right half-plane
Re(z) = B, while M[f;z] must be continued into the left half-plane
Re(z) <y.

(2) Assuming that the analytic continuation has been accomplished our
next task will be to justify the displacement of the contour of integration
in (4.4.3) and, in particular, to establish the validity of (4.4.5).

(3) Finally, to establish the asymptotic nature of (4.4.5) we must show
that the error estimate holds and we must examine the behavior of the
residue terms as 4 — .

To accomplish the necessary analytic continuations we shall make use of
Lemmas 4.3.1 to 4.3.6. Indeed, we first assume that, as t -» + oo,
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©  N(m)
h(t) ~ exp( — dt") Z Z Con t '~ (log £)".8 4.4.7)

m=0 n=0
Here Re(d)>0, v>0, Re(r,) T oo, and N(m) is finite for each m. Then by
Lemmas 4.3.1 to 4.3.3 we can conclude that M[h;z] can be analytically continued
into Re(z) = B as a meromorphic function at worst. Moreover, poles arise only
when d = 0, in which event they are located at the points z=r,, m=0,1, ....
The singular part of the Laurent expansion of the continued M[h;z] about

z=r,, is given by (4.3.12), namely

N(m) Con n! ( — 1)n+1
n=0 (z—rm)"+1

In order to continue M[f;z] into the region Re(z) <y we assume that,
ast—-0+,

4.4.8)

k9] N(m)
f~exp(—qt™) > Y Pt (log o). (4.49)
m=0 n=0

Here Re(q) =0, u> 0, Re(a,) T o, and N(m) is finite for each m. Now, by

Lemmas 4.34 to 4.3.6, M[ f;z] can be analytically continued into Re(z) <y

as a meromorphic function at worst. Of course, we are interested in the poles,

if any, of M[ f;1 — z] in the region Re z =1 —y. Such poles arise only when

g =0, in which event they are located at the points z=a,,+1,m=0,1,2, ....

The singular part of the Laurent expansion of M[ f;1 — z] about z=a,, + 1

is, according to (4.3.17), given by

N(m) 1

pmn n:

A N .k 4.4.10
n=0 (Z_am_ 1)"+1 ( )
Thus we may return to (4.4.3) and can, under the assumptions (4.4.7) and

(4.4.9), consider G(z) to be meromorphic in Re(z) = r. We would now like to

conclude that (4.4.5) follows from a simple application of Cauchy’s integral

theorem. A sufficient condition for this to be so is readily seen to be

lim G(x+iy)=0 4.4.11)

lyl= o

for all x in the interval [r,R]. In Sections 4.3 and 44 we have discussed the
behavior of Mellin transforms as |z|— co along vertical lines. Here we shall
merely assume that f and h are such that (4.4.11) holds for x ¢ [r,R].

In order to establish that (4.4.6) is valid, we shall further assume that

i IGR +iy)|dy < (4.4.12)

S More generally, we can allow the asymptotic expansion of h to be a finite linear combination
of forms such as (4.4.7). It will be clear how to alter the results below to allow for this additional
generality.
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since in that event
|R+i= 177 G(2) dz| S A7 |GR +ip)| dy=0G7)."  (44.13)

As we shall see, the above assumptions are sufficient for us to show that
(4.4.5) yields an asymptotic expansion of I(4) as 41— oo. Conditions (4.4.11)
and (4.4.12), however, are not placed directly on the functions fand h and
hence are not easily verified. This is aggravated by the fact that they are placed
on the function G(z) in a region into which it has been analytically continued.
In a problem where the continuation has been accomplished by inspection,
these conditions can often be directly verified. Nevertheless, it would be con-
venient to have explicit conditions on f and h which, when satisfied, would in
turn ensure the satisfaction of (4.4.11) and (4.4.12). Although such conditions
can be obtained, we delay deriving them until later sections where they become
essential to the development of the theory.

Below we shall describe in detail the terms which appear in the residue
series (4.4.5). Now, however, we wish merely to consider their qualitative
behavior as A — co. Under the assumed asymptotic forms (4.4.7) and (4.4.9), the
points in Re(z) = min(8,1 — ) at which poles of G(z) occur are precisely deter-
mined. Moreover, the abscissas of those points can be arranged in a sequence
{«;} in such a manner that ;,, >a;j=0,1,2,.... We observe that the set
{o;} has no finite accumulation point and that for each j there are at most two
poles of G along the line Re(z) = a;.

Let us denote the higher order of the poles of G on Re(z)=o; by n;+1.
We now introduce the sequence

O, ()={% (og ="},  m=0,1,..,m, j=012.., (4419

where @, ,(4) lies to the right of ®;,(4) if either i>j or i=j and k>m. It is
clear that {®, ,} is an asymptotic sequence as A— oo Finally, we note that the
residue of A% G(z) evaluated at the point z = a;+ iy;, where G has a pole of
order n;+1, is a linear combination of the terms A% (log A)",
AG(log Ays Y, L, AT

Upon combining the above results, we find that we have proven the following.

THEOREM 4.4. Let h(r) and f(f) be locally integrable functions on (0,00)
having asymptotic forms (44.7) and (4.4.9), respectively. Let M[h;z] and
M([ f ;z] be holomorphic in the respective strips o < Re(z) < B, y <Re(z) < 4.
Suppose that these strips overlap and that the Parseval formula (4.4.3) holds.
If conditions (4.4.11) and (4.4.12) are satisfied, then

H[fA]~-2  res(A™ M[hiz] M[f3;1—-2]) (4.4.15)

r <Re(z) < R

7Actually, the assumption G(R +iy) & L( — o < y < ) is stronger than necessary because G
goes to zero as |y|—co and A" is an oscillatory factor. Indeed, if we knew that the
Fourier transform of G(R + iy) existed and was bounded at + <, then we could drop (4.4.12).
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represents a finite asymptotic expansion of H[ f ;4] as 4 — oo with respect to
the asymptotic sequence (4.4.14) with error 0(A~%). In (4.4.15) max(x,1 —J)
< r <min(f,1 — y). Furthermore, if the above assumptions hold for arbitrarily
large R, then (4.4.15) yields an infinite asymptotic expansion of H[ f ;A] with
respect to the sequence (4.4,14).8

Before considering examples to illustrate the use of this theorem, let us express
the residue series (4.4.15) in more explicit terms. The results are conveniently
separated into four distinct cases depending on the constants d and g in the
asymptotic forms (4.4.7) and (4.4.9). In each case, we shall assume that the
hypotheses of Theorem 4.4 hold for arbitrarily large R.

Casel. Ifin (44.7) d + 0 while in (4.4.9) g+ 0, then as A — oo,

H{f;A]=0(A"F) (4.4.16)
for any real R. This follows from the fact that, in this case, G(z) has no poles in
the right half-plane Re(z) > r.

CaseIl. If in (4.4.7) d +0 while in (4.4.9) g =0, then any residues in (4.4.15)
must arise from poles of M[f;1 —z]. It then follows from (4.4.10), (4.4.15),
and the residue theorem that, as 1 — oo,

HI A~ 3 Y, Z()(J)( ~ log 2y M®~/[h;z]

where M™[h;z] =(d/dzy' M[h;z]. In the special case when there are no
logarithmic terms in (4.4.9) so that p,,, =0 for n > 1, (4.4.17) simplifies to

., (44.17)

z=1+a,

H[f;A]~ "Z:O A7t poo M[h;1 +a,]. (4.4.18)

Case III. If in (4.4.7) d =0 while in (4.4.9) g # 0, then any residues in (4.4.15)
must arise from poles of M[k;z]. Thus we have from (4.4.8) and (4.4.15) that,
as A— oo,

© N(m) n n
H[fA]~ AmTn Conn Y(log AY M@=I[ £z
[ ] mZO nZO jgo <]) o [f ] z=1-ry (4.4.19)
which, in the special case c,,, = 0 for n = 1, reduces to
H[f:A]~ D 27" cpo MLf 31— 1,]. (4.4.20)
m=0

Case IV. If in (4.4.7) d =0 while in (4.4.9) g =0, then the residues arise from

8 We note that we have also shown that (4.4.15) yields a generalized asymptotic expansion of
H[ ;] with respect to the auxiliary asymptotic sequence {4~ *}.
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poles of both M[h;z] and M{ f ;1 — z]. Now, however, there are two subcases
that must be considered.

(1) r,,# a, +1 for any pair of nonnegative integers m and n. Then the
poles of M[ f ;1 — z] are distinct from those of M[h;z]. The result in this
subcase is simply the sum of the expansions (4.4.17) and (4.4.19). In parti-
cular, if no logarithmic terms occur in the asymptotic forms (4.4.7) and
(4.4.9), then

H[f 2]~ Zoa-u Cmo MLf 31— rn] + Zorl'“~ Pmo M[h;1 +a,,].
(4.4.21)

(2) r,,=a,+1 for one or more pairs of nonnegative integers n, m. Now
poles of M[h;z] will coincide with poles of M{ f ;1 — z] so that logarithmic
terms will appear in (4.4.15) even when no logarithmic terms appear in
either (4.4.7) or (4.4.9). We leave the derivation of a formula for this general
case to Exercise 4.16. Suppose, however, as an example, we assume that
Con =Pmn=0 for n=1, ro=a, +1 but r,+a,+1 otherwise. Then we
find that, as A — oo,

H[f;l] ~ A" log 4 cgo Poo

+A7" zll_’lg % {(z = 7o) (poo M[h;2] + coo M[f;1 — 2]}

+ mZI }'—l—a,.. me M[h’l +am] + mgl l~r,,, Cmo M[f:I '—rm]‘
(4.4.22)

When we consider the expansions (4.4.17) through (4.4.22) it becomes
apparent that there is one feature common to all of them. Each sum in these
expansions consists of terms that involve either the constants c,, times
derivatives of the Mellin transform of f evaluated at some point or the constants
Do times derivatives of the Mellin transform of h evaluated at some point. The
constants c,,, reflect the local behavior of h at t = oo, while the constants p,,
reflect the local behavior of f at t = 0. The Mellin transforms M[ f;1 — z] and
M[h;z] involve, respectively, the values of f and h for all ¢ ¢ [0,00) and hence
reflect the global behavior of these functions. Thus, each sum in the above
expansions reflects local properties of either f or h and global properties of
the other. In subcase (2) of Case IV, however, where coalescences of poles of
the two Mellin transforms occur, there are terms which involve only the local
behavior of the functions fand h.

Let us now illustrate our results by considering several examples.

EXAMPLE 4.4.1. Let h(t)=e™* so that H[f;A] is simply the Laplace
transform of f. If in (4.49) q =0, then Case II is relevant to this example.
Furthermore, we have

Mle":2] = 5: =1 e~ dt = T(2) (4.4.23)
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and hence by (4.4.17)

_[:’ e Mf(t)dt
0 ﬁ(m) n d n—j
~S At N p <’f)(—1o ,1(—) Iz
mz=:0 n=0 j=zo J £ )J dz, ()
Here we have assumed that the hypotheses of Theorem 4.4 hold. From
(3.2.41) we have that
Flx+iy)=0(|y[~t e ™21, |y|> .

Because Lemmas 4.34 to 4.3.6 show that M[ f;1 — x — iy] can at worst grow
algebraically as |y|— oo, we can conclude that (4.4.11) and (4.4.12) hold for
all positive R. Finally, if p,,, = 0 for n > 1, then we have

(4.4.24)

z=1+a,

S~ 3 1" puo (4.4.25)
m=0
as t -0 + and (4.4.24) becomes
[ee™f@di~ 3 A717% puo T(1+ay,) (4.4.26)
m=0

which will be recognized as the result predicted by Watson’s lemma.

EXAMPLE 4.4.2. Now suppose that h(t) = (1 + )~ ! in which event

1= (7 SO
H[f 4] = L L0 dr 4.4.27)
is a constant multiple of the Stieltjes transform of f. In addition, we assume
that f has the simple asymptotic form (4.4.25). We find from the Appendix
“1.,7 — [© s2-1 -14,__ T

MU+ )=, 71 (L4 de= g o (4.4.28)
which has simple poles at the integers z = 1,2,... as predicted by Lemma 4.3.3.
We note that, as |y| — oo, n/sinm(x + iy) = O(e ") for all x. If we assume that

a,+0,1,2,..., then subcase (1) of Case IV holds and hence from (4.4.21) we
have

r’ S

AN m— -l_am
0 1+/1tdt Z A Pmo

m=0

sin na,,
+ mio (—hr 2t M[f;—m].  (4429)

Thus we see that, in the case of an algebraically decaying kernel, there are,
in general, two sums in the asymptotic expansion of H[ f ;4]. Upon comparing
this with the result of Example 4.4.1, where the kernel was exponentially
decaying, we see that the first sum in (4.4.29) is analogous to Watson’s lemma
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but that the second sum has no counterpart in the expansion of the Laplace
transform.
Suppose that in (4.4.27) we specialize to the case where

f® =%e‘”’- (4.4.30)
Then, according to the result for Case Il above, the first sum in (4.4.29)
vanishes. Of course, from the explicit formula
M[fil—z]=f " e ! T R
=T(2) (4.4.31)

we have that M[f ;1 — z] is holomorphic for Re(z) > 0. Now it follows from
(4.4.29) that

e © (—1y"Td+m & (—-1)"m!
~ T TN L (4432
_[: I(l +}.t) dt mzo ll +m mz=:0 Al#—m ( )

1t is of interest to observe that

I e a= [ = YA (4.433)
T Sl PN, R 4

and (4.4.32) agrees with the expansion (1.1.6) obtained via successive integra-
tions by parts in this last integral.
Finally, suppose that in (4.4.27)

fO~f0), t-0+. (4.434)

Then a, =0 and hence subcase (2) of Case IV is applicable. Indeed, we find
from (4.4.22) that now

© _f@) log A
So i adt~— /O (4.4.35)

EXAMPLE 4.4.3. If h(f) = t¥/% J (), where J, is the Bessel function of the
first kind of order v > -4, then

H[f ;2] =[5 G J,(A0) f(t) dt (4.4.36)

is the Hankel transform of f. Let us assume that f has the asymptotic form

(4.4.25).
From the table in the Appendix we have

227 I([2v + 22 + 1]/4)_
T([2v - 2z + 3)/4)

We have from the result of Exercise 3.15 that J,(¢) is oscillatory as t— .
Thus, it is not surprising that (4.4.37) is holomorphic in the right half-plane

(4.4.37)

M[h;z] =
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Re z> — v — 4. Furthermore, we have from the estimate (3.2.41) that
M2 J,(e);x +iy] =0y~ 1),  |y|—- . (4.4.38)

Thus, if M[f;1—x—iy]=o(y|™, |y|—co for all n, then we obtain from
(4.4.18)

© s g)““- T([2v + 2a,, +3]/4)
jo (M2 J,(30) £(0) dt m;(’ Pt 2 s 1ty 4P

4.5. Asymptotic Expansions for Real 4 : Continuation

As discussed in Section 4.3 there is a wide class of functions, including all
polynomials, whose elements are not Mellin transformable in the usual sense.
However, we have in that section defined a generalized Mellin transform which
requires only that the function in question be locally integrable on (0,00)
and have appropriate asymptotic forms at 0+ and + co. We shall now extend
the results of the last section to include the cases where M [h;z] or M[f;z]
exists only in this generalized sense.

It would be convenient if we could merely say that all of the results of the
previous section hold when M[h;z] and M[ f ;z] are interpreted as generalized
Mellin transforms. Unfortunately things are not quite so simple because the
Parseval formula, which is crucial to our method, is not immediately applicable.
We shall now determine what amounts to a generalized Parseval formula and
then use it to derive the desired asymptotic expansions.

Thus let us again consider (4.4.1) in the limit A— co. As before, we assume
that h and f are both locally integrable on (0,c0) and set

a =inf {a*; h=0("*"), t>0+},
B =sup{f*; h=0(t"""), t— + o},
y =inf {y*; f =0(t "), t50+},
& =sup{d*; f =0(t~ %), t—> + o}.

Of course, if « < B and y <8, then M[h;z] and M[ f;z] are holomorphic in
a < Re(z) < B and y < Re(z) < 8, respectively. Here, however, we no longer
require that these inequalities hold.

Although it is not necessary, we shall assume that H[f;1] is absolutely
convergent which implies

4.5.1)

_ at+y<l, B+d>1. (4.5.2)
We observe that (4.5.2) in turn implies
B-a)+©@-7>0 (4.5.3)

and therefore at least one of the inequalities « < B, y <& must hold. For most
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purposes, because we look upon (4.4.1) with the kernel & fixed, as a ““black box”
into which functions f of a given class are fed, it is convenient to assume o <
so that M[h;z] exists in the ordinary sense. This allows for greater generality
in the functions f.

From the results of the previous two sections we know that we shall need
to analytically continue M[h;z] into a right half-plane and to define M[ f;z]
in some left half-plane. Moreover, as Lemmas 4.3.1 to 4.3.6 suggest, to accom-
plish this, it is sufficient to assume that, as ¢ — oo, h(t) has the asymptotic form
(4.4.7) and that, as t - 0 +, f(¢) has the asymptotic form (4.4.9).

Let us now introduce the truncated functions f; and f, defined by

f@®, te[01), 0, te[01),
file)= ft) = 454
0, te[1,00), f@), te[l, ),
and set
H[f;A]=1{3)= [;’ h(A) f{o de,  j=1,2. 4.5.5)
We then have the exact result
H[f ;4] =1,(4) + L(}). 4.5.6)
Suppose now we define the functions
Gf2)=M[h;z] M[f;;1-z], j=1,2, 4.5.7)

and denote by D, the domain of analyticity of G ;- Then, under the assumptions
(4.5.1), we have that D}, j = 1, 2, are the vertical strips defined by

D,: o < Re(z) < min(1 — ,8),
D,: max(l —d,a) <Re(z) < B.°

Furthermore, upon assuming the asymptotic forms (4.4.7) and (4.4.9) we find
that each G; can be analytically continued into a right half-plane as a
meromorphic function at worst.

We observe that in the region Re(z) > 1 — §, the generalized Mellin transform
M f ;1 — z] exists and is given by

M[fi1—z]=M[f;1 —z]+ M[f,;1 —z]. (4.5.9)
Hence, in this region we can define
G(z)=M[h;z] M[ ;1 -z]
= G4(2) + Gy(2). (4.5.10)

Let us now suppose that for j = 1, 2 there exists a real number r; for which

(4.5.8)

? Note that (4.5.2) and the assumption « < § guarantee that D, and D , are not empty.
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the ordinary Parseval formula

ritic

1) = % § © AT G dz (4.5.11)

ri—iw

is valid. Here, of course, z = r; lies in D;. Then, by (4.5.6),

H[f;A]:zim. $ Swm A7t G ) dz. 4.5.12)

Jj=1dr-ic
Suppose, further, that the following conditions hold:
1) |llim G(x+iy)=0, ry <x<ry,
y|=
(2) G{ry+iy)liesin L{— oo < y < ), j=12.
Then, by displacing the contour of integration in the integral I; until it coincides
with Re(z) = r, we obtain by Cauchy’s integral theorem the generalized Parseval
formula N
. 1 (rari=
HIf3]= (Ré\;m res(— A G,(z))+ﬁjrz are@an @s1y)
Moreover, by condition (2) we have that the last integral is O(A™") as
l 00 .10
By deriving (4.5.13) we have essentially reduced our problgm to the one
already treated in Section 4.4. Although (4.5.13) is itself a ﬁnlte‘ a.symptotlc
expansion of H[ f ;1], we wish to investigate the possibility of (?btammg further
terms and perhaps an infinite expansion. To accomplish this we need only

justify moving the contour of integration in (4.5.13) still further to the right.
This is done in the following.

THEOREM 4.5. Let fand h satisfy the conditions leading to the generalized
Parseval formula (4.5.13). Furthermore, suppose there exists a real number
R > r, such that G(R + iy) lies in L( — o < y < o0) and

| lim G(x +iy)=0, r,<x<R. (4.5.14)
y|=> o
Then

H{f:A]~ Y res(—A77 G @)+ ., res(—i7*G(2)

ry < Re(z) <r, ry < Re(z) < R (45 15)

represents a finite asymptotic expansion of H[f;4] as A— . M9reover,
if the above hypotheses hold for arbitrarily large R, then (4.5.15) yields an
infinite asymptotic expansion upon setting R = o0 .!!

10 Note that if r, > r,, then M[f;1 — 2] exists in the ordinary sense and the first sum in (4.5.13)
is empty. o .
11 The underlying asymptotic sequence is of the form (4.4.14), that is, it involves powers of A

multiplied by nonnegative integer powers of log 4.
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PROOF. The proof follows from the Cauchy integral theorem and the
estimate

'R+ico
J A7FG(2)dz|=0(A"R), A- 0.

R—-iw

Remark. It appears that it is unnecessary to define G(z) in the region
Re(z) > 1 — 6 because the final result could be expressed as two residue series,
one involving residues of G(z)A~* and the other involving residues of G,(z)A~=.
Although this is quite true, we point out that it often occurs that the function
G(z) has “nicer” properties than either G,(z) or G,(z) and is indeed, in some cases,
a simpler function. As a trivial example of this last point, suppose that f(z) = 1,
0 =t <, Then we readily find that

G(2)=M[h;z)(1 —2)7,  Gfz)=—Mlh;z)(1 — 2)"},
and
G(z)=0.

We wish now to consider various special cases which, as in Section 4.4, are
determined by the constants d and g that appear in the asymptotic forms (4.4.7)
and (4.4.9). We shall not express the residue terms explicitly here because
they have been so expressed in the cases treated after Theorem 4.4. Also we
assume that Theorem 4.5 holds for arbitrarily large R.

Casel. Ifin (4.4.7) d # O while in (4.4.9) g # 0, then
H[f;4]=0(A"®) (4.5.16)

for all R. This follows from the fact that the analytic continuations of M[h;z]
and M[f,;1— z] are both holomorphic in the relevant right half-planes.

Casell. If in (44.7) d=0 while in (449) g+#0, then M[f;;1—2] is
holomorphic in a right half-plane so that the first sum in (4.5.15) is empty and
we have

H(f;:]~ Y res(—A~*G()). (4.5.17)

ry < Re(z) < o«

Here all residues that appear must arise from poles of M[h;z] and hence the
coefficients in (4.5.17) reflect local properties of h near + oo and global pro-
perties of f. Finally, any logarithms that appear are due to logarithms which
occur in the expansion of h at + oo.

Case IlI. If in (4.4.7) d # 0 while in (4.4.9) g = 0, then M[h;z] is holomorphic
in a right half-plane. Thus, all residues must arise from poles of M[f;;1 — z]
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and (4.5.15) can now be written

H[f;2 ]~ Y res(—47% G,(2)). (4.5.18)
ry<Re(z) <=
Here the coefficients reflect local properties of f near 0 + and global properties
of h. Also, any logarithms that appear are due to logarithms that occur in the
expansion of fat 0 +.

Case IV. If in (4.4.7) d =0 while in (4.4.9) g = 0, then the residues that appear
in (4.5.15) arise from poles of both M[f,;1—2z] and M[h:z]. Hence, the
coefficients reflect local and global properties of both h and f. Furthermore,
if in (4.4.7) and (4.49) 1 + a,, # r, for any m, n and if ¢, =p,,=0for n21,
then no logarithms appear in (4.5.15). Alternatively, if poles of M [ fi;1—1z2]
and M[h;z] coincide, then by virtue of this coalescence, (4.5.15) will contain
logarithmic terms even when no logarithms appear in either (4.4.7) or (4.4.9).

Before doing an example, we wish to point out that a further generalization
can be obtained in Case III when Re(d) > 0. Indeed in that event we have
h(t) = O[t™ (log )™? exp(— Re(d) t}],  t—oo.

Now we can allow f(f) to grow quite rapidly at co and still have H[ ;4]
absolutely convergent. In fact all we need require is that

f®=0(xp(r’)), t—ow® (4.5.19)

for some finite r. . .
To illustrate some of the results of this section, let us consider the following.

EXAMPLE 4.5. Suppose

1 [(Rll—ede 2
AU A= | e (45.20)
where 0 < Re(v) < p — 1. Here h(t) = (1 + 1) and we have from the Appendix
M[h;z] = &)If((_’f)’)'_z)_ 4.521)

Thus, we see directly that M[h;z] has simple poles at the points z=p +m,
m=0,1,2, ..., as predicted by our theory. The function f= |1 — ¢|* however
has no Mellin transform in the ordinary sense. Nevertheless, we do have from
the Appendix

_Tv+)Iu-2

MUt —2]= 500y
v+ 1)Tz—v—1
M[fy;1—2]= s )r(g v, (4.5.22)
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which we note are holomorphic in the disjoint half-planes Re(z) <1 and
Re(z) > Re(1 + v) respectively. The analytic continuation of M[ f;;1 — z] into
Re(z) = 1 has simple poles at the positive integers.

If p is not a positive integer, then the resulting expansion does not contain
any logarithms. Indeed, from (4.5.15) we find after some calculation that, in
this case,

r’|1—t!“dt~l"(v+l) i (—1yT(p—n—1)
o (1420 T(p) | S A""' Tv+n+1)

(—1yT n+p—v—1)[ sinn(v—p)”‘
+Z T Tw T ) 1+ e (4.5.23)

Furthermore, if v is a positive integer so that f; and f, are polynomials, then
the first sum in (4.5.23) will be finite because M[f;1 —z] and M[ f,;1 — z]
have polesonlyatz=1,2, ...,v+ 1.

If p is a positive integer but v is not, then poles of M[ f; ;1 — z] coincide with
poles of M[h;z] at z=p+m, m=0,1,.... In this case the expansion will
contain logarithms and, again after some calculation, we find that (4.5.15)
yields

j°°|1—t|“dt~l"(v+ 2—1)" p—n—1)
o (L+i)Y  TI(p) T T —n+1)

+Z (- 1)° [—1og/1—.//n+1)+r(v+2—p—n)+ncsc(nv)]}_

n=0

Ante IT'v+2—p—nTn+1)
(4.5.24)

Here y(z)=T"(z)/T'(z) and is usually referred to as the digamma function. It
should be noted that all of the conditions necessary for the application of
Theorem 4.5 to this example are satisfied.

4.6. Asymptotic Expansions for Small Real A

As we have previously indicated, the expansion of

H[f32] =7 i) f(0) dt 4.6.1)

in the limit A0+ is, under certain circumstances, recoverable from our
results on the expansion of such transforms in the limit A— co. Indeed, upon
using (4.4.2), we find that all we need do is determine the expansion of

F[h;e] = f(et) h(r) dt 4.6.2)

as ¢ - co, multiply the result by ¢, and then set ¢ = 17!,
In order for us to use the results of the previous two sections to obtain the
asymptotic expansion of F[h;&] as ¢— oo, the conditions placed there on the
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functions f and h would have to be interchangeable. This is the case for the con-
ditions of Section 4.4 but, unfortunately, not for those of Section 4.5. In Section
4.5, M[h;z] is assumed to exist in the ordinary sense, whereas M[f;1 — z]

‘need exist only in the generalized sense. Because we still wish to assume that

M{h;z] exists in the ordinary sense, we cannot make direct use of (4.6.2) and
hence shall proceed differently.

Thus, let us consider (4.6.1) as A—0+. We first suppose that H[ f;1] is
absolutely convergent so that if (4.5.1) holds, then we must have

a+y<l1, p+6>1. 4.6.3)

We further suppose that o < and hence M[h;z] is holomorphic in the strip
o < Re(z) < B.

We now introduce the functions fi, f,, G,, and G, defined by (4.5.4) and
(4.5.7), and assume that the ordinary Parseval formulas (4.5.11) hold which
yield the exact result

H[f;A]= 2m Z j 277 G{z) dz. (4.6.4)

We now expect to derive the desired asymptotic expansion as a residue series
by displacing the contours of integration in (4.6.4) to the left and applying
Cauchy’s integral theorem. This, of course, requires that we analytically
continue G,(z) and G,(z) into left half-planes as meromorphic functions at
worst. Indeed, we shall follow this procedure except first we find it convenient
to define

K{zy=M[h;1-z] M[f;;z2]=G{l—-z2), j=1,2, (4.6.5)
which are seen to be holomorphic in the vertical strips
D,: max(y,l —f)<Re(z) <1 —a,
D,: 1 — B < Re(z) < min(8,1 — o),

respectively.
If we replace z by 1 — z in (4.6.4), then we obtain

2 p; + i
H[f ;4] =% > j #71 K (2) dz, (4.6.6)
T j= p;—i®
where p; = 1 — r;. Here z = p;lies in D;. Now our asymptotic expansion will, as in
previous sections, be obtained by displacing the contours of integration in (4.6.6)
to the right and hence K;(2), j = 1, 2 must be continued into right half-planes.
To accomplish the continuations we assume

i) S S et (log 1" 467
JO~exp(—de) 5 3 i ogtr, 1w, (46)
h(t) ~exp(—g t™") i Nf) Pmn t° (log t)", t—0+4. (4.6.8)

m=0 n=0
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Here the constants d, q, v, u, r,,, and a, satisfy the conditions stated below
(4.4.7) and (4.49). Under these assumptions, we have by Lemmas 4.3.1 to
43.6 that M[h;1 —z] and M[f,;z] can be analytically continued into right
half-planes as meromorphic functions at worst. Indeed, we have that if in
(4.6.7) d #+ 0, then M[ f,;z] is holomorphic for Re(z) > 4. However, if d =0,
then for m=0, 1, 2, ..., M[ f,;z] has a pole at the point z=r, and a Laurent
expansion about this point having singular part

N nl e (=141

Lo Gyt (4.6.9)

Similarly, if ¢ # 0 in (4.6.8), then M[h;1 — z] is holomorphic for Re(z) = a,

while if =0, then form=0, 1, 2, ..., M[h;l — z] has a pole at z=q,, + | and
a Laurent expansion about this pole having singular part

& 0! P

B n=0 (Z_ Ay — 1)n+1

(4.6.10)

We note that in the region Re(z) = y, M[ f ;2] exists at least in the generalized
sense and hence we can set

K(z) = M[h;1—z] M[ [ ;Z]
=K, {z) + K,(z). (4.6.11)
We now state and prove the main expansion theorem.
THEOREM 4.6. Let f and h be such that (4.6.6) holds. Suppose that f and
h have the asymptotic expansions (4.6.7) and (4.6.8), respectively, and that

M[h;z] is holomorphic for o < Re(z) < f. Suppose further that the following
conditions hold:

(1) lllim Kyx+iy)=0, p,=x<py,
yl= o
2 IIlim K(x +iy)=0, p1<x<R,
y|—>
(3) K(R +1iy) lies in L(— o <y< ©).
Then
Hf 1~ 2 res(—2# " K@)+ 2 res(—# 7' K(2)

p2 <Re(z)<py p1 <Re(z) <R (4612)

represents a finite asymptotic expansion of H[f;A] as A—0+ with error
O(AR~1). Furthermore, if conditions (2) and (3) hold for arbitrarily large R,
then (4.6.12) yields an infinite asymptotic expansion of H[ f ;4] upon setting
R =00.12

12 As we shall show, the underlying asymptotic sequence involves powers of i multiplied by
nonnegative integer powers of log 2.
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prOOF. The proof follows from Cauchy’s integral theorem and the estimate

R +io0
j FUK@) dz | =008 Y, A—0+.

R-iw

Remark. 1f in (4.6.6) p, can be taken less than p,, then M[ f;z] exists in the
ordinary sense and the first sum is empty.

We now wish to consider in detail the residue terms that appear in the
expansion (4.6.12). Again we find that there are four distinct and exhaustive
cases that depend on the constants d and q in the asymptotic expansions (4.6.7)
and (4.6.8). In what follows we shall assume that the results of Theorem 4.6
hold for arbitrarily large R.

Case . Ifin (4.6.7) d #+ 0 while in (4.6.8) g # O, then

H[f ;4] = o(2®), A=0+ (4.6.13)
for all R.

Case IL. Ifin (4.6.7) d = 0 while in (4.6.8) g # 0, then
© N(m) n . .
HLf )~ 3 47 % e 3 () (—Tog 27 Mo Tphic)
m=0 n=0 i=0

as A — 0 + . In the special case where c,,, = 0 for n > 1, (4.6.14) reduces to

(4.6.14)

z=1-r,

H[f;2]~ Y X~ "lepo M[h;1-r1,], A-0+. (4.6.15)
m=0
Case III.  If in (4.6.7) d # 0 while in (4.6.8) g = 0, then
© N(m) n
HfA0~ Y 25 on o C’) (log AY M@=I[ £:z2] A0+,
m=0 n=0 i=0 z=1+a,
(4.6.16)
In the special case where p,, =0 for n > 1, (4.6.16) reduces to
H[f;A]~ 3 2" pmo M[f;1+a,], A0+, (4.6.17)
m=0

Case IV. If in (4.6.7) d =0 while in (4.6.8) ¢ =0, then we must consider two
subcases :

(1) a, + 1 # r, for any n, m. In this event

0 N(m) n n . »
HIf ]~ 47" Y w3 <,>(—logl)’ M®=9[h;z]
m=0 n=0 j=o \J i=1-r,
0 _m) n . i
+ Y Y P 2 (n) (log 2Y M~ f ;2] A=>0+.
m=0 n=0 i=0 J z=14a,® (4618)
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(2) a,,+ 1 =r, for one or more pairs m, n. Here we obtain logarithmic
terms even in cases where no logarithms appear in either (4.6.7) or (4.6.8).
Indeed, for example, suppose that aq+ 1=r, and that p,,=cg,=0
for n> 1. Then

H[f ;4] ~ — A% log 4 poo Coo

+ 2% lim diz{(z—ao—l)(pooM[h;l—z]+c00M[f;z])}+o(,1"°).

a0t (4.6.19)
EXAMPLE 4.6.1. Here we shall consider the Laplace transform
H[f;A]= j: e M f(t) dt. (4.6.20)
We have directly
M(h;1 —z]=j;° ettFdt=T(1-2) (4.6.21)
which has simple poles at the positive integers.
Let us assume for simplicity that
O~ cut™™, toowo. (4.6.22)
m=0

If no r,, is a positive integer, then by (4.6.18) and (4.6.21) we have
(=1

m!

X

j: e Mft)dt~ ) ¢, -"'T(1~r,) +,..20 im

m=0

M[f;m+1]. (4623)

This formula shows that the asymptotic expansion of the Laplace transform
at the origin in general involves the global behavior of f through its Mellin
transform.

It is of interest to compare the rigorous result (4.6.23) with the formal
expansion (4.1.14). We observe that the latter is precisely the second sum in
the former when we interpret the nth moment of f as M[ f;n + 1]. The first
sum in (4.6.23), however, is absent from (4.1.14) and hence this expansion is,
in general, false as was anticipated. On the other hand, if f(t) = o(t™") for all n,
thenc,=0form=0,1,2, ..., and the first sum in (4.6.23) vanishes. Moreover,
in that event, M[ f;n + 1] is convergent for all n and does indeed represent the
nth moment of f. Thus, when all of the integer moments of f exist, the two
expansions (4.1.14) and (4.6.23) are identical and yield the standard expansion
by moments of the Laplace transform. We can therefore look upon (4.6.23) as a
generalization of the expansion by moments which recovers the latter whenever
it is valid.

As a last consideration let us suppose that in (4.6.20)

0, te[0,1),

f@t)= (4.6.24)
AP te[1,00),
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with p a nonnegative integer. We see from (2.2.8) that the Laplace transform
of f'is the incomplete gamma function I'( — p,A).

We have that M[ f;z]=M[f,;z] = — [(z— p — 1)A"] " which has a single
pole at z= 1+ p. If p is a nonnegative integer, then this pole coincides with a
pole of I'(1 — z). After a simple calculation we find that for p=0, 1,2, ...,

[log 2 —y(p + )] (—1)’*!

i(m—m”(—MM_

T(=p.A)~ o B m!
m#e (4.6.25)
EXAMPLE 4.6.2. Now suppose that
00 (1 + IZ)V“‘}
A= —— 2v. 4.6.26
H[f;72] jo 7 dt, p>2v (4.6.26)

Hence H[f;4] is proportional to the generalized Stieltjes transform of
f(6)=(1 + t3)*"*. We have from (4.5.21)

M-z Tz+p—1)

M1+ 51—2]= T(p)

4.627)

which has simple poles at the positive integers.

For v<i, M[f;z] exists in the ordinary sense in the region
0 < Re(z) < 1 —2v. For v >4, however, M[ f ;z] exists only in the generalized
sense. To determine this generalized Mellin transform, we argue as follows.
From the Appendix we have that, when Re v <4,

r@ T([1-z—2v]/2)

z] = ) .6.28
ML ==y (4628)

which, as noted above, is holomorphic in 0 < Re(z) < Re(1 — 2v). Furthermore,
we see that for fixed z, (4.6.28) is meromorphic in v for complex v with poles
at v=m+ (1 — 2z)/2. Thus (4.6.28) must hold for all v by analytic continuation
except at the singular points. In particular, (4.6.28) holds for v =% and hence
must be the generalized Mellin transform of fin the region Re(z) > 0.

As is easily seen

© 1
f@)= (2v-1 Z .<v i 2) t2m, t— o, (4.6.29)
m=0

where
v=3) O To+d)
m ) Tv—m+Hm

Hence M| f,;z] has simple poles at z=2m+1—2v, m=0,1,2,.... Thus, if
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2v is not an integer, then we have

j.w (1+ 2t i i <v - %) TQv—2mTp +2m—-2) ,,_,,

o (1+ 47 o\ m I'(p)
1 -m
» Tp—1 +m)1“<'1'+—> F<———v>
+ Z 21 2 2 (—A)mv l_’0+’
m=0 Tp) TG —vym! (4.6.30)

which is valid whenever p >2v> 1.

4.7. Asymptotic Expansions for Complex A

In the preceding sections we developed a technique for obtaining asymptotic
expansions of

H[f;A] =[5 ) f(2) dt, (4.71.1)

as A—oo and as A—0+ through real values. As we know, asymptotic
expansions when valid usually hold in some sector of the complex plane. Thus,
we shall now investigate the possibility of extending the results of Sections 4.5
and 4.6 to the case of complex 4.

The question naturally arises: Why, since in most applications A is a real
nondimensional physical quantity, is this extension of any interest? One reason
is that, even in cases where complex 1 is not physically reasonable, it is often
an important step in the analysis of a given problem to extend an asymptotic
expansion into the complex plane. Furthermore, there are problems in which
complex 4 has a legitimate physical interpretation. Indeed, when we consider
the propagation of “high-frequency” waves in certain dissipative media, the
relevant 4 is complex. Finally we remark that there are several areas of analysis,
for example, number theory, where complex 1 occurs quite naturally.

Let us consider (4.7.1) with f(¢) locally integrable on (0,%) and /(¢) analytic in a
sector, say |arg 7] < 6,. We assume the asymptotic forms (4.4.7) on the line and
(4.4.9) in the sector, respectively. Furthermore, we again suppose that the con-
stants &, B, 7, and & defined by (4.5.1) satisfy the inequalities (4.5.2) and that @ < B
so that M[h;z] exists in the ordinary sense. We then have that D;, the domain of
analyticity of G; = M [h;z] M[ f;;1 — z], is still defined by (4.5.8).

It is a simple matter to extend the results of Theorem 4.5 to complex A.
Indeed we now prove the following,

THEOREM 4.7.1. Let r and R be given real numbers greater than 1 —§
with r < R. Let Re(z) =r, lie in the domain D,, the domain of analyticity of
G,. Suppose that

M[h;x +iy] =0[exp(—bo|y|)],  |y]|- oo, 4.7.2)
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for some 6,>0 and for all x in the interval (¢,R)."® If no singularity of
G(z) = M[h;z] M[ f ;1 — z] lies along either Re(z) = r or Re(z) = R, then

HLf:2~ 3 res(=A7°G,@)+ Y. res(—Ai*G(z)) (4.73)
r, <Re(z)<r r < Re(z) < R
represents a finite asymptotic expansion of (4.7.1) that is valid as 4 — < in the
sector defined by [arg(1)| < 6,. Moreover, if the above hypotheses hold for
arbitrarily large R, then by setting R =0 in (4.7.2) an infinite expansion is
obtained.

PROOF. If we set arg(A) = ¢, then we have
[A7570] = |4 7% e®. 4.7.4)

Because M[ f;;x +iy], j=1,2 can grow at worst algebraically as |y|— oo, we
have that whenever || < 8,, each of the functions 4=*~% G(x +iy), j=1,2
is o(|y|™™), as |y|— oo for all n and for all x in (a,R). Moreover, each of these
functions is at worst meromorphic in a right half-plane containing the corres-
ponding domain D;. Thus, the contours of integration in the still valid represen-
tation (4.5.12) can be displaced to the right until they both coincide with
Re(z) = R. Then upon applying Cauchy’s integral theorem and using the fact
that G(z) exists at least in the generalized sense for Re(z) > 1 — 8, we obtain

H[f:4]= Y res(—i77G(2)+ >  res(—2A7%G(2))

ry <Re(z}<r r < Re(z) < R

1 R+ic0
= ~% G(2) dz.
2mi L_;w 47" Gla) dz @.1.5)

The asymptotic nature of (4.7.3) is finally established by the estimate

R+iw
j 17 G(z) dz

R-iw

<|4|® j ¢! |M[h;R +iy] M[f:1 = R—iy]| dy

<K|A|R, 4.7.6)
which by (4.7.2) is valid for some constant K whenever |¢| <.
Remarks. In Theorem 4.7.1, the desired extension was obtained by assuming

an exponential decay of M[h;x + iy] as |y| - co. Suppose now that M[ ;1 — z]
exists in the ordinary sense. It should be clear that if

M[f;1—x—iy]=O[exp(— ¥, |y)],  |y|- o, 4.7.7)

for some y, > 0, then an analogous result could be obtained with no decay of
M{h;z]. Moreover:

'3 The choices of «, &, ry, and R here are made to coincide with their usage in Section 4.5 where

the generalized Mellin transform is introduced.
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COROLLARY 4.7.1. If both (4.7.2) and (4.7.7) hold, then the sector of
validity of the expansion (4.7.3) is increased to |arg(1)| < o + 6,.

We wish to stress that the utility of Theorem 4.7.1 is limited by the fact that, as
yet, we have no a priori way of establishing the assumed decay of M[;z]. We recall
that a similar observation was made concerning the results of Theorem 4.4.
Thus, we shall devote the remainder of this section to obtaining conditions on /(¢)
which, when satisfied, guarantee the exponential decay of the functions G;(z)along
vertical lines.

In a given problem, where the relevant Mellin transforms are known explicitly,
the requisite behavior can often be established by inspection. Indeed, as an
example, consider the case of the Laplace transform. Then the kernel function
is h(t) = exp( — t) and M[h;z] =T'(z). We have

T(x + iy) =Ofexp[ —<§—s) Iy}

as |y|-»co, where ¢ is any small positive real number. Therefore, we can
immediately conclude that Watson’s lemma, originally proved for A real,
actually holds as |4|— oo in the right half-plane Re(4) > 0. Unfortunately, the
Mellin transform of h cannot, in general, be represented in terms of well-
studied functions and hence its asymptotic behavior as |y|— oo will not be
immediately apparent.

Our discussion below will be greatly facilitated by the introduction of the
following.

DEFINITION. A function A(t) is said to lie in the class K(x,,0,) [abbreviated
h(t) € K(xo,0,) ] if, for any £ > 0 and all x > x,,
M[h;x +iy] =0[exp( — [0, — €] |y]) ], |y]= 0. 4.7.8)

Here, for greater generality, we only require that M[;z] exist in the generalized
sense.

We also introduce, for any 8, > 0, the open sector defined by
5(60) = {t| t £ 0, |arg(t)| < b5} 4.7.9)

We wish to determine sufficient conditions for a function to lie in some class
K(x4,80). Our main result in this regard is given in the following.

THEOREM 4.7.2. Suppose that in the sector s(f,)
(1) h(z) is analytic.
(2) k() =0(tY), [t]—>0+.

o N(m)

() k) ~exp{ —dt'} > > cp.(logtyt™=, t—oo.

m=0 n=0
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Here Re(d) =0, v> 0, Re(r,,) T 00, and N(m) is finite for each m.
(@) If d =0, then h(t) ¢ K( — Re(),6,).
(b) If Re(d) > 0, then h(t) ¢ K( — Re(x),0) where

6 = min (90, ”_—2211‘“5—(‘1)]) : (4.7.10)
We remark that in (a), M[h;z] need only exist in the generalized sense because
— Re(a) can exceed Re(ry).

Before proving this theorem, we shall consider several examples to make the
conclusions more meaningful.

EXAMPLE 4.7.1. Suppose
he)=siny [(t—cos¥)® +sin? y]™!, O<y<nm. 4.7.11)

Then the hypotheses of Theorem 4.7.2 are satisfied with 6, <y [note that
h(?) has poles at t=e*"], =0, and d=0. Consequently, conclusion (1)
predicts that h(t) ¢ K(O,¢). Indeed, for this example, we have the explicit
result

Ao_msin[@—y)z—1]_ 4,
M[h;z] = P = Qe ¥P), ly|» 0, (47.12)
which verifies this prediction. We note that M[h;z] satisfies (4.7.8) with
0=y, e=0, and for all x. This is a consequence of the fact that k() belongs
to a particular subset of the class of functions which satisfy conditions (1)—(3)
of Theorem 4.7.2.

EXAMPLE 4.7.2. Suppose now that
h(t) = t'* K (1), (4.7.13)

where p is real and K, is the modified Bessel function of the second kind. From
well-known properties of the Bessel function!* we have that, in the complex
t plane slit along the negative real axis, t!/2 K, is analytic and O(exp{ — t})
as t— co. Furthermore, in this domain, if y # 0, then t'2 K, =0(|¢|} ") as
t—0, while /2 Ko(t) =0(|¢]*/* log |¢|) in this limit.

By Lemma 4.3.1, M[t"/2 K (¢);z] is holomorphic for x > |u| — 4. Furthermore,
the criteria of Theorem 4.7.2 are satisfied witha =14 —|u|,d=1,and v= 1. We
conclude then that

112 K (1) & K Q”l - %%) 4.7.14)
Indeed, we have from the Appendix that

14 See Exercise 4.3.
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1 1__
M2 K ();2] = 25~ r(z + 2 + ") r(z + z "), 4.7.15)

and (4.7.14) follows from known properties of the gamma function.

EXAMPLE 4.7.3. Now let us suppose that

h(r) = %, (4.7.16)

where P(t) and Q(t) are polynomials of degree p and g, respectively. Also suppose
that Q(t) has no real zeros except possibly at t =0 and that h(t) =0(t*) as t -0,
—qg<a<p. Then h(f) satisfies the hypotheses of Theorem 4.7.2 with d =0
and ro=gq—p. Furthermore, 6, = min(|arg(t,)|) where t=t, n=1,...,
ny < q are the complex zeros of Q(t). Then Theorem 4.7.2 predicts that

h(t) & K(— 0,0,). 4.7.17)

We leave the direct verification of this result to Exercise 4.32 but now consider
an important special case.

EXAMPLE 4.74. If
h(t)=(a+1)", (4.7.18)

then (4.7.1) is the generalized Stieltjes transform of f(t). Now the hypotheses of
Theorem 4.72 are satisfied with d =0, 8, =n —|arg(a)|, «=0, and ro=r.
Hence, the theorem predicts

h(z) e K(O,n — |arg(a)|). (4.7.19)
For this particular h(t) we have from the Appendix that

Mh;z]=a*"" % =0[exp{ — (x — |arg(a)| — &) |y|}]. (4.7.20)

as |y|- oo, for any £ >0 and for all x > 0. This explicit result verifies (4.7.19).

We shall consider additional examples below; but now we turn to the
following.

PROOF OF THEOREM 4.7.2. We consider first case (b). Here
M[h;z] =[5 he) =" dt 4.7.21)

is an analytic function in the half-plane Re(z) > — Re(x). If we define

0=0—¢, 0=min<90,“—‘3§|3-‘5@|>, e>0, (4.722)

then from conditions (1)—(3) we find that we can rotate the path of integration
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in (4.7.21) onto either of the two rays
t=ce*®  0<g<on.!’ (4.7.23)

By introducing ¢ as the new variable of integration on the rotated paths, we
find from (4.7.21) that

M[h;z] = exp{ + iz} M[g(0);z], glo)=h(o e t‘;‘5'). 4.7.24)

We now apply Lemma 4.3.1 to conclude that M[A(ge*?);z] is analytic for
Re(z) > —Re(a) and approaches zero, as |y|— =, for each fixed x > —Re(a).
If we interpret the + sign in (4.7.24) as representing the sign of y, that is, if we
rotate up (down) when y is positive (negative), then it follows that

M[h(t);z] =O(exp{ — 0 |y|}), |y|=> o, x> —Re(®). (4725
From (4.7.22) and (4.7.25) we have
h(t) e K(— Re(x),0).
To prove the result for case (a), we first introduce
M, [h(t);2z] = {j h@e) =" dt,
M, [h(t);z] = [T () &1 dt,

and note that these transforms are analytic in the regions Re(z) > — Re(x) and
Re(z) < Refry), respectively. Here we propose to replace each of the integrals
in (4.7.26) by an integral along a segment of the ray

t=ge*’®; 0=0,—¢, £>0, 4.7.27)

(4.7.26)

plus an integral along the arc of the unit circle connecting 1 with e*®.1¢ In this
manner we obtain

Mi[h;2]=1,@) + L,(2);  My[h;zZ]=1L2) + 1,(2),  (47.28)
where

Iy(z) = exp{ + iz} M,[g(0);z],  g(0) = h(o e*"),

I(z) = if%4 h(e™) ¥ dy,

Iy(z) = exp{ + iz} M,[g(0);z], (4.7.29)
I(2) = if§° h(e™) e dy.
We first note that I,(z) is an entire function and that
I,(2) + 1,(z) =0. (4.7.30)

15To justify this step, it must be shown that the integral on an arc of large radius
becomes vanishingly small as the radius increases. (See Exercise 4.25.)

16 As in the proof of case (6) we have in mind that the + sign in (4.7.27) corresponds to the sign
of y. See also footnote 15 and Exercise 4.26.
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By Lemma 4.3.3, M,[g(0);z] can be analytically continued into the right half-
plane Re(z) > — Re(x) and this continuation goes to zero as | y| - « . Hence,

I,(z) =0[exp{ — 0o — ) I¥|} ], |y|— o (4.7.31)

for Re(z) > — Re(«).

Finally, we consider M [h;z] which is already analytic in the region
Re(z) > — Re(x). The same is true, therefore, of M,[g;z] which must go to
zero, as |y|—oo in this region. Thus, we have that, as |y|-o with
Re(z) > — Re(a),

1,(2) =O[exp{ — (6o — &) |y|} 1. (4732
Because the generalized Mellin transform of h is given by
M[h;z] = M [h;z] + M,[h;z] (4.7.33)
we have, upon combining (4.7.28), and (4.7.30) to (4.7.32), that
M(h;z] =O[exp{ — (6o — &) |y[} ], (4.7.34)

as |y|—+ o, for all x> — Re(x). Hence M[h;z] ¢ K(— Re(),6y) which com-
pletes the proof.

In the last theorem we established criteria for determining in which class
K(x4,0,), if any, a given function belongs. In the following lemma, whose proof
we leave to the exercises, are collected some useful closure properties of K(x,0,).
If we call functions which belong to some class K(x¢,0,) “good” functions,
then these properties will enable us to generate additional good functions
from those already known.

LEMMA 4.7.1. If h(t) £ K(x,,0,), then

(@) r h(t) ¢ K(x,0,) for any complex constant r.

(b) h(rt) & K(xq,0,) for any real positive constant r.

(©) h(t") e K(rx,,0,/r) for any real positive constant r.

(d) ¢ h(t) e K(x, + Re(r),8,) for any complex constant r.

(e) Ifht) e K(x;0)) for j=1, 2, then

hy(t) + hy(t) ¢ K(max[x,,x,], min[6,,8,]). .

(f) If h{t)e K(x,0) for j=1,2 and, in addition, M {h;;z] converges
absolutely in a vertical strip S; to the right of x;, then h,(t) h,(t) € K(x; + x2,
min[6,,6,]) provided h, h; is locally integrable on (0, ).

EXAMPLE 4.7.5. To illustrate the application of result (f) of Lemma 4.7.1,
we consider

n

he)= 11 (¢ +a)”. (4.7.35)
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Indeed this result predicts

h(t) & K(0, = — max |arg(a)|) (4.7.36)
whenever each q; is nonzero, and ’
h(t) e K(—[py + -+ + pp), m — max |arg(a;)|) 4.7.37)
j>m
whenevera, = ---=a,=0,a;#0,j>m.

We, of course, wish to consider continuations of Mellin transforms into
left half-planes and, in particular, the analog of Theorem 4.7.2. Such an analysis
is greatly facilitated by the easily established relation

M[h(y); z] = M[h(%) ;= z] (4.7.38)

which also holds for functions whose Mellin transforms exist only in the
generalized sense. Upon using this relation we immediately obtain the
following,

LEMMA 4.7.2. If h(1/t) ¢ K(x0,0,), then

M[h(t);z}=0[exp{ — 0 |y|}], x<-—-x,, 0=0p—¢,  £>0.(4739)

To clarify this last result we consider the following.

EXAMPLE 4.7.6. Suppose
ht)=siny [(t—cosy)® +sin> y]™!, O<y<nm.

Then h(1/t) satisfies the conditions of Theorem 4.7.2 with 6, =, a=2,r, =0,
and d = 0. (Note that here « and r, have interchanged the roles they played in
Example 4.7.1.) Thus,

h(%) e K(— 2,9 (4.7.40)

and hence by Lemma 4.7.2,
M[h(t);z] =O[exp{ -0 |y|}], x<2, O=y—¢, &>0.(4.74])

We previously noted from the explicit formula (4.7.12) that (4.7.41) holds for
all x so that

sin [ (¢ — cos Y)* +sin? Y] ! & K(— oo ). (4.7.42)
This specific result is generalized in the following.
LEMMA 4.7.3. Suppose that h(t) ¢ K(x,,8) and h(1/t) & K(x,;0,) If xo<—x,,
then
h(t) & K(— 00,0,). (4.7.43)
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EXAMPLE 4.7.7. Let us again consider t'/2 K, (1) with K (t) the modified
Bessel function. From previously stated properties we have that 112 K, (1/9)
is analytic in the complex plane slit along the negative real axis. Moreover,
we have that ¢/ K (1/t) is algebraic as t—» oo and 0(]t]*), as t—0, for all
«, with these limits taken in the sector s(0, = 7/2). Thus, it follows from Theorem

4.7.2 that
t—1/2 Kp<l) e K (_ oo,E) (4‘7.44)
t 2
Finally (4.7.14) and Lemma 4.7.3 yield
V2 K (t) e K <- oog) (4.7.45)
a result which is verified by the explicit formula (4.7.15).

In Example 4.7.1, we observed that (4.7.8) held with 0, =y and e=0. We
now want to consider conditions sufficient for this sharper estimate to hold.
To accomplish this we first introduce the following.

DEFINITION. A function h(f) is said to lie in the class K(x4,0)
[A(t) € K(xo.80)] if (4.7.8) holds with ¢ =0.

A subset of K(x,,8,) is identified in the following.

LEMMA 4.7.4. Suppose that h(t) satisfies the hypotheses of Theorem 472
in the sector s(8,) with 8, > 8,, but for the following possible exceptions on
the bounding rays of s(0,) :

(a) h(t) has an algebraic branch point of order greater than — 1.
(b) h(z) has a logarithmic branch point.
(c) h(t) has a pole.
(d) h(t) has one of the above types of singularities at a finite number of
points.
If, in addition, either d =0 or (r — 2|arg(d)|)/2v > 0o, then
h(t) & K(— Re(),0,)-

prROOF. The proof follows closely that of Theorem 4.7.2 and is outlined in the
exercises.

We shall conclude this section by considering the asymptotic expansions of
two explicit integral transforms for complex 4.

EXAMPLE 4.7.8. Let
HLf 34 ={7 (0" K () f(0) dt, (4.7.46)
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which is the K, transform of f(r). We wish to study H[ f ;4] as |A| - co. From
Example 4.7.2, we have that the resulting asymptotic expansion will be valid
for |arg(d)| < m/2.
We shall assume that f(z) is locally integrable on (0,c0), satisfies (4.4.9) with
g=0and p,,=0for n =1, and has the bound
J(©)=0[exp(p)]

as t— co for any real p. Then we can apply (4.4.17) and (4.7.15) to conclude

J‘: (At)l/Z K”()»t)f(l) dt ~ i Afr:(;. 2% -1 F(am + % + ﬂ) r(am + % - /l>

m=0 2 2
. 4.7.47)
as A oo in the sector |arg(l)| < n/2.
EXAMPLE 4.7.9. Let
[
H[f ;A= j
A=), Gt >0 (4.7.48)

We recall that A" H[ f;2] is the generalized Stieltjes transform of argument
A~'. Thus, the asymptotic expansion of H[ f ;1] for 1 — oo is proportional to
the expansion of the generalized Stieltjes transform as 1 — 0.

From Theorem 4.7.1 and Lemma 4.7.4 we conclude that the resulting
asymptotic expansion will be valid in the sector |arg(1)}| <= when r =1 and
|arg(4)| < = when r < 1. For simplicity, we assume that f(¢) is as in Example
4.7.8 except now we require Re(ay) > — 1 in (4.4.9) and that

S=sup{é*|f =0(1"%), too}>1. (4.7.49)
Then M[h;1 — z] is analytic in the strip 1 — § < Re(z) < 1 + Re(a).
If we set a =1 in (4.7.20), then we have
_ I I(r—2z
I'()

This function hassimplepolesatz=r+n,n=0, 1,2, ... . Thus,ifr+ n# 1 + a,
for any pair of nonnegative integers n, m, then by Theorem 4.7.1,

M[(1+197";z) (4.7.50)

AU JESTUNR SR Il +a,)T(r—1-a,)
Jo TE TP S )
2 Mfil—r—m]T@+mAr "
+ -1
mZO (=17 m! T(r) (4.7.51)

as A oo in |arg(d)| < n.

All of the results of this section yield sectors of validity that are of the form
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|arg(4)| < 8,. It is readily seen that asymmetric sectors can be obtained as well.
Indeed, we have the following.

COROLLARY 4.7.2. Suppose that in Theorem 4.7.1, the estimate (4.7.2) is
replaced by
M[h;x + iy] =O[exp( - 0% |y|)]. +y—s00,  Xx>Xq. (4.7.52)
Suppose further that
M[f;1—x—iy)=Oexp(—¥§ |y)], ty-oo, x>x. (4753)
Then (4.7.3) is valid for
~ (65 +y5)<arg(l) <6 + . 4.7.54)

The extension afforded by Corollary 4.7.2 is particularly important when the
kernel h is oscillatory because in that event 6§ and 6, are most often different.
To illustrate this let us consider h = exp(it). We have

M[h;z] =exp<5—’;5) r(z)=0[|y|*“’ exp %(y + Iyi))], |y|— 0.

(4.7.55)
Thus, in this case

9; =n, 65 =0. (4.7.56)

4.8. Electrostatics

Let us consider the idealized situation consisting of an infinitely thin
conducting plane with a hole of unit radius cut out of it. Suppose that a disc,
made of the same material as the plane, fills the hole, but is electrically insulated
from the rest of the plane. Finally, let the disc be maintained at a fixed potential
V while the remainder of the plane is kept at zero potential. Our problem is to
find the resulting electrostatic potential field of the system.

We introduce the cylindrical coordinate system r, 6, z as depicted in Figure 4.8.
If ¢ =¢(r, 6, z) is the desired potential at any point in space, then it must
satisfy the following boundary-value problem:

Ap =0, (4.8.1)
o=V, z=0, 0<r<l, (4.8.2)

¢=0, z=0, r>1, (4.8.3)

@(r, z) bounded as Vr2 + z2 —> o, (4.8.4)
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Figure 4.8. Plate with Insulated Disc.

To solve this problem, we first note that the symmetry of the system implies
that ¢ does not depend explicitly on 6 and that ¢ must be symmetric in z about
z = 0. Therefore, we shall assume that ¢ = ¢(r,z) and shali restrict our considera-
tions to the half-space z > 0. We now introduce

$(p.2) = r Jolpr) ¢(r,2) dr (4.8.5)

which is the Hankel transform of ¢ with respect to r. As was pointed out in
Section 3.2, the inversion formula for this transform is

d(r,2)= " p Jolpr) $(p,2) dp. (4.8.6)
Thus, if we can determine ¢, then insertion of the result in (4.8.6) will yield an
integral representation of the solution to our problem.
If we multiply (4.8.1) by r Jo(pr) and integrate the result with respect to r
from O to oo, then after two integrations by parts we have

0= r rJolrp) A¢ dr= r%q;sJ olpr)| —pér Jo'(pr)
0

o 0
0’ ®
+ <@ - P’) j rJolpr) ¢ dr. (4.8.7)

0

It follows from (4.8.4) that the boundary terms in (4.8.7) vanish and hence
- #(p,2)=0 (4.8.8)
52 P p,z)=0. 8.
The general solution to (4.8.8) is

é(p,2) = A(p) e~ + B(p) e™. (4.8.9)
Because z is positive, (4.8.4) and (4.8.6) imply that B(p) = 0 and hence we have
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d(r,z)=[g p Jo(pr) e 7 Alp) dp. (4.8.10)

To complete the solution we need only determine A(p). From (4.8.2) and (4.8.3)
we obtain

V=13 pJolpr) Alp) dp, 0<r<l,
0= {5 p Jolpr) Alp) dp, l<r<w,

which are dual integral equations for the determination of A(p).
From (3.2.6) we see that p'/2 A(p) is the Hankel transform of order zero of the
function

@48.11)

rizy, 0<r«t,

fn=
0, I1<r<o,
By the inversion formula we have
! vV
Alp)=V j r Jolpr) dr= > Ji(p) (4.8.12)
0
so that
dr,2)=V [ Jo(pr) J1(p) e dp. (4.8.13)

At this juncture we have a choice. We can either stop at (4.8.13), being
satisfied with having obtained the exact solution in closed form, or we can
attempt to approximate the integral in various limits of interest. We, of course,
prefer the latter alternative. There are several limits that might be of interest.
We shall not, however, try to exhaust them all. Indeed, we shall only consider
¢(r,z) as r->o, r»0+, z—0, and z— . In all of these limits the second
variable is assumed to remain finite.

Case . r— 0. Here (4.8.13) is an integral of the form (4.4.1) with h(p) = Jo(p)
and f(p) = V J,(p) e”P°. From the table in the Appendix we find that!’

o)
M[J,(p);€] = A% (4.8.14)
rit-3
MV J,(p) e ;1 —¢]= Vm é)F<2 > ¢3 2‘5 2:— 1) -2 (48.15)

Here F(a,b;c;x) is Gauss’ hypergeometric function which is a solution to the

17 Our use of r and z in their traditional roles as cylindrical coordinates conflicts with our use
of z as argument of the Mellin transform and r as a constraint on its real part. In this example we
replace the latter z by ¢ and make no reference to the latter r.
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differential equation
X(1—x)w" +(c—[a+b+ 1]xw —abw=0. (4.8.16)

The fundamental properties of F(a,b;c;x) are discussed in most books dealing
with special functions.

We see from (4.8.14) that M[J,;£] is analytic in Re(¢) > 0. For fixed ¢ and
x, because F(a,b;c;x) is analytic in a, b, it follows that M[V J, e™7*; 1 — &
has simple poles at the integers £ =2, 3, ... . However, M[J,;&] has zeros at
the even integers so that residue contributions will be obtained from the odd
integers greater than 1 only. Indeed, we find upon applying (4.4.18) that

vz 1. 1\ 3vz 31 -
¢—2r3F< 5:0:2; 22> 3 F(—E,—1,2,—z—2)+0(r ). (48.17)

Because F(a,b;c;x) =1 whenever either a or b is zero, we have the simple
result

= 7 +0(r"5) r— . (4.8.18)

Casell. r—0+4. Now we must consider M[J,;1 —&] which has simple
poles at the positive integers and M[J, e~ *;¢] which is analytic for Re ¢ > — 1.
The desired expansion is obtained by applying (4.6.17) which yields

3 1 3vr? 5 1 4
- F _ - T — . 8.
¢= ( 2% zz> 4z* F<2’2’2’ 22) o) #819

This last expression can be simplified by noting that the hypergeometric
functions that appear are actually algebraic in z. Indeed we have

3 1 z
F1,2:2: — 5 V=22%(1 — ——), 4.8.2
(22-3)=2(- i) 4820

5 1 2z2 z3
2o )= o 3.
F(Z,z, ; zz) 3 [1 (1+22)3/2:|, 4.8.21)

so that (4.8.19) becomes

z Vr? [ z3 ]
=Vl -——)—— | 1 ———— | 40, —0+. (4822
¢ ( 1+ zz> 222 (1 +z2p7 9 ! ¢ )

Case IIl.  z— 0. Before deriving any result for this case we wish to point out
that we might expect difficulty in the region about r = 1. This, of course,
corresponds to the edge of the disc and the potential is discontinuous there.
We should anticipate therefore that our expansion will exhibit a lack of
“uniformity” in this region.

By referring to (4.8.13) we see that now the kernel function is h = e ™7 while
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the transformed function is f =V Jy(pr) J,(p). Again by using the table in the
Appendix we find that the relevant Mellin transforms are given by

M[e7?;1 = &]=T(1 =), (4.8.23)
VF(%+§)F(§—T—1,E;I;F>
2 72
3 ¢ s 0<r<li,
2753
V2"’“I“(l—é)r‘<%+§>
MV Jo(pr) J1(p);&] = T ¢ ,  r=1, (4.8.24)
rrz-2\r(z-=2
(2 2) (2 2
1 &\ (6+1E+1 1
”(2 2>F(T’T’2’r_2)
T2 s 1<r.
21‘§r§+11"<§——2-)

Suppose first that 0 < r < 1. Upon using (4.8.23) and the first of formulas
(4.8.24) we find from (4.6.17)!® that

=V F1,0;1;r%) ~ V z F&,3;1;r) +0(2%). (4.8.25)

There is no term 0(z) because M[V Jo(pr) J,(p);¢] vanishes for ¢ =3 and
0 <r < 1. The first hypergeometric function in (4.8.25) is identically 1 and the
second is directly related to E(r), the complete elliptic integral of the second
kind. Indeed, we have

3 1.1.,2y _ 2 _ 2 2 — 2o
F(z,z,l,r)—n(l_rz)E(r)—n(l_rz)j0 JI—Fsn’0d9  (4826)

so that

6=v-—2Y2_Eptor’), -0, O<r<i. 48.27)

(1l —r?)

Now suppose that r = 1 in which event both of the relevant Mellin transforms
have poles. M[e ?;1 — £] has a simple pole at each positive integer while
M([V Jy(p) J1(p);&] has a simple pole at each positive even integer. [We point
out that this could be predicted from the asymptotic form of Jy(p) J,(p) as
p— oo which has some terms in its expansion which are not oscillatory as is
every term in the expansion of J(pr) J,(p) for r # 1.] The coalescence of poles
at & =2 produces a logarithmic term. In fact we find upon applying (4.6.19)

!8In Example 4.6.1 we discussed the small parameter Laplace transform, hence we could
alternatively apply (4.6.23).
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that
¢(1;2) Y [l + %71(2_/8)] + 0(z3 log z). (4.8.28)

Finally we suppose that r > 1. Here we are content to obtain the leading
term. The first contribution arises from the pole of I'(1 — £) at &£ = 2. [The pole
at & =1 is cancelled by the zero of M[V J(pr) J,(p);&] at this point.] Thus,
we have

= G ; 2,1 12> +0(zY). (48.29)
Here again the hypergeometric function can be expressed in terms of elliptic
functions. In fact we have

2
) an

as z—0. Here K(r) is the complete elliptic integral of the first kind and is

defined by
/2
K(r)= j _ 49
o J1—r%sin?@

It should be noted that both (4.8.27) and (4.8.30) achieve the correct boundary
values when z =0.

CaselV. z— . The fact that M[V Jy(pr) J1(p);&] has separate Mellin
transforms in the three regions 0<r < 1,r =1, r > 1 would indicate a similar
lack of uniformity in this limit also. This would be disturbing, however, because
the potential is perfectly smooth away from the disc and there would be no
physical explanation for any nonuniformity. Fortunately there is no problem
as we shall show.'® Restricting our considerations to 0 <r <1 and using the
Mellin transforms M[e™?;&] and M[V Jo(pr) J,1(p);1 — &] given above, we
find from (4.4.17)%° that

¢=5‘z’—2( 1,1,2)———F( —2;1;) +0(z"%).  (4831)
But

FO,—1;1;r)=1 and F(-1,-2;1;r)=1+2r2
S0 that

¢=§‘—2/3—%(1+2r2)+0(2’6), zow, O0<r<l. (4832

19 See also Exercise 4.29.
200r (4.4.26).
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In the region r > 1 we find that

v oo3ve 1 e

vV o 3vre 1 -
— 27 — ) +0(z"¢ 4.8.33
e <1+2r2>+ ), (4833)

which agrees with (4.8.32). Finally the expansion obtained for r =1 is

V 9V -
=—>—2_40(z"¢ 4.8.34
¢ 272 8z“+ (z™°) (4.8.34)

the limit obtained as r— 1 in both (4.8.32) and (4.8.33).

4.9. Heat Conduction in a Nonlinearly Radiating Solid

Let us consider the following initial boundary-value problem for the heat
equation:

u, —u, =0, 0<x<oo, t>0, 49.1)
u(x,0)=0, 0<x< o0, 49.2)

lim u(x,f) =0, t>0, (4.9.3)
u,(0,t) = a[u(0,6)]" — f(1), t>0. (4.9.4)

The solution u to this system represents the temperature in a one-dimensional
semi-infinite bar which is initially at zero temperature. The boundary condition
(4.9.4) states that, at the end of the bar, there is a heat input of amount f{¢) while
simultaneously heat is being radiated away at a rate proportional to the nth power
of the temperature.

Both o and n are fixed constants. If n# 0 or 1, then the problem as stated is
nonlinear. The particular value n = 4 is of special interest because it corresponds
to the well-known Stefan-Boltzmann law of radiation.

The standard technique for solving (4.9.1)~(4.9.4) is to first employ the
Green’s function for the problem to obtain an integral representation for u.
Indeed in this manner we obtain

3 2
u(x,t)= ﬁ L (t—s)"Y2exp {— ﬁ} [f(s) — o u™(0,s)] ds, t=>0,

x=0. (4.9.5)
Thus, we see that to determine u(x,t) anywhere in the region t =0, x =0, we

need only know u(0,¢), the temperature of the end of the bar, as a function of
time. If in (49.5) we set x=0 and u(0,t)=(t), then that equation

SECTION 4.9  Heat Conduction in a Nonlinearly Radiating Solid | 153

becomes

1 f [f(s) —ays)]

- ds, 4.9.6
R = % (4.9.6)

W)=
Nz
which, in turn, is a nonlinear integral equation for the determination of y.
Our objective here is to obtain an asymptotic expansion of y(t) as t —» o . For
simplicity, throughout our discussion we shall assume that n=>1 and f(t) =0
for all t = 0. Finally, without loss of generality we shall set « = 1.
In (4.9.6) let us set s = gt so that we have

W)= \/? j‘(‘f g(o) h(to) do. 4.9.7
Here
h(to) = f(ta) — y"(to) (4.9.8)
and (= {1-0])" 12, 0<o<l,
g(o) = 4.9.9)
0, l<o.

We see from (4.9.7) that to obtain an asymptotic expansion of y we need only
determine one for the integral in that equation and then multiply the result
by /f. We observe, however, that the integral is precisely of the form considered
in this chapter and hence we can apply the Mellin transform technique.

We know that to determine the asymptotic expansion of the integral in
(4.9.7), it is sufficient to have appropriate asymptotic forms for h(s) and g(o)
as ¢ — oo and ¢ — 0+, respectively. The behavior of g(s) near 0+ is easily
obtained from (4.9.9). The behavior of h near + oo, however, involves the
behavior of y near + oo which is precisely the result we have set out to obtain.
Thus, although we cannot proceed to directly determine the desired expansion
of y, the following self-consistent approach to our problem is suggested.

We begin by assuming asymptotic expansions, as t— <o, for both y(t) and
f(#). Because f(t) is a given function, the parameters that appear in its expansion
are known. Our problem is to determine the unknown parameters in the
expansion of y. Our asymptotic expansion of the right-hand side of (4.9.7) can
then be derived by our Mellin transform procedure. It will, of course, involve
these unknown parameters. Finally these parameters will be determined by
requiring the derived expansion to coincide with the assumed expansion of y.

To pursue our program, let us assume that, as t —» oo,

fO~pot ™, ag=0. (4.9.10)

This information will prove sufficient to determine the asymptotic expansion
of y to leading order. Although q, is fixed, we might anticipate that there will
be several cases, depending on the values of a, and n, that must be treated
separately. Indeed, this turns out to be so. Rather than attempt to consider all
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of the possibilities, we shall be content here with treating two representative
cases in detail.

Casel. 0<a, <1, n>2.Let ussuppose that, as t > o,

W) ~cot™" (4.9.11)
and seek to determine ¢, and ry. It follows from (4.9.10) and (4.9.11) that
h(t) ~ yo t™% —(co)" t™™°, t— o0, 4.9.12)

where we have included both terms because we have not as yet determined the
relative magnitudes of a, and nr,. Also, we have explicitly that

I(l-2)
1=zl = . 4.9.13
Mlg;1-z]=5 T (49.13)
Hence, it follows from (4.9.12), (4.9.13), and (4.4.21) that
i I'(1 — ao) 4o L1 — 1170)
~ i T 49.14
A~ 5700y pa S (el £ (49.14)

By hypothesis, because (4.9.11) must also hold, there are only three
possibilities :

(1) ro=a,—1,

(2) Ao =nTy,

() ro=nro—1.
Clearly (1) cannot hold because it implies r, <0 which in turn implies that the
dominant term on the right side of (4.9.14) is 0{t ¥~"°). This term would then
dominate the leading term in the assumed expansion of y which yields a con-
tradiction. If (3) holds, then ry = [2(n — 1)]*, $ — nry <0, and the dominant
term on the right side of (4.9.14) is 0(t!~¢) which again dominates the leading
term in the assumed asymptotic expansion of y. Thus (2) must hold and hence

co = (yo)*/".
Therefore, in this case, as t - o,
W(E) ~ (po)tin ¢~ a0l (4.9.15)

CaseIl. g, >2, n>2. Again let us suppose that (4.9.11) holds. Then it is
quite simple to show that to leading order
712 I'(1 —nry)

W)~ {M[f;1] - M[y"; 1]} \/— 0)nr(1 nro)

In deriving (4.9.16) we have tacitly assumed that nr, # 1 because otherwise the
second term on the right would have to be replaced by one 0(t~ /2 log 1).

th"e, (4.9.16)
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However, nry =1 can be eliminated as a possibility because if it held, then
¢o t~" would dominate both terms on the right of (4.9.16). Thus, there remains
the two possibilities

(1) ro= 2 >
@ ro=2[n-1]7".
If (2) holds, then ¢, = —(c,)" - const., possible only for real ¢, when »n is an even

integer. For f positive, the maximum principal for diffusion equations would
preclude this possibility. Hence (1) holds, so that

{M[f;l]_M[y";l]}t-l/z 60 PR ICE
Jr NG

&o={y [f(9)—y"(s)] ds (4.9.18)

which exists under the assumptions made for the result (4.9.17). We have
introduced the symbol &, because, in our original heat conduction problem,
it represents the net energy flux through the end of the bar.

There is an obvious defect in the result just obtained in that the coefficient &,
depends on the global behavior of the unknown solution y. Furthermore,
because &, is unknown, we cannot conclude immediately that &, 0. By
independent arguments, however, we can show that &,> 0 and hence, even
though we do not know the leading coefficient explicitly, we have that in the
present case, y(t) =0t~ /) as t > 0.

We could continue our discussion in several directions. In addition to the
remaining cases to be treated we might also seek further terms in the various
expansions. We could also attempt to adapt our procedure to the study of y
in the limit t—0+. We shall leave these considerations to the exercises,
however.

There is one point we feel worth some elaboration. The analysis given above
is formal in that we have not established the asymptotic nature of the results
obtained. Although we shall not attempt to rigorize our results here, we wish
to briefly indicate what would be sufficient to do so. Suppose that by
independent arguments we could establish that y(t) has an asymptotic expansion
to leading order of the form (4.9.11), at least in the two cases considered. Then
we claim that (4.9.15) and (4.9.17) must be valid. This is so because all of the
steps following the initial assumption (4.9.11) are rigorous. Thus, to prove the
asymptotic nature of our results, it is sufficient to prove the existence of an
asymptotic expansion of y of the form assumed.

ne)~

We can also write

4.9.17)

4.10. Fractional Integrals and Integral Equations of Abel Type
Let us consider the quantity

riril=— [ roa-oae @10.1)

() Jo
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Here fis a given locally integrable function and Re(u) > 0. It is easy to see that
when p is the positive integer n, we have

W LS A]=1(), (4.102)

that is, I"[ f;4] is an nth repeated integral of .

Because the right side of (4.10.1) is well defined for all u such that Re(y) > 0,
it is reasonable to consider I*[f;A] as a fractional integral of f whenever p
is not a positive integer. Indeed, I"[ f ; 1] is usually called the Riemann fractional
integral of f of order u.2! Of particular importance is the relation

IS 5E]50) = 0L f34]. (4.103)
This can be established by interchanging the order of integration in
BV . A 1 * -1 _xy—1
IS 58)54) “TWTIo j 6 f@E-1) dr) (A—&y~'dE (4.104)

and observing that

- () T,
T(u+v)
Although the use of fractional integrals is rather widespread in analysis, we

shall be content here with studying their application to integral equations of
Abel type. These integral equations are of the form

'y
L E—-P @At dE=(A- (4.10.5)

I (9]
)= L = dé. (4.10.6)

Here o < 1, fis a given function, and h is to be determined. The key to solving
(4.10.6) is the recognition that f is proportional to the fractional integral of
h of order 1 — «. Indeed we have

fA) =T —a) I'~[h;4]. (4.10.7)
If 0 < « < 1, then upon using (4.10.3) with 4 =1 —a and v = o we find that

1 A
=g L/3H= I'h;A] = L h() dé. (4.10.8)
Now upon differentiating (4.10.8) with respect to A we obtain
— l _‘i 1 . — 1 a-1
W=t 3 L ) = T a7 Ja O 97 4 (8109)

If f is continuously differentiable, then we can integrate by parts in (4.10.9)

2 The quantity I*[f;4]=(1/T(w)) ¥ f(&) (¢ — A)*~! d¢ is called the Weyl fractional integral
of fof order u.
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which yields

h(3) =

sin na d {f ©0) A*

G2 [ rea-or

Sll’l o

A
e[ roe-otal. o
Here we have used the relation I'(a)) I'(1 — &) = a/sin na.

When a <0, we still have (4.10.7) but I°[f;A] must be defined through
differentiation. Thus, forn — 1 < — Re(a) < n, with n a positive integer, we define

I'[f;4] = W e f;4]. 4.10.11)
Therefore, in this case, it follows from (4.10.8) that
sin o d"*! 2 _
h(A)= AT L SEA=-§ e de. (4.10.12)
Finally, if a is a negative integer, say & = — n, then (4.10.6) reduces to the
simple relation
SA)y=nt1"*[h;4] (4.10.13)
so that
W= oD )
n! ' (4.10.14)

With the above discussion as motivation, let us now turn to the study of the
fractional integral (4.10.1) in each of the two limits A— 0+ and 1— + c0. We
first note that upon setting ¢ = At in (4.10.1) we obtain

Mf; A]——J. S -0 de, (4.10.15)

[(w)

which is a transform of the type considered in Section 4.4. Indeed, the fractional
integral of f is seen to be the h-transform of the function

i
— (1 =rt, 0<st<1,
_Jtwt
g:() =
(4.10.16)
0, l<t< o,

Here the kernel function h is f itself.
We naturally wish to apply the expansion theorems of Section 4.4, Because
we have the explicit result (see the Appendix),

Mlgy;z] = = Blu,2) = )

) Ta+2) (4.10.17)
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we need only assume appropriate asymptotic forms for f as t -0+ and as
t— oo to determine asymptotic expansions of I*[ f;4] in the desired limits. In
what follows we shall assume that the behavior of M[ f;z] as |y|— oo is such
that the Bromwich contours in the relevant Parseval formulas can be displaced
arbitrarily far to the right and that the estimates in Theorems 4.4. and 4.6
are valid.

Suppose then we consider (4.10.15) as A—0+ . For simplicity we assume
that,as t >0+,

f~ i by, t*= 1 (4.10.18)
m=0

with Re(a,) T + o0, as m— . Then M[f;1 — z] has simple poles at the
points z = a,, and corresponding singular parts
-b,
Z= 0y

(4.10.19)

Because M([g, ;z] is analytic in Re(z) >0, we immediately obtain from the
results of Section 4.6 that, in this case,

I f;A]~ B Y L A-0+. 4.10.2
(341~ Z WH) —0+.  (41020)
In order to consider (4.10.15), as A — + o0, we assume that
f@)y~e > d,t7, (4.10.21)
m=0
as t—oo. Here >0 and Re(r,) 1 + o« as m— o. We first suppose that

a > 0 in which event M[ f;z] is analytic in Re(z) > x, for some x,. M[g, ;1 — z]
has simple poles at z=n, n= 1, 2, ... with corresponding singular parts

(—1p

: 4.10.22)
INu+1—-n)(n—-D!(z—n)
Hence it follows [see (4.4.18)] that, as 1— oo,
o M[finjA* " (-1 n+ 1
P~ D, L/ 7 (- 17" (4.10.23)

a=t Tw+1-—n(n-1)!

Now suppose that a =0 in (4.10.21). Then M[ f;z] has simple poles at the
points z = r,, with corresponding singular parts

Ay

- . (4.10.24)
z—r,
Thus, if r,, is not a positive integer for any m, then
M _1n+ll n+p 0 d r*l_ lu—r_

a1 I“(u+1 nn-D! = Tu+l-r,)
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Finally, if « =0 and some r,, is a positive integer, then a logarithmic term
appears in the resulting expansion. If, for definiteness, we assume that r, equals
the positive integer m, then we have

. ) —m—l M[f;n] (_ 1)n+1 }._"+"
I[f’”_,; T+ 1—n)(n—1)!
(=1 td, 2* ™ log 4

m—1)T(u+1—m)

+O(A*™™). (4.10.26)

4.11. Renewal Processes

Imagine that we have a population of components such as light bulbs,
batteries, and so on. Suppose that each component is numbered and that the
lifetime of the nth component is represented by the number T,. In general,
there is no way of knowing a priori the value of T, and therefore we must think
of it in probabilistic terms. Thus we shall consider T, to be a random variable
having probability density f(t) and cumulative distribution F,(t). These
functions are simply related by

F,(t)=Prob (T, < 1) = |, f, (x) dr. (4.11.1)

In this model f(t)=0 for ¢t <0 and hence we say that T, is a positively
distributed random variable. We shall further assume that f,(f) is continuous
for t > 0 and that the random variables T, are independent. Thus no concentra-
tions of probability occur at discrete points and the lifetime of any one com-
ponent cannot affect the lifetime of any other component.

Typically, we use the population by first selecting at random a single com-
ponent. This component is used until it fails. Upon failure, it is replaced
immediately by a second component again chosen at random. The second
component is then used until it fails and the process is repeated continuously.
A practical question we might want answered is, how many replacements
(renewals) can we expect to make in a given time interval? Our objective here
is to at least partially answer this question.

Let us suppose then that the above procedure is carried out and that the
components are relabeled so that the nth one selected has the number n and
hence lifetime T,. We now introduce a new random variable

S,=T,+T++T, 4.11.2)

which, assuming the process starts at ¢ = 0, represents the failure time of the
nth component. It is also convenient to define still another variable N, which
represents the number of renewals in the time interval [0,]. Here N, is taken
to be zero. We readily see that

Prob(N, <n) =1 — Prob(S, < ). 4.11.3)
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The expected or mean value of N, is called the renewal function. It is usually
denoted by H(t). The stated goal of our analysis is the determination of H(t).
Another quantity of interest is the so-called renewal density h(t) related to
H(t) by

h(t)= H'(1). (4.11.4)

Note that h(z) is not a probability density function and H(#) is not a cumulative
distribution function.

Although it is not necessary, a significant simplification is achieved upon
assuming that the random variables T, are identically distributed. That is to
say, f,(t) =f(t) and F,(t)=F(t) for all n. In that event the process is usually
called an ordinary renewal process. Certainly, if the components of our popula-
tion were all manufactured under the same conditions, then this last
assumption is quite reasonable.

The simplification that is achieved lies in the fact that now h(¢) satisfies the
linear integral equation

h(t) =£(0) + §}, h(t — w) f(u) du. (4.11.5)

We can heuristically justify (4.11.5) by multiplying through by At and observing

that f(z)A¢ is the probability that the first component fails in the time interval

(¢, t + At) while At j{, h(t — u) f(u) du represents the probability of renewal in

(¢, t + At) given that the immediately preceding renewal occurred in (0,¢].
Upon integrating (4.11.5) with respect to t from 0 to t we obtain

H(t)= F(t)+ [, H(t — u) f(u) du, (4.11.6)

which is a linear integral equation for the determination of H. We wish to

study the asymptotic behavior of H as t — co. Our procedure will be to obtain

an integral representation of H(r) via Laplace transforms and then to apply the

asymptotic methods of the previous sections to this integral representation.
Upon taking the Laplace transform of (4.11.6) we find that

-t LLfs]
Z[His)=1+ ST (4.11.7)

Here we have used the basic Laplace convolution theorem and the relation

ZL[F;s]= j e F(t)dt=—Le F(t)’m + % F e~ ® (1) dt
0 1]

=,<£§ Lf:s], (4.11.8)

which follows from the fact that F(0) =0.
Because

=y [ dt=2[f;0] =1, 4.119)
we have that Z[f;s] is analytic for Re(s)>0. If we could show that
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{1 =Z[ f;s]} " is also analytic for Re(s) > 0, then it would immediately follow
from the Laplace inversion formula (4.2.11) that

_ 1 c+io e"y[f;s]
H(t)_%jc_iwmds, ¢>0. (4.11.10)

Because f(t) = 0, we have
LS 31 =g e f() de| <[5 e " f(r)de < [ f()dt =1 (4.11.11)

for Re(s) > 0. Thus, in this region, 1 —¥[ f;s] is bounded away from zero and
(4.11.10) is valid.

We now suppose that #[ H ;s], which has been shown analytic in Re(s) > 0,
can be analytically continued into Re(s) < 0. Moreover, we shall assume that
the singularities of the continuation that arise in Re(s) <0 are either poles or
branch points and that the only singularity on the imaginary axis occurs at the
origin.

If we assume that #[ f;s] — 0 as |s|— oo in a neighborhood of the imaginary
axis,?? then it follows from the Cauchy integral theorem that we can replace
the contour of integration in (4.11.10) by a sum of contours which consists of
loops around each branch cut of #[H ;s] and small circles around each pole.
We shall agree to draw all branch cuts from the relevant branch points to infinity
in the left half-plane in such a manner that no finite singularity lies on the cut
except the branch point itself.

It is readily seen that regardless of the nature of the singularity of [ H ;s]
that occurs at, say, s=s,, the corresponding contribution to H(t) is
0(t* exp{ Re(sy) }) as t — oo. Here « is a finite constant and hence the contribu-
tion is exponentially small whenever Re(s,) < 0. Thus, in order to determine
the asymptotic expansion of H(t), we need only consider the integral corres-
ponding to the singularity of #[H;s] at the origin. As we shall see, this
singularity usually involves a multivaluedness of £[H ;s] so that, in general,
s = 0 is a branch point. Thus, we have

H(t )~_j S S[H;s]ds, (o, @4.11.12)

where c is a semi-infinite loop around the branch cut through s = 0. If Z[H ;s]
has only a pole at s =0, then c is equivalent to a small circle about the origin.
We can anticipate from our results on Laplace-type integrals and in particular
from Watson’s lemma that in (4.11.12) we need only be concerned with the
integral over a small portion of ¢ near the origin. For this reason there is no
loss of generality in assuming that s = 0 is the only singular point of £[H ;s]
on the negative real axis, so that this axis can be taken as the corresponding

22 That this is true for Re(s) = 0 follows from the Riemann-Lebesgue lemma.
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branch cut. Thus (4.11.12) becomes
1 0+
H(t)~ﬁj e'P[H;s] ds, 4.11.13)

where we have adopted the standard notation for a loop contour around the
negative real axis.

As we have indicated, our plan is to apply the results previously obtained
for Laplace-type integrals. We cannot apply Watson’s lemma directly, however,
because our contour is a loop rather than a segment of the real axis. Indeed we
must now use the following.

WATSON’S LEMMA FOR LOOP INTEGRALS. Consider the integral

o0+
I(A) = j- g(s) e* ds. 4.11.14)

Suppose that g(s) is analytic in some domain containing the loop contour in
(4.11.14) and cut along the negative real axis. Suppose further that

gs)=0(e"), |s|ooo, 0<]arg(s)| 4.11.15)
and
X n
g9~ 3 dns=,  |s|-0,  largl9)|<n—5,  S<3 @41116)
m=0
Here a is real and Re(r,,) 1 co. Then I{(A) exists for 1> g and
© 0+ 2 d A rm -1
1~y d, j ¢ ds= Z m S @.11.17)
m=0 - m=0
Here we have used Hankel’s integral representation of the gamma function
0+
— z—1 ,8 1.1
I'(z) Ty j_ sTleds (4.11.18)
and the well-known relation
. T
sin nz F(Z) = 1_“(1——2) (41119)

Note that Re(r,) > 0 is not assumed so that the origin need not be an integrable
singularity of g.

PROOF. The proof is analogous to that of the ordinary Watson’s lemma proved
in Section 4.1 and is left to the exercises.

Letus now return to (4.11.13) and assume that #[ H ;s] satisfies the conditions
(4.11.15) and (4.11.16). It then follows from (4.11.17) that

o d t7"!

H(t)~ ,..Zo T t— o, (4.11.20)
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We, of course, want to relate the constants d,, and r,, back to the given
probability density function f(r). For this purpose let us assume that,
ast- o,

f(t)~e ™ i ot (4.11.21)
m=0

Suppose first that « > 0. Then we have that %] f;s] is analytic for Re(s) > —a.
Moreover we find from (4.6.23), with all c,, = 0 in that result, that

z[fs]_}: —M[f +1] =§

'I

s s—>0+, (4.11.22)

where we have used p, to denote the nth moment of f. Thus p, =1 and g, is
the common mean of the random variables T,,.
Upon inserting (4.11.22) into (4.11.7) we obtain

1 [e]
LIH;sl=5— > Bus™ (4.11.23)
S #1m=0
Here 02
B,=1 and p,=H2_“HL (4.11.24)
2

This expansion, moreover, is valid for all values of arg(s). In this case, because
r, =m — 2, only two terms are nonzero in (4.11.20). Indeed, we find

2
H() ~ i+ Bz = 2p3
Uy 2py

Actually (4.11.25) is correct to within an exponentially small error.
Of more interest, at least from a mathematical point of view, is the case where
o = 01in (4.11.21). Because we have not allowed for the appearance of logarithms
in (4.11.16), we shall insist that g, is not a positive integer for any m.
Furthermore, Re(a,) must be greater than 1 for &£ f;s] to exist. It now follows

from (4.6.23) that

, t—ooo. (4.11.25)

“-le [(1-a,), (4.11.26)

21~ % ¢

which we assume is valid as | s| - 0 in |arg(s)| < =. (Sufficient conditions for this
to be so are given in Section 4.7.)
There are three subcases we wish to consider separately.

(1) 1 <ay<2. Here

LLf5]~ 1+ co T(1 — ag) s (4.11.27)
so that
s7% a0
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Hence we have from (4.11.20) that, in this case,

o1

O = = FagTi—ag *

O(tao - 1)

Nl ! sin(ra,) +
CoT

[Note that — sin nay > 0 for a, & (1,2).]
(2) 2<ay <3. Now

LIfis]=1-u s+coT(1 —ag) s +o(s°"Y) (4.11.30)

ot®™l),  t->o. (4.11.29)

and

1
sy
Therefore, (4.11.20) yields

$[H;s]=——1 +f791“(1—a0) 072 4 o(s%~2)]. (4.11.31)
1

t coT(1—ay) .. _
H(t)=—+ -2 —— % 30 4 o3~ a0), (4.11.32)
m B TE—a) T

(3) ao > 3. In this case

2
PIfs] =1—p, s+“—223—+0(sz), 4.11.33)
1 (p2—2ud) s
ZH;s|= 1+ + ofs (4.11.34)
[H:s] py s [ 2u} ©)]
and hence
-2 2
H(t)=#_t1+_ﬂ_22_—y2 ag| + o(1), t— 0. (4.11.35)
1

Upon considering the above results we can make the following statements:
If f(z) has the asymptotic expansion (4.11.21) and if the mean of f exists, then
H(t)~t/u, as t—oo. if, in addition, the second moment of f exists, then
H ~ t/u, + (u; — 2u2)/2u?. In this last approximation the error is exponentially
small if f is exponentially small at infinity and algebraically small if f is
algebraically small at co. If 4, does not exist in the ordinary sense, then H is
0(t* ') where 1<a, < 2. Finally, when f is exponentially small at oo, only
its first two moments are involved in the asymptotic expansion of H, whereas
when f is algebraic at oo, the expansion of H may involve higher moments

of f.
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4.12. Exercises

4.1. Use Watson’s lemma to calculate the asymptotic expansion, as A — oo,
of

IQ)=[; e ™ f(t)dt
when

@) f(t)=1""2 sin 32,
(d) f£(O)=J 1,50

©) f()=e (1 + 312,
d) f(t)=1log(l +1).

4.2. Suppose that in Watson’s lemma A is complex with |arg(i)| <n/2 -6
for any fixed 6 > 0.
(a) Show that, in this case, the estimate (4.1.6) can be replaced by

|1,(A)| =o{exp[ — |A|R sin 6]},  |A|- 0. 4.12.1)
(b) Show that (4.1.10) now becomes
R ra .
jo ton ™M dt =%ll) + olexp[ — | 4| R sin &]). (4.12.2)

(c) Show that the estimate (4.1.12) is now replaced by
KyI'(Re(ay 1) + 1) .
(M' sin §)Reltan )+ 1)
(d) Use parts (a), (b), and (c) to prove that Watson’s lemma, stated for real 1

in Section 4.1, remains valid for complex A. In particular, show that (4.1.13)
holds as | 1| - o with |arg(4)| < n/2 — 3,5 > 0.

@.12.3)

R
j. ox e ™ dt’ <
]

4.3. The modified Bessel function of the second kind has the integral
representation

A v o0
KV(A)=F(V—‘/Z)(§> L e M2 — 1)t dr. 4.12.4)

(a) Use Watson’s lemma to show that

o T Th+i+n) _
~ =Y 27 TV onn, . 12,
K()~e \/;go l"(v+%—n)n!2/l) A= 0 (4.12.5)
[Hint: Replace ¢ by 1+ 7 in (4.12.4).]

(b) Use the result of Exercise 4.2 to conclude that (4.12.5) is valid as A — oo
in |arg(2)| < m/2.

(c) Rotate the contour of integration in(4.12.4) through angle — arg(4)/2and
thereby conclude that (4.12.5) is valid as A— oo in |arg(d)| <n. [Hint: See
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Example 3.2.4 where this technique is used.]
(d) For = <|arg(4)| < 3m/2, rotate the contour of integration in (4.12.4) no
further than the negative real axis and show that (4.12.5) remains valid

(e) Use the relation
) 1/ 1/2 2
Ai(d) = ;(5) K, ,3<§l3’ 2) (4.12.6)

along with (4.12.5) to obtain the following asymptotic expansion for the Airy
function:

e 23 2 T 4 n) ( 3

&) ~ JR2ATE 2 T@E —nyn! \4A¥

z) , [A|> o, |argd)|<m (4.12.7)

4.4. (a) By following the line of proof of Watson’s lemma in Section 4.1, show
that if

1) = {5 Ai(Ar) f () dt (4.12.8)
with f() locally integrable on (0, 0), f(t)=0(e™"), t » o, a real, and
fO~Y cut~, t—>0+, Re)t+o, Rela)>-1,
n=0

then

2 C, 327 g, + 1\ _(an+2
I(A) ~ ;E Tl 1“( 3 >F< 3 ) A—- 0. (4.129)

(Use the Appendix to calculate the integrals | Ai(t) ¢ dt.)
(b) Use the result (4.12.7) and the type of argument used in Exercise 4.2 to
show that (4.12.9) is valid for

largd)| < -8, 8>0. (4.12.10)

4.5. Calculate the asymptotic expansion of
IA) = j': Ai(Ar) f(¢) dt

as |A| > oo with |arg(4)| < n/3, when

(@) f(t)=1t"'%sin 132,
(b) f(t) = J:;z(t)-

(©) f(®)=e (1 + 212,
(d) f(t)=1log (1 + ).

4.6. The Weber function D (z) has the following integral representation for v
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and z in the indicated ranges:
2v/2 e~ 2?2 /4

D == £ — 1242 g~ 1-v/2 (v—1)/2
W(2) T2 o € 1+0 dt,

Re(v) <0, |arg(z)| < 45- 4.12.11)
(a) Use Watson’s lemma and the result of Exercise 4.2 to show that

anfv+1 v
e~ P4 © 2r< P )r< —§>

r(_ V/2) ngo l—v(_v-*-_l_n) n! zZn—v ’
2 !

Dv(z) ~

|z| > o,

larga)| < @12.12)

(b) View (4.12.11) as a contour integral. Justify the rotation of the contour
of integration through the angle — 6 and of arg(z) through the angle 6/2 with
|8] < = to obtain

2v/2 e—z’/4+iv6/2 ©

I(—v/2) j
Here { = ze™ "2 Re(v) < 0.

(c) Show that (4.12.12) is valid for |arg(()| < n/4; that is, for |arg(z) + 0| < n/4
or |arg(z) — 6| < 3n/4.

D(2)= e T e T2 gy (4.12.13)

0

4.7. (a) Show that e™'¢ K( — c0,7/2), the class of functions K(x,,6,) being
as defined in Section 4.7.

(b) Show that t=17Y2(1 + )~ D2 ¢ K(— oo,m).

(c) Use Corollary 4.7.1 to conclude that |arg(z)| < 37/4 is the sector of validity
for (4.12.12).

(d) State and prove a Watson-type lemma for the kernel D (Af) with 4
complex.

4.8. (a) Prove Watson’s lemma for loop integrals as stated in Section 4.11
for the integral (4.11.14). [Hint: It is useful to replace the loop contour by the
contour of Figure 4.12.1 and to then follow the line of proof of Watson’s lemma
in Section 4.1.]

(b) Suppose that

2mi I(A}=j'(;°+ e™™ f(2) dt. (4.12.14)

Here f(t) is analytic in the ¢ plane cut along the positive real axis. In addition,
suppose that

(i) f()=0"), [t|]->o, |argt)|<b.
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Figure 4.12.1. The Contour of Integration for Exercise 4.8(a).

< T
(i) fO~ Y ent~, 2m—S2argt)>4s, |t|-0, 0<5<5.
m=0

Then show that

0 c eim_l— ra—1
~ _— A—o0. 4.12.15
I(4) mzo T—r) © ( )

[Hint: Consider part (a) (which deals with loop integrals around the negative
real axis) and find an appropriate change of variable of integration in (4.12.15)
to obtain the desired result for loop integrals around the positive real axis.]
(c) Show that the results of parts (a) and (b) are valid for |arg(1)| < =/2.
(d) Show that, if we replace the asymptotic expansion in (ii) above
by
o N(m)

fo~3 Z Con U™ (log £)"

m=0 n=

with N(m) finite for each m, then (4.12.15) is replaced by

w N(m) (le—m) z~1
RPN ”"<z>{ )

m=0n=

z=r, (4.12.16)
(e) Prove that the result in (d) is valid for |arg(1)| < n/2.

4.9. Define

Mifiz]= f:f(lt) £ dr. (4.12.17)
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(a) Show that
M[f;z]=M[f;~z] (4.12:18)

and hence analytically continuing M f';z] to the left is equivalent to analytically
continuing M[ f;z] to the right.

__(b) Prove Lemmas 4.34 to 4.3.6 by applying Lemmas 4.3.1 to 4.3.3 to
M[f;z].

4.10. Letf(t)=(e'+ 1)"! and set
F)=M[f;z]= [ (+ 1) " a. (4.12.19)

(a) Show that for Re(z) >0, the integral (4.12.19) converges absolutely;
while for any finite 4, with 4 = Re(z) = 6 > 0, it converges absolutely and uni-,
formly.

(b) Use integration by parts to obtain a representation valid for Re(z) > — 1
and Re(z) > — 2. Identify the singularities of the analytic continuation into
these larger domains.

{c) Show that for z not an integer

—inz

Fz)=

j (@ + 1) 1e 1 dr. (4.12.20)
2isinnz Jg,

(d) Show that the representation (4.12.20) has removable singularities at the
positive integers and that, as z approaches the positive integer n, (4.12.20) has
the limit F(n) as defined by (4.12.19).

(e) Show that F(z) has a simple pole at each nonpositive integer
with

l n
res{F(z);z=—n}=—(d£> (t+eH7t =012 ...
ni\dt =0
(f) Show that f{(¢) satisfies the conditions of Lemma 4.3.1 withd=1,v=1,
and the conditions of Lemma 4.3.6 with ¢ =0, a,, = m, and N(m) = 0 for all m.

Verify the results of parts (a) and (e) by using these lemmas.

4.11.  Apply the Mellin transform technique to rederive asymptotic expansions
for the following integrals, as  — co . (These integrals were previously considered
in Exercise 4.5.)

(@) I(A)= [ Ai(A)™ "2 sin 2 dt.

(b) 1) = = Ai(A) J, ,(0) dr.
(©) 1) = [y Ai(Ar) log(1 + 1) dt.

4.12. Show that the expansion obtained in Exercise 4.11 (c) is valid for
|arg(d)| < 4n/3.
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4.13. Calculate the asymptotic expansion of
= {, KJ A f() dt,
as A— oo, when

(@) f(¢)=t"*sin 132,
b) f(t)=J,2(0).
() f(t)y=log(1 +1¢).

4.14. (a) Show that the result obtained in 4.13 (a) is valid for |arg W) <=.
(b) Show that the result obtained in 4.13 (b) is valid for |arg(4)| < 7.
(c) Show that the result obtained in 4.13 (c) is valid for |arg(1) )| < 2=.

4.15. Calculate asymptotic expansion for the following integrals, as
A— 0

j"‘f(t) log (1+Ar)dt, feC>[0,1].
(b) j © o~ M J (At) sin t dt. Here I,(¢) is the modified Bessel function of the first

kin
(c Io e ™|1—t|"dt, Re(vy>—1, vnotan integer.

% 1/2
(d) jo 1(+ 11 7 sin (log t) dt.

® gin At
log |t —1|dt.
(c) So At Ogl l

4.16. (a) In Case IV, subcase (2) of Section 4.4, suppose that r,=aq,+1
for some m and n. Show that the contribution to the asymptotic expansion of
H[f;2], as A— oo arising from the pole of G(z)=M[h;z] M[f;1—z] at
z=r, is given by

—r1es{A77 G(z);z =Ty}

- (—log Ay - ' L
= —A"" ,z;) ]'(L J)|<dz> {(Z‘_r,,,) M[h’z] M[f,l Z]}

z=r,

4.12.21)

Here L =N(m)+ N(m)+ 1, with N(m) and N(m) as defined in (44.7) and
(4.4.9), respectively.

(b) Verify that the terms O(2~"°) and O(1~" log 4) in (4.4.22) can be obtained
from (4.12.21) by setting r,, =ro and L=1.

4.17. Consider the generalized Stieltjes transform

-9

0 t —t
=\ ———e™'dt, <1.
I(2) L a+ a0 e p
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(a) Derive an asymptotic expansion of I(1) as A — o via the Mellin transform
technique. Consider all p in the indicated region and, in particular, the cases
where p =(1-2n)/2,n=0,1,2, ....

(b) Derive an asymptotic expansion of I(i) as 1 —» 0 +.

(¢) Compare the results obtained in parts (a) and (b) with those obtained
from the exact relation

I(A) = \/é '(-p) el/zt Kﬂ—l/Z <i>

" 24
4.18. The hypergeometric function has the integral representation
Fla,b;c;1—2)= e ds

I'yT(c—b)yJ, (1+s)c (1 + As)®
Re(c) > Re(b) >0,  |arg(d)| < =.
Assume that Re(c) > Re(a) > 0 and show
I S AT
Ma)Th)T(c—b)T(c—a) = n.

x{APTc—a+nb+n)a—b-n)
+ATc—b+nNa+nI(b-a-—n)},
A—> 0, b — a not an integer.

I'(c) g —an
@) T®) T - h) T(c —a) {Z (-1

x Tk —n) I'(c— a+ n—k)T(a + n)/n!
+(=D* Y Ak De—a+n) D(a+ k+ n)/n!(n+ k)!

n=0

(@) Fa,b;c;1 -1~

(b) Fla,b;c;1— )~

x [log A+ ylc—a+n)+ yYla+k+n) —yn)
—r//(n+k)]},

A— 00, b—a=k, with k a positive integer.

4.19. Verify that the following expansions are correct:

© Ai(— Ar) 2 3R (On4 1\ (2n+2 2nn
(a) j‘o 1412 dtN,.;,(_l) nAZnH F( 3 )F\ 3 )cos(T>’

A= 0.

® Ai( — it) © { A3n—33—2n+4/3
b ~ .
®) j 1+t I(n)(n—1/3)

x [logl—%log3—§%—ﬂ3f)._ W("—3 1/3)]



172 |/ CHAPTER 4 h-Transforms with Kernels of Monotonic Argument
47[}.3n—|3—2n—3/2 A3n—23—2n+2/3
I'(n+1/3)I'(n+2/3) T(n+1/3)I(n)
2 wn+1/3) v/(n)]}

2 n
-llogA—Zlog3+—-—=—-2——1=——
[g 3 & 3V3 3 3

A—=>0+.

= D(A1) N ([l g 14) n+1_v>
(C)Lmdt E( 1P+t A=n Ve )/2/1“( >

+11- +1-v
x I‘(n)l"(”2 , zv;n 5 ;—1>, A=,

4.20. (a) Show that the expansion in 4.19 (a) is valid for |arg(d)| < =/2.
[Hint: Use (4.12.7) and (2.5.9) to (2.5.11).]

(b) The integral in 4.19 (a) does not converge for A complex. How can this
be reconciled with part (a)?

(c) Show that the result in 4.19 (b) is valid for |arg(2)| <=. [Hint: Use
(4.12.7) and (2.5.9) to (2.5.11).]

(d) The integral in 4.19 (b) does not converge for A complex. How can this be
reconciled with part (c)?

(¢) Show that the result in 4.19 (c) is valid for |arg(4)| < 3n/4. Assume here
that (4.12.12) is valid for any v.

4.21. The complete elliptic integrals of the first and second kind are given
respectively by

1 dt
K(r)= 50 1= t2)1/2 (1- 2 t2)1/2 (4.1222)
and
1(1 =2 2)1/2
E() = S . L(_I% @.12.23)

Determine asymptotic expansions for these functions, as r —» 0, via the Mellin
transform technique.

4.22. Calculate asymptotic expansions for the following integrals in the
stated limits:

(a)j. %d:, A0+,
© Ai(— A1)
© D (4f)

© | P4, 1m0+,
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4.23. Derive an expansion, as 1 —0 +, for the exponential integral
© -
A

E,(1) = j eT dt. (4.12.24)

Compare with the stated result (1.1.3). Here, set t=4+1 in (4.12.24) to
obtain

WEW=| — 4

e" Ey( )—L T (4.12.25)
Now apply the Mellin transform method to (4.12.25). Note that
¥(1) =T"(z)/T(2)|,=, = — y where 7 is the Euler-Mascheroni constant.

4.24. Let
1 0 ll _ t’v—l
12 =—j ——dt, .
D=ty o Tsad 1<v<2
(a) Show that
N ® (_1)n+ll——2n+1”
) ,,2_:1 2Fv—2n+2)I2n—1)

n
sin v

(_ 1)"}.—2"71'
2Iv — 2n+ DI2R)

[logl—y/(v—2n+l)+|//(2n)+ ], A—> o,
(b) Show that the sector of validity in part (a) is defined by
|arg(d)| < m/2.

(c) Show that

mrzﬂﬂmh

n=0

I'n+1) (—1ytipr—v g 1
TRn+v+1) 5 sin n(n—v) I'(v — n)at
2

R

4.25. Let
IR) = [ct**! (log )N exp{—dt"} dt, v>0.

Here C is a positively directed arc of ttle circle of radius R centered at the origin.
On C, 0<arg(t)<m/2v —¢/v —e=0, v is real, n/2> ¢ = |arg(d)|, and ¢ > 0.
(a) Obtain the estimate

H(R)| = KR**R<0 (log R)™ f2 exp{—|d| R cos[v6 + ]} do.
(b) Establish the inequality

2 ~
cos(v0+¢)21—;(v6+¢), 0<0<9.
(c) Conclude that
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Ry = KR=+2e0 g R [ expld R =2 00+ 60
K a constant.
(d) Carry out the integration in (c) and obtain the estimate
[I(R)| = K'R**®e~ (log RV exp(—z—; ¢|d| R*), K’ aconstant.
(e) Show how the above result can be used to justify the rotation of
the contour of integration in the proof of part (2) of Theorem 4.7.2.
4.26. Consider the integral
JR)= j'c (og )V ¢r+= 1 dr, Re(z) + Re(r) < 0.

Here C is a positively oriented arc of the circle of radius R centered at the origin.
OnC,0<arg(t)<86.
(a) Show that for sufficiently large R

|J(R)| < K6 (log RY* R®e:*".

(b) Show that i}im J(R)=0.
(c) How is the result in part (b) used in the proof of Theorem 4.7.27

4.27. Prove parts (a) to (f) of Lemma 4.7.1.

b9

t Plane

Figure 4.12.2. The Contour T for Exercise 4.28 in the Case y Positive.
Singularities of # Denoted by x.
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4.28. This problem yields an outline of the proof of Lemma 4.7.4.
(a) Show that

M[h;z] = €7 (7 hoe®) 6>~  do + [, h(t) =71 dt.

Here,

2v

The contour I is a loop around the ray defined by arg(t) = sign(y) 8,. (See
Figure 4.12.2)
. (b) Verify that for the singularities (a) to (d) considered in Lemma 4.7.4, the
integral al_o_ng the contour I" may be expressed as a residue sum, each having
a factor ¢/*"®) %7 and integrals in each of which |arg(t)| = 8, on the path of
integration.

(c) Conclude that M[h;z]=0(e%!»!); that is, h ¢ K(— Re(x),8,) with K
defined directly above Lemma 4.7.4.

0,=10;, 8,<8;<Min (91 Dﬁf@)

4.29. Rewrite the integral (4.8.13) as
¢(r,2) = V{7 Jo(pR sin 6) e"P% <= ® J (p) dp.
Here R? = r? + z% and 6 is the polar angle. Show that

(@) ¢(r,2)~V _Zl (— 1" 2Q2R)"2" T (2n) P,,_, (cos B)/n! (n — 1)!,

R- o, 0<0<§~
(6) drA~V+V 3 (=17 QR Py, (cosp) DT =)

7 T'(2n) ’

R-0, 0<f< g

In (a) and (b), P,(x) is the nth Legendre polynomial defined by

e
T 2'mldx"

P (x) (x2 = 1)

4.30. Consider the integral equation of Section 4.9. Verify the following

expansions for t —» oo :

Ept™ 12 g2
NN

Here &, is defined by (4.9.18) and

(@) y()~

ag> 2, n=3orn>4.

&, = fs[f(s) —y"(s)] ds.
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® 0~ v’g o (2: 7 logt,  ap>2,  nm=4. MLt~ 1)7%2) = —(t) " n (s, e ™ csc nz F«)—T(I—z:(z—)TT)
(©) ¥~ w ap=2, n=1. (d) If6, =arg ¢, Shf)w that

o Ml —1)"%z) =O[exp{y[n - 6,1 = [y[(m—2)}],  |y|-> o,
() ¥~ —y\/"% 12logt, ap=1, n>2, 7, defined by (49.10) Ay =0

€ y&)~ @)™t~ ap=1, 1<n<2. h(t)y=0(t%), t-0, —g<a<p,

verify that

4.31. In Section 4.9, suppose that M[h(t);z] € K(— o,6,)

f@O~d*"t, -0+, with
Then verify the following expansions for t -0+ : 0o = min (9,).
d ( 1<n<g
@ v~ st anyn, u2h,
ar) - L—p
b)y~————— V2 0<pu<i, 1<n< .
®y~ 9 e S—n
© y~bei, O<p<i,  m= ok
I H
T
Here b is a root ofb=F(%(_l:_)“)[d—b"].
4.32. Let
P(t)
0= 0

with P and Q polynomials of degree p and g, respectively. Furthermore, assume
that Q has no real zeros except possibly at t =0.
(a) Show that h(f) can be rewritten as

h(t) =

a=1é51 ( t)l

Here R is a polynomial of degree p—q if p—¢ =0 or R =0 otherwise. The
t,’s are the complex zeros of Q(t) and d,, is the multiplicity of ¢,.

(b) Show that, except on the vertical lines,
x=0,1,...,p—4q, M[R;z] =0.

Here M denotes the generalized Mellin transform.
(c) Show that
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h-Transforms with
Kernels of
Nonmonotonic
Argument

5.1. Laplace’s Method

The previous two chapters were devoted to the asymptotic analysis of the
h-transform

1) = fc h[Ad(0)] f(0) dt (-1.1)

in the case where the contour of integration C is the real interval [a,b], and
where the “argument function” ¢(1) is strictly monotonic on this interval
However, when we discussed critical points in Section 3.3, we anticipated that,
in certain instances, points in [a,b] at which ¢'(¢) vanishes would be critical in
the sense that small neighborhoods of them would produce significant contri-
butions to the integral I(4) as A— co. Our immediate objective is not only to
establish that this is indeed the case, but also to develop techniques for the
explicit determination of the contributions to the asymptotic expansion of
(5.1.1) corresponding to such points.

There are basically three distinct cases that most often arise in applications:

(1) The contour C in (5.1.1) is all or part of the real line and h(t) either
decays exponentially or has purely algebraic (nonoscillatory) behavior
ast— L .

(2) The contour C is all or part of the real line and h(t) is oscillatory as
t— + 0.
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(3) The contour C is a curve in the complex ¢ plane while k, f, and ¢ are
analytic functions of their arguments in appropriate domains.

In this chapter we shall consider case (1) exclusively and shall delay until
the following two chapters our treatment of cases (2) and (3). We do this for
two reasons. Firstly, case (1) is significantly simpler to treat than the other two.
Secondly, many of the ideas and methods to be introduced in the present
chapter will prove useful in the analyses of the more difficult cases.

Perhaps the most important integrals that fall into category (1) are those
of Laplace type. They are of the form

I(3) = [, exp{ — 4¢(t)} f(t) dt. (5.1.2)

1t will prove fruitful to discuss the behavior of (5.1.2) as 2 — oo If ¢(t) increases
monotonically on [a,b] and if both ¢ and f have the appropriate asymptotic
behavior as t— a +, then the analysis can be reduced simply to an application
of Watson’s lemma. Indeed, Watson’s lemma implies that under the assumed
monotonicity of ¢, the only critical point for (5.1.2) is the endpoint ¢t = a. We
might point out that it is not coincidental that, in this case, the minimum of ¢
in [a,b] occurs at t = a.

Suppose now that ¢(t) is not monotonic on [a,b]. Suppose further that the
absolute minimum of ¢ in [a,b] occurs at the point t = t, where a <1, <b,
@'(t;) =0, and ¢"(to) > 0. (These assumptions are sometimes expressed verbally
by saying that ¢ has a smooth absolute minimum at the interior point ¢ =t,.)
Finally, let us assume for simplicity that ¢'(t)# 0 in [a,b] except at t=t,.
This last assumption of course implies the differentiability of ¢ throughout
[a,b]. In this regard we shall further suppose that both fand ¢ are sufficiently
smooth for the operations below.

Tt is instructive to study the qualitative behavior of the integrand in (5.1.2).
First, let us consider ¥ = exp[ — A(¢(t) — ¢(to))]. This function is plotted in
Figure 5.1 for a typical ¢ satisfying the stated conditions and for a sequence of
increasing values of 4.

Upon considering Figure 5.1, the critical nature of the point ¢ = t, becomes
apparent. Indeed, as A increases, we see that the region where y is significantly
different from zero becomes a smaller and smaller neighborhood of t=t,.
Because f(t) does not depend on 4, this statement must also hold for f. Thus,
it is reasonable to conclude that, in the determination of the asymptotic behavior
of exp[A¢(to)] I(4), as A— o, we need only be concerned with the behavior
of ¢ and fin an arbitrarily small neighborhood of ¢ = t,.

Let us suppose that the conclusion just stated is correct. If we set

exp{Ad(to) } Io(A) = [o" f(9) exp[ — A$(1) — d(to))] dt, (5-13)

where ¢ is a fixed, small, positive constant, then this supposition implies
that

I
lim oh) _

Jim o5 = (5.14)
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exp[—M(t) — Bto))]

Ael—l el
A “large” — ] L X “large”
t
a I b

Figure 5.1.  exp[—M¢Xt) — &(t,))] for Various Values of 1.

Of course, we would expect that the smaller ¢ is the larger 2 would have to be
for I, to closely approximate I.

Because ¢ is assumed small, it is reasonable to approximate both ¢(t) — ¢(t,)
and f(t) throughout [t, —&,¢o + ¢] by the first nonvanishing terms of their
respective Taylor series expansions about t=t,. [For simplicity we shall
assume that f(¢,) #+ 0.] Then we have

to+e A
exp{Ae(to) } Io(i)wf fto) exp{— 3 P(te) (t — to)?) dt.t (519

to-¢

Here, the smaller ¢ is, the better does the right-hand side of (5.1.5) approximate
the left.
It now follows from (5.1.4) that, for 4 sufficiently large,

to+¢ )‘
10)> exp{ ~ 1)} fo) | expl= 5 #70) — 1o} drt (516

—€

In order to complete the estimate, we set

= [59"t0) t=t0) (5.17)
in (5.1.6) which yields

! Here the symbol = is used to indicate that the right side approximates the left side. Of course,
the validity of this statement relies on the validity of (5.1.4).
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v
I(3) = exp{ — Adlto) } (¢ NG 5t j’ exp{ — 12} dt.
AT (5.1.8)

We observe that no matter how small ¢ is, A can be taken so large that the value
of the integral in (5.1.8) is changed only slightly when the limits of integration
are set equal to + co. Thus we finally have

2 0
1) = exp{ = 16(00)} 1) |3 g0 [ exp(=eyde

2n
= exp{ — A¢(to) } f(to) ST (5.1.9)

The approximation afforded by (5.1.9) is well known and is often referred
to as Laplace’s formula and the application of this result is called Laplace’s
method. We point out, however, that care was taken not to use the asymptotic
symbol ~ in writing this formula. Indeed, because no error estimate has been
obtained, the best we can say at present is that it is plausible that the right-hand
side of (5.1.9) represents the leading term of an asymptotic expansion of (5.1.2)
as A — co. There are several ways to rigorously establish the asymptotic nature
of (5.1.9). We shall accomplish this in Section 5.2 for a much wider class of
integrals. For now, we are content to limit our considerations to Laplace-type
integrals and shall attempt to rigorously derive (5.1.9) via Watson’s lemma.

Let us reconsider (5.1.2) under the assumptions on ¢ and f leading to (3.1.9)
and set

1G) = § exp{ — A} f(t) dt + [, exp{ — i} f(0) dt (5.1.10)

= I(A) + I(A).

We observe that throughout each of the half-open intervals [a,t,),(to,b], &(t)
is a monotonic function. Furthermore, upon assuming ¢ ¢ C*[a,b] and
f & C*[a,b] we may write

B(t) = Blto) + 5 () (£ — to)> + 5 (t — 1g)* §"(to) +O((t — 15)*)(5.1.11)
and
F@y=S(to) + f(to) (t — to) +O((t — 10)?), t—lo+. (5.1.12)

Suppose that we consider I,(A) first and introduce the change of variable
defined by

o) — d(to) =1, (5.1.13)

which we observe is one-to-one except at the origin. Then we have
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1) = exp{ — 2d(to)} [o° 7" Glx) exp{ — At} dr, (5.1.14)

where

f()

d”(t) =6 Holio) +1)

In order to apply Watson’s lemma, we need only determine an asymptotic
power series expansion for G(z), as T — 0 + . This is easily accomplished except
for one difficulty which involves an ambiguity in sign introduced by the
nonsingle valuedness of the transformation (5.1.13) at the origin. This ambiguity
is resolved, however, by observing that, as ¢ increases from ¢, to b, 7 increases
from O to ¢(b) — ¢(t,). We then find that

) (S S8 () | 12 5.1.16
YEeN +{d’”(to) gy J o) (BL16)

as t — 0 + . It then immediately follows from (4.1.3) that

7t
LA = /mf(fo) exp{ — 1¢(to) }

f'(to) f(to) ¢m(to) CXp{ - Ad)(to)} exp{ — '14)(10)}
" {d’”(to) T 3(¢"(to))? } 1 +0{ JEE } (5.1.17)
asA— 0.

We can analyze I,(2) in a completely analogous manner. Indeed, if we again
make the change of variable defined by (5.1.13), then we obtain

G(1) = (5.1.15)

G(1) =

I(A) = —exp{ — Ad(te)} 4~ G(x) exp( — A7) dr (5.1.18)

with G(7) still given by (5.1.15). Again an ambiguity in sign arises in the deter-
mination of the asymptotic power series expansion of G(r) as 7—0 + . In this
case, it is resolved by observing that, as ¢ increases from a to ¢,, T decreases
from ¢(a) — @(t,) to 0. The result then is

fltg) ™' (S f(t) ¢""(to) 1/2 5.1.19
S W) 3@ }”’“ b B

as 7 — 0+, so that by Watson’s lemma,

- G()=

L) = [55—7—f(to) exp{ — Ad(to) }

22 d>"( o)
)
A9 g o225
0] (1]

The desired expansion of I(4) is, of course, given by the sum of (5.1.17) and
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(5.1.20) which yields

IA) = M’”( )f(to) exp{ — 1¢(to) } +0<L};;Mﬂ). (5.1.21)
Equation (5.1.21) having been rigorously derived establishes the asymptotic
nature of Laplace’s formula derived heuristically in (5.1.9). We remark that
further terms in the expansion of I(4) can be obtained by determining further
terms in the asymptotic expansion of the function G(r). This would require,
however, additional assumptions about the behavior of fand ¢ near t =¢t,.

Throughout our discussion we have assumed that ¢ = t,, the point at which
¢ achieves its absolute minimum in [a,b], is such that a < t, < b. Now suppose
that t, coincides with one of the endpoints of integration. We wish to determine
in what ways the asymptotic expansion of I(1) will be altered. Clearly, we need
only compare (5.1.21) with either (5.1.17) or (5.1.20) to obtain the desired
information. We then find that there are two ways in which the expansion
corresponding to an interior minimum differs from that corresponding to an
endpoint minimum. Under the smoothness assumptions made, the leading
term for an interior minimum is twice that obtained when the minimum occurs
at an endpoint. Also, the second term, for an interior minimum is O(A™3?
exp{ — Ad(to)}) whereas it is O(2~ ' exp{ — Ad(to) }) when t = 1o isanendpoint.
We might expect that similar disparities occur in higher-order terms as well.
That this is indeed the case is to be shown in Exercise 5.5.

In most problems we will not be so fortunate as to have the integral we
wish to consider in precisely the form (5.1.2). Nevertheless, it often occurs that
with a little ingenuity, the integral can be transformed into the desired type.
Indeed, the following two examples will illustrate this point.

EXAMPLE 5.1.1. As we know, the gamma function is defined by the integral
TGA+1)=[e " t*dr. (5.1.22)

For the present, we shall restrict our considerations to the case where A is
large and positive. Although (5.1.22) is not of the form (5.1.2) we note that it can
be written

T+ 1)=f, e "etetdr (5.1.23)

At first glance it appears that the results of the section can be applied with
f()=exp(—1) and ¢(t)= —logt. Unfortunately, this latter function does
not satisfy all of the above stated conditions. Indeed, we note that ¢'(t) = —t~ !
vanishes only at t = + oo. However, ™ (t)|,- , = 0 for all n > 1 and in parti-
cular for n = 2, so that (5.1.21) cannot be applied.

To avoid this difficulty we set? t = Atin (5.1.22) which then becomes

Q)+ 1)y=2*+*" j‘: exp{Mlog T — 1)} dr. (5.1.24)

2 The reader will recall that this is the transformation proposed in Section 2.2.
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Now we have an integral of the form (5.1.2) with f = A*land ¢(r)=1—log .
Moreover,

$lo=1-1 (5.1.25)

vanishes at 7 =1 and ¢”(r)| <=1 =+ 1. Thus (5.1.21) can be directly applied
to obtain

A A
TG+ 1) =/2nA @ +o[(§—> ,1'“2] (5.1.26)
as /— 0.

The result stated in (5.1.26) is, of course, Stirling’s formula which we derived
in Section 3.2 by a different technique. We might remark that since the sector
of validity of any asymptotic expansion derived via Watson’s lemma was
shown, in general, to be the right half-plane, we can immediately conclude that
(5.1.26) is valid as | 1| —» oo with |arg 1| <m/2.

EXAMPLE 5.1.2. In real analysis, the quantity
lgl,= (g dny'r (5.1.27)

is known as the L, norm of the function g, it being assumed that g(r) is defined
on the interval [a,h] and such that (5.1.27) exists in the Lebesgue sense. Suppose
that we wish to study the behavior of ||g|, as p— o, in the case where
|gle C*[a,b] and where g has a unique absolute maximum at the interior point
t=t,.

Let us define

I(p)={. |g(t)|” dt (5.1.28)
so that
lgll,=Hp)". (5.1.29)
We now write
I(p)= [0 er o8 1901 gr. (5.1.30)

Before we can apply Laplace’s formula, we must clear up one technical difficulty.
In deriving that formula, we assumed that ¢, which in this case is —log|g(1)|,
is continuously differentiable in [a,b]. However, if g(t) vanishes anywhere in
[a,b], then so does |g(t)| in which event log |g(t)| becomes negatively infinite.
It should be clear that a small neighborhood of any point in [a,b] at which
g(t) vanishes will yield a negligible contribution to I(p) for p large. We therefore
claim that any discontinuity introduced by the vanishing of ¢ can be
neglected.

31t will be recalled that in Section 3.2 we showed that (5.1.26) is valid as 4 — o0 in the sector
defined by |arg(4)| <.
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Upon applying (5.1.21) with ¢ = — log|g(t)| and f(1) = 1, we obtain

_ 27t|g(f0)‘ -1
I(p) = P g o)] lg(te) I” {1 +0(p~ 1)} (5.1.31)

as p— . Thus, it follows from (5.1.29)*

g1, =190l {1 —L"zi_”w@}

log p 1
= max |g(t) ll ———+O<—>}, - . 5.1.32
te[a,b] o0 2p P g ( )

Equation (5.1.32) expresses the result, well known in real analysis, that for
the class of functions under consideration the L, norm converges to the
maximum norm, as p — . Moreover, the rate of convergence is explicit and,
we might add, rather slow. As we shall see, analogous results can be obtained
under much weaker assumptions on g(t).

Throughout this section we have been overly restrictive in our assumptions.
Indeed, there are several ways in which the above results can be extended. The
most significant extension would be to h-transforms with kernel functions
other than pure exponentials. Because Watson’s lemma has played such an
important role in the present section and because the extensions to Watson’s
lemma were accomplished via the techniques of Chapter 4, it is reasonable to
expect that our major generalizations will be derived by using these techniques.
This shall be the objective of the following sections.

5.2. Kernels of Exponential Type

Here and in the following section we shall consider the asymptotic behavior
of functions defined by definite integrals of the form

IA) = [° h(Ag(0)) f(¢) dt (5.2.1)

in the case where h decays exponentially as t — = . Section 5.4 is devoted to the
case where h is algebraic in this limit, while Chapter 6 is concerned with oscilla-
tory kernels.

Our goal is to obtain an asymptotic expansion of (5.2.1), as 4 — . We hope
to accomplish this by reducing (5.2.1) to an integral of a form already treated
in Chapter 4 so that the Mellin transform method can be directly applied.
Before we proceed, however, several conditions will be placed on the functions
h, ¢, and f some of which will be relaxed below. We first assume that f(r) and
h(A¢(t)) are locally integrable on (a,b) and that {5.2.1) exists for sufficiently
large 4.

*See Exercise 5.8.
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For the present, we assume that the argument function (1) satisfies the
following conditions:

(1) ¢la) 20,
(2) ¢'(t) >0, t &'(a,b),
(3) (1) — pla) = oot — a)° + of{t —a)°), t—-a+.

In (3), &, and v, are positive constants. These conditions guarantee that o(t) 1s
positive and differentiable on (a,b) and that its absolute minimum on [a,b] is
unique and occurs at t = a.

It is clear from the assumptions made above that the endpoint of integration
t = a will enjoy a special status in our analysis, that is, it will be a critical point
in the sense described in Section 3.3. Indeed, this follows from the exponential
decay of h(t) as t — o and the fact that ¢(r) has a nonnegative absolute minimum
att=a.

In order to proceed with the asymptotic analysis we first set

dty=u (5.2.2)
n (5.2.1) which then becomes
olb
jd:(( : hAu) F(u) du. (5.2.3)
Here
£l
20 (5.2.4)
F0l=¢'(w)

We note that, by hypothesis, F(u) is locally integrable on (¢(a), $(b)).
In preparation for applying the results of Chapter 4, we now introduce the
function F(u) defined by

0, 0<u<da),
F(u)=<F(u), dla) < u < ¢(b), (5.2.5)
0, db)<u< .
In terms of F(u) (5.2.3) becomes
1) =15 I F(u) du (5.2.6)

which is an integral precisely of the form considered in Chapter 4. The advantage
gained by introducing F(u) lies in the fact that it is always defined as u—0+,
whereas the same need not be true of F(u). It will be recalled that this local
behavior plays a vital role in the asymptotic analysis of (5.2.6) as 2 — = .

We found in Section 4.4 that, in order to apply the Mellin transform method,
we must require that, as u— 0+, F(u) has an asymptotic representation of
the form
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x  N(m)
F(u) ~exp(—qu™") Z Z (log u)" U ppy- (5.2.7)
m=0 n=0
Here Re(q) =0, u >0, Rela,,) T «, and N(m) is finite for each m. [We recall
that if only a finite asymptotic expansion is required, then (5.2.7) can be truncated
at the appropriate term. ]

If ¢(a) is positive, then (5.2.7) is trivially satisfied because all of the coefficients
Pmn are zero. If, however, ¢(a) = 0, then additional restrictions must be placed
on ¢ and f to ensure that F(u) has the asymptotic form (5.2.7). Conditions
sufficient for this to be so are that f(¢) itself have such an asymptotic form, as
t—a+,and that

k]

Z (t—a)", t—a+, Re,)?! . (5.2.8)

As in Section 5.1, an ambiguity may arise in the selection of the proper branch
of the inverse relation t = ¢~ !(u). By requiring that u increase as ¢ increases,
this ambiguity is resolved and the expansion of F(u), as u — 0 + , can be uniquely
determined.

We recall the discussion following Case III in Section 4.5. There we indicated
that F(u) can grow quite rapidly as ¥ — «. Indeed, if, as we shall assume, A(¢) =
O(exp{—dr"}), as t — o, for positive d, v, then we need only have

F(u) =0(exp{yn’}), u— 0,
for some finite y. Moreover, in that event

= {o h(w) F () du+ 02" %), i-x (529
for all R. Here

F(u), use[0,1),
Fiw= (5.2.10)
0, uell,0).

We shall assume G,(z) = M[h;z] M[F,;1 —z] is such that the ordinary
Parseval formula (4.2.17) holds and that the contour of integration in this
formula can be displaced arbitrarily far to the right when the appropriate
residues are taken into account.’

Because all of the results are implicitly contained in Sections 4.4 and 4.5,
we shall be content here with a semiquantitative description of the two cases
that can arise.

Case I. Let us first suppose that ¢(a) is positive. Then F(u) vanishes identically
in a positive half-neighborhood of u = 0 and M[F, ;1 — z] is an entire function.
Because M[h;z] is holomorphic in a right half-plane, we can immediately

SIf the displacement of the contour can be justified only for Re(z) < x, < %, then, of course,
only a finite asymptotic expansion will be obtained by this process.
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conclude
I(A)y=0A7%), i-w (5.2.11)

for all R. [This also follows directly from (4.4.17) upon setting all of the
coefficients p,,, equal to zero.]

The result given by (5.2.11) is rather unsatisfactory especially in the light
of the expansion (5.1.17) obtained in the case where & = ¢~'. From this expan-
sion, we see that if ¢(a) >0 and h = e, then I(1) is actually O(exp{ — Ag(a)})
as A — 0. The reason for the relatively poor estimate afforded by (5.2.11) is that,
except under special circumstances, the Mellin transform method does not
directly pick up exponentially small terms. When we return to Case I below,
we shall show how, with little effort, such terms can be recovered.

Case II. We now suppose that ¢(a) = 0. To obtain the asymptotic expansion
of I{A) in this case, we need only be concerned with the poles if any, of
M[F;1—z].Ifin (5.2.7) g # 0, then no poles arise and I(4) = o(1~®), as A — w0,
for all R. If ¢ =0, then poles occur at the points z=a,, + 1, m=0, 1, ... and
the expansion is given by (4.4.17) which, for ease of reference, we repeat here.

g N(m)

I(2) ~ Z gl z Dun z (j) —log Y M"~9[h;z] ., Ao w.

m=0 j=0 z=1+a,
(5.2.12)

As (5.2.12) shows, the asymptotic expansion involves the global behavior
of the kernel h and the local behavior of F(u) as u — 0 + . In this case, asu —» 0 +,
the original variable of integration ¢ goes to a +. Hence we find that t=a
is a critical point as anticipated.

The utility of (5.2.12) would be greatly increased if we could express the
constants that appear there in terms of the constants that appear in the
asymptotic expansions of fand ¢ as t »a +. In principle, this can always be
accomplished but, in practice, it is extremely tedious to obtain any more than
the leading term except in certain simple cases. Indeed, suppose that,
ast—-a+,

f@~ p(t—ap (5.2.13)
n=0

with Re(u,) 1 co and that ¢(t) has the asymptotic expansion (5.2.8). Then we
find that, in (5.2.12),

+1
ag =’u°v -1, Pun =0, n=1, m=0,1,2,...,
0
(5.2.14)
pooz(ao)—(uoﬂ*l)sm Y_O

Vo
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Hence,

1(A) = (0t A)~ o+ Dive ? M[h;—“"v+ 1] oAty J o (5.2.15)
0 0
but additional terms are rather awkward to express explicitly.

It is of interest to consider (5.2.15) in some detail. The order of this leading
term is A~®* D% which increases with increasing v, and decreases with
increasing po. Clearly, as u, increases, f vanishes more rapidly as t—a+.
Thus we have the perhaps expected result that, as the order of vanishing of f at
the critical point t = a increases, the contribution to the asymptotic expansion
from this critical point decreases. Because v, is the order of vanishing of ¢
as t —a +, we have that the more rapidly ¢ vanishes as t - a + , the greater is
the contribution from t = a. This can be understood from the following heuristic
argument : As v, increases, the positive half-neighborhood of ¢t = a throughout
which ¢ remains “small” increases. In this interval the “largeness” of A in
(5.2.1) is counteracted by the *‘smallness” of ¢ and hence h(1¢) is not exponen-
tially small there. This has the effect of increasing the value of I(1) for A large.

Let us now suppose that in (5.2.8) v,=n+ 2, while in (5.2.13) u,=n.
Then

¢(n+2)(a) _f(_")(_[}_)

e T (5.2.16)

where these quantities are obviously right derivatives. In this simple situation,
it is reasonable to calculate further terms in the expansion. We find that

ao =_%’ (11=0, 02=%9 a3=1’

Pun =0, nx1, m=0,12, ...,

fla) %) f(a) $a)
:m, Pio= $@(a) 3 [P (5.2.17)

1

(1), (3) 5 (3) 2
y { oy L E;;‘)Z:fa) (@, 4%2‘1) (3 [d;S <2()?a] ¢<4)(a)>}.

It therefore follows from (5.2.12) that the leading three terms in the asymptotic
expansion of I are now given by

1(4) = 2¢*()4)™ "2 f(a) M[h;1]

¢
+ G2t [0 LA | gy
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(392@) > [y [ MNa) $a)
NN - 6P
(@ (S[¢Pa)]?
35 ( St~ )| mee)
+0(17%), A-oo. (5.2.18)

Before we do any examples, let us return to Case I and attempt to recover the
exponentially small terms in the expansion of I(1). We first suppose that
h(t) = e”* and observe

IA)=foe ™[ di=e 2@ oo™ = j(3), (5.2.19)

Here y/(t) = ¢(t) — ¢(a) so that if ¢ satisfies conditions (1), (2), and (3) on page 188
vyith ¢(a) >0, then yY(r) satisfies these conditions with y(a) = 0. Therefore,
I(A) is an integral precisely of the form considered in Case II above and its
expansion is given by (5.2.12) under the assumptions that fand ¢ have the proper
asymptotic expansions as t —a +. We might further point out that, in this
particular case, we need not assume ¢(a) is nonnegative because the sign of
$(a) does not affect [(4). Thus when h(t) = e ™' we can recover the exponential
terms in the asymptotic expansion quite easily.

In the general situation the problem is somewhat more difficult. Indeed, the
device employed for h(f) = e ™' does not work because the decomposition

h(A$) = h(A¢(a)) h(A[H(1) — dla)]) (5.2.20)

already implies that h(t) is precisely a linear combination of exponential
functions. If, however, we assume that, as t— oo, h(t) has the asymptotic
expansion (4.4.7), then, because ¢(a) > 0, we have

0 N(m)
h(Ag)~ e " % % ¢, (ig)""™ (log A +log @), i—x (5221)
m=0n=0

for all t in [a,b]. We now claim that an asymptotic expansion of I(2) is obtained
by formally replacing h(4¢) by (5.2.21) in (5.2.1) and integrating term-by-term.
This yields

o« N(m) n
I~ Y Y Cun? ™™ ) (") (log 2V
m=0n=0 ji=o\J
X j"z e ¥ g (log @) f dt. (5.2.22)

Upon setting 2¥ = A we find that each of the integrals in (5.2.22) is reduced
to the case where h(t) = ¢~* which we have already considered in detail. Thus,
to complete the expansion, we need only expand these integrals according
to the above description and then collect the terms obtained in the proper
asymptotic order. This procedure will be illustrated in Example 5.2.3 below.

We shall leave the justification of (5.2.22) to the exercises. We also mention
that the reader should be careful not to allow ¢(a) to be negative in (5.2.22)
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because, in that event, (5.2.21) need not hold throughout the interval of
integration.

EXAMPLE 5.2.1. Suppose h(t) = e™* so that (5.2.1) is an integral of Laplace
type. Let ¢ satisfy the conditions on page 188 except now allow ¢(a) to be
negative. Finally, assume that, as t—»a+, ¢(t) — ¢(a) has the asymptotic
expansion (5.2.8) and f(t) has the asymptotic expansion (5.2.13). In this case,
because M[h;z] =I'(z), we have

IG)=[te™™ f dt

Yo Vo

- e")’d’(“)(aoi)—("” Divo 70 r(:“o + 1> + o™ M@ )~ (ot Vo) (5.2.23)

In the special case where v, =n +2 and y, = n, the first three terms in the
expansion can be obtained by setting M[h;z] = I'(z) in (5.2.18) and multiplying
by e"*@ _In this manner we find that now

Sb e™™ f dt = exp( — }u;&(a)){ W—TZ’(&_)J((“) )
x [f“’(a) i ga;g:;()a)] N (W’(;))-m
< & [ -0
’ 4<£‘(gza) (5[30;252)] - "’(4)(“’) ]*0“_ 2)> (5224

This last formula is seen to be in agreement with (5.1.17) to second order.

EXAMPLE 5.2.2. Consider
K,(2) =f; e *c* cosh(vt) dt, (5.2.25)

which is an integral representation for the modified Bessel function of the second
kind. If we set ¢(t)=cosh ¢ and f(¢) = cosh vt, then we find that ¢'(¢) > 0,
t > 0 and that the expansions (5.2.8) and (5.2.13) hold with v, and yu, positive
integers. Hence, we can immediately apply (5.2.24) to obtain

2 _
K= [Fet {1 Mt Y EIEN (5.2.26)
NG 81

as A — oo, with v fixed.

EXAMPLE 5.2.3. Let us now suppose that h(t) = K, (t) with K (t) defined by
(5.2.25). It follows from (5.2.26) that K (t) is a kernel of the type considered
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in this section. Moreover, we have explicitly (see the Appendix)
M[K,(8);z]=2""2TG[z +v]) TGz — v]). (5.2.27)
Thus, if ¢(a) = 0 in (5.2.1), while (5.2.8) and (5.2.13) hold, then we have

b 2 \werbivo o e+ 1 D 1o + 1 D
r(s e [
5 (49) f di = <a0/> av, (2[ e Y 2[ o

+ o(A™ kot Divo) (5.2.28)

as Ao .8
If ¢(a) > 0, then we can make use of (5.2.22) and (5.2.26) and write

jbxxz¢)fdz= qggj”e-vvf¢-~2dr

T@v? -1 _ _
N R R

+ o2 j‘b R £ Y2 gy). (5.2.29)

Each of the integrals on the right side of (5.2.29) is of Laplace type and can be
asymptotically evaluated by using the result of Example 5.2.1.

If we assume y,=n,n=0,1,2, .. in (5.2.8), and u,=n in (5.2.13), then we
find that, to determine:the asymptotic expansion to Ofexp{ — A¢(a)} 1~%2),we
must retain three terms in the expansion of the first integral on the right side
of (5.2.29) and one term in the expansion of the second integral. In this manner
we obtain after some computation

exp{ — Ad(a)} _
[(a)]'? {2/1(4,(2)((1)')'1/2 fla)

R @60
\/;qﬁ‘z’ (@) [f MO =) ]

i{ M@ f@
242 12

¢ @) 4d(a)(@P(a)'?

_f(l)(a) (¢;2)(a))_ 3 #3Xa)

L J@ (54
8(¢0D(a))*? 13 ¢P(a)

42— 1 N
;(ﬁ(a) (¢‘£((Z))1/2]+0(’ 5/2)} (5.2.30)

S We must require that (uo + 1)/vo —Ivi> 0 for the existence of (5.2.28).

[ ko) rar=

+

- ¢“"(a)}
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The complexity of this last formula is an indication of the difficulties we can
encounter in obtaining higher-order terms in the asymptotic expansion of
(5.2.1).

5.3. Kernels of Exponential Type: Continuation

We now turn to simple extensions and generalizations of the results obtained
in Section 5.2. In that section, we treated (5.2.1) in the case where the absolute
minimum of ¢ in [a,b] occurs only at the lower endpoint of integration t = a.
Thus, as our first extension, we wish to consider (5.2.1), as A — oo, when h(t)
is exponentially decreasing at infinity and when ¢(t) has a unique absolute
minimum in [a,b] at t = b.

To begin, we assume that

(1) ¢(b)20,
) ¢'(®<0 in  (ab),
() ()= ¢b)=Bo (b — 1) +ol(b—1)"),  Bo,pe >0.

If we set ¢(t) =u in (5.2. 1) then we have

= [ h(2u) F(u) du. (53.1)

-f
Flu) =
®) ((b' >:=¢ “w

and u increases from ¢(b) as t decreases from b.

To complete the asymptotic analysis of (5.3.1) we need only assume that
F(u), defined by (5.2.5) with a and b interchanged, has the asymptotic expansion
(5.2.7)as u— 0 + . In that event, the results of Section 5.2 are directly applicable.
For simplicity, we suppose that,as t -+ b —,

Here

SO~ Y 6,61, (532)
n=0
S)~ S Bulb—1y+2. (5.3.3)
n=0
Now
i IR 1)
po=(-1rop a=-rlR, (5.34)

where these quantities are left derivatives. Note that (5.3.3) implies
$b)=0

The leading three terms in the asymptotic expansion of I(4) are readily
determined. Indeed, calculations analogous to those leading to (5.2.18)
yield
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fb) ¢‘3’(b)]

1) = 2¢2(B)A)™ 2 f(b) M[h33] — (2¢(b)) ™! [f“’<b> 367h)

(g~
NS
U0) 600) 6) (S[9P6)T
Lo g s
x M[h;3] +0(172).

Now let us suppose that ¢ has its absolute minimum in [a,b] at an interior
point. To obtain the asymptotic expansion in this case, we need only split the
interval of integration at that point and treat separately the resulting two
integrals. To illustrate the procedure, we again consider the Laplace-type
integral

x M[h;1]+

— oAb } ] (5.3.9)

1) =fPe fdt. (5.3.6)

We assume that the absolute minimum of ¢ in [, f] occurs at t = ¢, where
o < ¢ < f, and that ¢’ is nonzero in both (a,c) and (c, ). We further assume
¢ is four times continuously differentiable at ¢ = ¢ and

2
=3 nt—or+o(t—cP), toc+,
n=0

2 (5.3.7)
f=Y dlc—ty+0(c—1%, t—oc—.
n=0
We now write
1) =[ e ™ fdt+ P e ™ fdi. (5.3.8)

To three terms the asymptotic expansion of the first integral in (5.3.8) is given
by (5.3.5) multiplied by exp{ — A¢(c)} when b is replaced by ¢ — and M[h;z] is
replaced by I'(z). The corresponding expansion of the second integral is given
by (5.2.24) when a is replaced by ¢ +. Upon adding the two expansions we
obtain

B
j e"¢fdt=exp{—/i¢(c)}[ {fle+)+fle =)}

2 2)¢(2)(
(3)
¢(2'(C {[f ]' e ¢¢(2()c [f]r c}

(2)( \y—3/2
+ (Ao (;)) \/g {f‘z’(c +) +f‘2’(c -)
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$Ac) S[6P(c) ]2
_ $D(0) (flce+)+f(c—N+ (_[3_#2)%)] _ d)(“)(c))'

Sle+)+f(c )

[W] } +00 2’] - (5.39)

Here we have used the symbol [g],-. to denote the “jump” of any function g
at t = c; that is,

[9)i=c=glc+)—g(c—). (5.3.10)

If f is continuously differentiable at ¢ = ¢, then the jumps [ f],-. and [ f'],_,
are both zero and we find that

B
j e f di = e 1(c) +0(expl — idlc)) A7¥2)  (5.3.11)

¢(2)

which agrees with (5.1.21). On the other hand, if either for f* (or both) has a
jump discontinuity at t=c¢, then the error in (5.3.11) is, in general,
O(e M@ }~1),

It is of value to have a formula at hand for the case where h is a general
kernel of exponential type and where ¢ has a unique absolute minimum in the
interior of [a,b]. Thus, suppose that at t=c¢, a<c<b, ¢™(c)=0
m=0,1,2,....,n— 1, while ¢™(c) > 0, where n is an even integer = 2. Suppose
further that ¢’ is nonzero in (a,c) and (c,b) and that f(c) is continuous at t = c.
Then, as is readily shown

(n}, —1/n
g h(lqb)fdt—zf(c) ("’ ('C))‘) M[h;l]wto(,l‘”").f (5.3.12)
n! n

In general ¢'(t) will vanish at several points in (a,b). In most instances
however (a,b) can be subdivided so that ¢ is monotonic throughout each
subinterval. Each integral that arises can be analyzed by the method of this
and the preceding section. The total asymptotic expansion of I will, of course, be
obtained by summing the individual expansions. It should be clear that the
major contributions to the total expansion will still come from small neigh-
borhoods of those points in [a,b] at which ¢ achieves its absolute minimum.
For this reason such points are called dominant critical points while all other
critical points are called subdominant. Because the contributions from sub-
dominant critical points are exponentially smaller than those from dominant
critical points, these contributions need only be retained when they have some
special significance.

If only the dominant contributions are to be determined, then we need only
require that the functions ¢ and f satisfy appropriate conditions in small
neighborhoods of the dominant critical points. Thus, for example, we need
not assume that ¢’ is continuous throughout the entire interval (a,b).
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EXAMPLE 5.3.1. Consider the integral
I(A) = j;“/z e Nt £ dr, (5.3.13)
where f is continuously differentiable on [0,3%/2]. We first write

IQ)= [T e ™t fe) dt + € [ e M+ D £(r) de

=1,(A) + L(}) €.

Finite asymptotic expansions of I, and I, can be obtained from (5.2.15) and
(5.3.5), respectively. Indeed, we have

1,(%) =f—? +0(47?), (5.3.14)
e 1,(1) = f(%) e J% +O(e* A7Y). (5.3.15)

Thus we see that the contribution from the subdominant critical point ¢t =0
is asymptotically negligible compared to that from the dominant critical
point t = 3n/2. Hence,

1) ~ e A/zlj f (%t) +0e* 27 h). (5.3.16)

EXAMPLE 5.3.2. Let
1(}) = jg" toQr— e MV gt gy > — 1. (5.3.17)

Here ¢ = sin® ¢ takes on its minimum value in [0,2r] at the three points t =0,
t =n,and t = 2x. Thus, we write

2 3n/2 2n — % sin?
1) = j(’;/ + jAn/z + j3n/2 toQ2m — ) e7h S N dt

=1,() + L(}) + I,(4). (5.3.18)

In I,, the absolute minimum of ¢ occurs at the lower endpoint t =0. In I,
it occurs at the interior point ¢ = 7, while in I; it occurs at the upper endpoint
t = 2n. Upon applying the results derived above we readily find

(2ny r(ﬂo +1

]l(l)z ) yl —(u0+1)/2+0(}‘—(u0+1)/2)’

2 2

I,(J) = mho*w ﬁ +o(A"112), (5.3.19)

:3<z)=(22)wr<#1; l) AT o),
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In this example, each of the points t =0, t ==, and t = 2n is a dominant
critical point. We observe that the contributions to the asymptotic expansion
of (5.3.17) from each of these points is algebraic in nature. To find the leading
term in the expansion we must know the values of uq and g, . Thus, for example,
if —1 < py <0 while 4, =0, then

I
I(4)= (2’;) r(“" 2+ l) A T2 4 p(AT et 1N2) - (5320)
On the other hand, if both y, and g, are zero, then all three terms in (5.3.19)
are comparable and we have

I(l)=2A/T;+ o(2™1%),

Except in the special case where h(t) = ¢!, we have assumed here and in
Section 5.2 that ¢(¢) is nonnegative throughout the interval of integration. The
reason for this is that we have made no assumptions concerning the behavior
of h(t) as t— — co. If, however, appropriate assumptions concerning this
asymptotic behavior are made, then we could allow ¢ to become negative with
few, if any, additional complications. This point is discussed further in
Section 5.4.

The extension to complex A is also readily accomplished. Indeed, because we
have reduced (5.2.1) to a sum of integrals of the form treated in Section 4.7, the
theory developed in that section can be directly applied. One word of caution
is in order, however. We n.ast bear in mind that the procedure of replacing
h(i¢) in (5.2.1) by its asymptotic expansion, when ¢ is bounded away from
zero in (a,b), already places a restriction on the sector of validity. In other
words, it is possible that the sector of validity of the asymptotic expansion of
I(2) is determined by the corresponding sector for the expansion of h, as t » «,
and not by what we would obtain by applying the results of Section 4.7 to each
of the integrals in (5.2.22).

5.4. Kernels of Algebraic Type

We now consider the behavior of the integral
1) = {5 h(Ag) f dt, (5.4.1)

as A— o, in the case where h(t) is algebraic in the limit t — oc . Indeed, we
shall assume that the asymptotic expansion (4.4.7) holds with d =0.

The analysis will proceed essentially as in Section 5.2. Nevertheless, we
have chosen to treat algebraic kernels separately because, as we shall see, some
of the results are markedly different from those for kernels of exponential
type. Let us first suppose that I(4) exists for A sufficiently large and that ¢
satisfies conditions (1), (2), and (3) on page 188. We are tempted to apply
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arguments similar to those given in Section 5.2, to predict that t = a will be a
critical point for the asymptotic expansion of I(1). We shall find, however, that
this need not be the case at all. In fact, one objective of this section is to determine
which points in [a,b] are critical.

If in (5.4.1) we set ¢(t) = u, then we obtain

IA)= j': h(Au) F(u) du. (5.4.2)

Here F(u) is defined by (5.2.4) and (5.2.5). We shall again require that F(u) have
an asymptotic expansion, as u — 0 + , of the form (5.2.7). Because h(t) is algebraic,
as t — o0, it need not have a Mellin transform in the ordinary sense. However,
throughout this section we shall assume, as in Section 4.5, that M [h;z] exists
in the ordinary sense but shall allow M[F(u);1 —z] to exist only in the
generalized sense.

It again proves convenient to consider the two cases ¢(a) > 0 and ¢(a) = 0
separately.

Casel. ¢(a)>0. Here F(u)=0 in a positive half-neighborhood of u=0
and hence M[F(u);1 — z] exists and is holomorphic in a right half-plane.” If
we assume that » and F satisfy the hypotheses of Theorem 4.4, then we find
that (4.4.15) holds where the only contributions arise from the poles in the
analytic continuation of M[k;z] into the right half-plane. We find that in this
case the expansion is given by (4.4.19)

0 N{m} n _
m~y i Z Con Z <n> (log AY M"~P[F;z] (5.4.3)
m=0 n=0 Jj=0 J z=1-r,
The coefficients in (5.4.3) involve the quantities
M®I[F 7] = j: (log uy* I Flu)uw ™' du (5.4.4)

evaluated at the points z = 1 — r,,. Upon setting ¢(t} = u in (5.4.4), that is, upon
returning to the original variable of integration in (5.4.1), we find that

M@n-D [F;z]l = SM) <i,> (loguy"Ju™" du (5.4.5)
z $(a) d’ t=¢ Yu)

=2 (log @I ¢ f dt.

Thus, we see that the asymptotic expansion in this case involves the global
behavior of f and ¢ on [a,b] and the local behavior of h(t) at t = oc . This shows
that t = a is not a special critical point for the expansion.

We note that the asymptotic expansion could have been obtained directly
irom (5.4.1) by replacing h(1¢) by its asymptotic expansion at s and then
integrating term-by-term. This of course succeeds because, in this case, ¢(1)

=1-r,

If ¢(b) = oo, then M[F;1 — Z] exists only when F(u) has an algebraic bound as u— x. This,
however, is guaranteed by the assumed existence of (5.4.1) and the algebraic behavior of h(r) as
t— 0.
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is bounded away from zero throughout [a,b]. We finally note that here condi-
tions (1), (2), and (3) on page 188 can be replaced by the single assumption
$(t)= 6> 0for tin [a,b].

Case II. ¢(a)=0. Now additional conditions must be placed on ¢ and f to
ensure that (5.2.7) holds. Sufficient conditions will be given below. If Re(g) >0
in (5.2.7), then M[F(u);1 — z] is holomorphic in a right half-plane and the
asymptotic expansion of I(4) is still given by (5.4.3) and (5.4.5) If q is purely
imaginary then we know that M[F;1 —z] can be continued into a right
half-plane as a holomorphic function. Hence (5.4.3) again holds except now the
coefficients that appear perhaps involve the generalized Mellin transform of
F(u) and we cannot use formula (5.4.5). In these last two subcases, we still find
that t = a is not a critical point for the expansion.

The most interesting situation arises when in (5.2.7) ¢ = 0. Now the analytic
continuation of M[F,;1 — z] has poles in the right half-plane Re z > a, + 1.
In the case where a, + 1 #r, for any m, n so that poles of M[h;z] and
M[F ;1 — z] do not coincide, then we find that

W~y i %icw%wwﬂvﬂ‘ (54.6)

N(m) n

+mzo Ament n;) Pmn z C) (—log 1Yy M*™~[h;z]

i=0

z=a,+1

Here the quantities M"“”[F;z]| are to be interpreted in the generalized
sense. G

The important point to observe is that now the asymptotic expansion involves
the local behavior of the functions fand ¢ as t—a + in addition to the global
behavior of these functions on [a,b]. In other words, t =a is a critical point
in this case.

To obtain explicit expressions for the leading terms in (54.6) we
assume

() ~ aglt —a)®,  f(t) ~ yo(t — ay, toa+. (5.4.7)
Then, we have [see (5.2.14)]

F(u)~);—0(a0)““°+”/"0u (to+1)/vo—1 , Uu—0+. (5.4.8)
0

If we further assume that in (4.4.7), ro < (o + 1)/vo <r, and ¢;, =0 forn>1,
then to second order we obtain

I —=ro b —r /10 + 1 )’o -
()~ 4 cooj ¢ fdt+ M |hET= 10 o gyt (5.49)
a 0 0

Note that under the assumptions made the integral in (5.4.9) is convergent.
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Of course, there are many other special cases for which we can obtain
explicit expressions for the leading terms in the asymptotic expansion. We
cannot possibly hope to exhaust all of the possibilities here. There is one
additional case however we would like to consider. Indeed, suppose that
(5.4.7) holds with (gy + 1)/vo =r,. Then a logarithmic term appears to leading
order even when N(0) =0 in (4.4.7). As is readily seen, in this case

Coo Yo log 2
I(A) ~ )
(%) Vo (“0 ;L)(uo*'l)r\m

Ao L, (5.4.10)

We have seen in Case II that, whenever ¢ and fare such that ¢ =0 in (5.2.7),
t = a is a critical point for the asymptotic expansion of I as 2 — « . We might
ask, is the critical nature of t = a in these instances due to its being the point
at which ¢ achieves its absolute minimum on [a,b] or due to the vanishing of
¢(a). In Case I above we found that when ¢(a) > 0, t = a is not a critical point.
We would now like to investigate whether or not the vanishing of ¢(a) is alone
sufficient to cause ¢ = a to be a critical point.

To accomplish this, we clearly must allow ¢ to become negative in the interval
of integration in which event we must be concerned with the behavior of h(t)
as t —» — . For definiteness we shall assume that h is algebraic in this limit
also. Let us consider the following.

EXAMPLE 5.4.1. Suppose

1) = Sl fwdr (5.4.11)

-1 i+ it

Here we have introduced the complex number i to avoid problems with the
convergence of I(1). We now have h(t)=(i+¢)~' and ¢(r)=t. The latter
vanishes at t = 0 but does not have a minimum there.

After simple manipulations, we find that

[ =ilf@+ f(=0T+alf() - f(=n])
= SO [ T sz. (5.4.12)

If, as t -0+, f(f) has asymptotic expansions of the form (4.4.9) with ¢ =0,
then we can immediately conclude that ¢ = 0 is a critical point for the asymptotic
expansion of (5.4.11). Indeed, if f(¢) is continuous and nonzero at t =0, then
we have

1~ O ey 210, (5.4.13)

In this example, the critical nature of t =0 is due solely to the vanishing of
¢(0). Thus, when considering (5.4.1) when the kernel is algebraic in the two
limits t - + oo, we must anticipate that any point at which ¢ vanishes will
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be critical. Moreover, a point in [a,b] at which ¢ achieves either its absolute
minimum or its absolute maximum value will not be critical unless, of course,
¢ vanishes there.

Now that we have established that, in general, points at which ¢ vanishes
are critical, we would like to understand just why this is so. Clearly, in order
to find the explanation, we must first determine what of any significance
happens to h(1$) when ¢ vanishes. Consider then any subinterval of [a,b]
throughout which ¢ is bounded away from zero. If ¢ is positive in this
subinterval, then the behavior of h(i¢) is determined by the asymptotic
expansion (4.4.7) with d = 0 and ¢ replaced by i¢. If ¢ is negative throughout
the subinterval, then presumably a similar, but not necessarily identical,
expansion will hold for h(i¢) as i¢p —» — . The important point is that,
whatever asymptotic expansion holds, it is valid for all ¢ in the subinterval.

Now let us suppose that ¢(t) vanishes at ¢t = ¢ with a<c < b. In general,
there will be no single asymptotic expansion of h(i¢), A— =, that remains
valid throughout any interval having t=c either in its interior or on its
boundary. Any contribution to the asymptotic expansion of I(1) determined
by the local behavior of ¢ and f near t = ¢ can be construed as a reflection of
the change in the asymptotic behavior of h(A¢) for A — = as t approaches this
point. Indeed, assuming ¢ continuous in [a,b], there is a small interval about
any zero of ¢ throughout which i¢ =0(1) as A— <. Hence, in this region,
which we might term a “‘boundary layer,” we cannot replace h(i¢) by its
asymptotic expansion for large argument. Outside of this boundary layer but
away from any other zero of ¢, |ip|=0(1) as 1— o, and the asymptotic
expansion of h(A¢) for large argument is valid. Of course, the asymptotic
behavior of h(4¢) undergoes a smooth transition. Nevertheless, this somewhat
crude discussion indicates why the behavior of ¢ and f in small boundary
layers about the zeros of ¢ plays a significant role in the asymptotic expansion
of I{4).

The above discussion also holds for the exponential kernels of Sections 5.2

and 5.3. There we found that when ¢ is restricted to be positive in [a,b], the
points at which ¢ achieves its absolute minimum are the dominant critical
points. Had we allowed ¢ to be negative and further assumed h(t) to be
exponentially decreasing as t - — oo, we would have found, as in this section,
that the dominant critical points are the zeros of ¢. On the other hand, for
kernels such as e™* which increase exponentially, as t - — oo, the absolute
minima of ¢ are the dominant critical points.
_ We could, as in Section 5.3, consider generalizations of the results obtained
so far in this section. For example, we might develop a general formula for the
expansion of (5.4.1) in the case where ¢ vanishes at one or more points in the
interior of [a,b]. We choose, however, to illustrate such generalizations in the
context of specific examples.
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EXAMPLE 5.4.2. Let

1) = 5 S dt

o 0. 4
et asmloe 7 (54.14)

For simplicity, we assume that f(t) is infinitely differentiable on [ —n,7].
Our first objective is to write (5.4.14) as a sum of integrals so that all possible
critical points become endpoints of integration. As we have seen, only the
zeros of ¢(t)=sin*t on [ —mn] can be critical points. Hence, we
write

_ [t dt v f(e) dt

—j-,, (14 A sin? 1) ,‘0(1+/lsin2r)“

_ 1)+ f( —t]

B [ (14 2 sin? 1) dt (54.13)
(" F(t) dt

Jo (1 + 4 sin? 1)

We cannot directly apply our procedure to (5.4.15) because ¢ =sin? ¢ is
not monotonic in (0,7). To avoid this difficulty we write

1) = Wi F(0)dt = F)dt
"’jo (1 + Zsin? 1) j,,/z(1+/1sin2t)“

(M FO)+F(n—0)] dt
_jo (1 + Asin?¢)®
_ jz Fydt
“Jo (14 sin? 0 (5.4.16)
In terms of the original integrand function f(t), we have
FO=fO+f(—)+f(r—1)+f(t—n). (5.4.17)

We are now in a position to apply the results of this section. The two pieces
of information we need are the Mellin transform of the kernel h=(1 +1)~°
and the asymptotic expansion, as u —0 +, of

&
Fluy=21 (54.18)
SN2t g1 7
We have from the Appendix
ca. . T(@) T —2)
ML+ 07 2] =55 (5.4.19)

and after some calculation we find
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2SO +f(m)+f(—m)) u "2
2

1
+5 (=1 =M} +0u'?), u->0+. (5.4.20)

F(u)y=

If 0 <a <3, then we can apply (5.4.9) to obtain

. " [«
IA)y=1"* }_ (sin® t)~* f(t) dt +f -lz JOY+f(m)+f(—n)}

)\l 2 ]—( )
[ —

2T {f m)—[(=m)}+0071 7). (5.4.21)

If x=1%, then we have a coalescence of poles and it follows from (5.4.10)
that
1log i

1)=35"55 2SO +f(m) +f(—n)} +0(~"). (5.4.22)

If{ <a <1, then we find

[ L
14) = ‘\/—/{”ial"( ; 20 +fm)+f(—n)} + A" M[F;1—a]
r
2‘; Ia {f(m)=f'(—n)} +0(2~3?) (5.4.23)

which involves the analytxc continuation of M[F;1—z]. Finally, if =1,
then the expansion becomes

1) = 37775 {2 J(O) +£(m) + £~ )} (5.4.24)
lo A
o L@ — (= 1)} +0G7 ),
We note that in all cases the points t= — 7, t=0, and t = r are critical.

EXAMPLE 5.4.3. Now suppose that
I(y= |2 sinh™" (L sin 1) f(t) dt. (5.4.25)

n/2

Here ¢ = sin t vanishes in [ — n/2,7/2] only at t = 0. Upon using the fact that
sinh ™! ¢ is odd about the origin, we have

1) = j " sinh~1 (A sin 1) (f(O)—f(—1)} di. (5.4.26)

0

The kernel h = sinh ™! ¢ can also be written

h(t) =log (t + /1 + t2), t=0, (5.4.27)
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which clearly has the appropriate asymptotic behavior as t = o. Indeed

(o2
h(r):logr+log2+—1 +00™ ), t— o0, (5.4.28)

Thus. we find that Msinh™ ' r:z] has a double pole at z =0 and simple poles
at the even integers.
If f(1) is continuously differentiable at the origin, then

Flu) =f(!_)_—_/(_—_1) =2uf'0) +olw), u-— 0+. (5.4.29)
cos t

t=sin"'u

so that the first pole of M[F ;1 —z] occurs at z= 2 and is simple. Now we
can write down the first three terms in the asymptotic expansion ol (5.4.25).
Indeed we find that

1)~ log 2 M[F 1]+ {log2M[F;l]—d£z M[F;1 —z]‘__ }

log 4

7)'—2_/"(0). (5.4.30)

+

Here the Mellin transforms are given explicitly by

MIF;1} = {*] sentf(D)dt,
(5.4.31)

2
4 M[F:1-z] = - \ log (sin 1) [f(t)—f(— 0] dL.
dz Jo

z=0

5.5. Expansions for Small

In this section we briefly consider

1(4) =[5 h(Ag()) (1) dt (5.5.1)

in the limit 2 — 0 + . For simplicity, we shall assume here that I(1) is absolutely
convergent. From the results of Section 4.6 and a heuristic boundary layer-type
argument analogous to the one introduced in the previous section, we anticipate
that we must be concerned, in particular, with the behavior of h(t) as t >0+
and of the functions ¢ and f as ¢ approaches any infinity of ¢.

We shall not attempt to be as complete in our discussion here as we were
in the preceding sections. Our major objective is to obtain results sufficient to
establish the critical nature of the infinities of ¢.

Let us first suppose that ¢ is nonnegative and finite throughout [a,b] and
that, as t — 0 + , h(1) has the asymptotic expansion

a0 Fl(m)
he)~ S > Pma(log o)y ™ (5.5.2)
m=0 n=0
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with Re(a,) T + % and N(m) finite for each m. Here we have assumed that
h(t) is algebraic as t —0 + . because this is true of most kernels that arise in
applications.

Because ¢ is finite in [«,b], we can replace h(4¢) in (5.5.1) by its asymptotic
expansion for small ¢ and then integrate term-by-term. In this manner we
obtain the formal result

o Nom) n b
I~ 2 23 Pun 2 (':) (log 2y | (log @~/ ge= fdt.  (553)
J - a

m=0 n=0 i=0

Note that, under the assumption I(1) is absolutely convergent, all of the integrals
in (5.5.3) are finite. We leave to the exercises a proof of the validity of (5.5.3).

Of more interest is the case where ¢ is nonnegative and monotonically
increasing in [a,b] with ¢(b) = . To analyze I in this case we set u = ¢(t) in
(5.5.1) to obtain

1) = [y htou) F(u) du. (5.5.4)
Here
0, 0 <u <),
Fuy=! , (5.5.5)
— R < C .
e dlaySu<

The desired expansion will be obtained by applying the results of Section
4.6.
Let us suppose that, as u — o,
f x  N(m)
pe ~ 3 Y cppu (loguy (5.5.6)
t=¢ 'u) m=0n=0
with Re(r,,) T © and N(m) finite for each m. We are assuming F(u) [and hence
F(u)] algebraic at infinity to reduce the number of cases to be considered. If
we now suppose that the hypotheses of Theorem 4.6 are satisfied, then the
results of Case IV in Section 4.6 yield the desired expansion of .
In particular, if a, + 1 # r, for any m, n, then (4.6.18) holds. We repeat that
result here.

sl ﬁ(m) n
(A~ Zo A5 Dn > (n) (log AY M"~I[F;z]
m= n=0

=0 \J

z=1+aa

© _, Now "o/ 4 . (5.5.7)
ERREN T —
m= n= j=

0

z=1-rn

To .illustrate what happens when a coalescence occurs, suppose thata, + 1 = ro,
while ¢g, = po, = 0 for n > 1. Then we find

I(A) ~ — A% log A poo Coo- (5.5.8)
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We note that when ¢(a) =0, the Mellin transforms of F in (5.5.7) need exist
only in the generalized sense.

To obtain more explicit expressions for the leading terms in (5.5.7) and
(5.5.8) we now suppose that, ast —b —,

f~ fb),
¢ ~aglb—1)7", %o, Yo > 0. (5.5.9)
We then find
F(u) ~%’2 (o) /7oy~ bt Do | U— + % (5.5.10)
If a, > 1/7,, then it follows from (5.5.7) that
I(/l)~(a0/1)”"'°@ M[h;—%]- (5.5.11)
Yo Yo
If ay < 1/70 and p,, = 0 for n = 1, then (5.5.7) yields ;
I(A) ~ 2% poo M[F;1+ag] =A% poo 5 ¢ fdt. (5.5.12)
Finally, if ¢, = 1/y, and p,, =0 for n = 1, then
I(2) ~ — (xgA)* log 4 poo f(b)/ 7o (5.5.13)

We see from (5.5.11)—(5.5.13) that t = b is indeed a critical point for the expansion
of I when ¢(b) = .

EXAMPLE 5.5. Let us consider
1) = [/% e (1 + tan 1)* dt (5.5.14)

in the limit A— 0 + . Here h(t) = e~* and ¢(t) = sec t. Because ¢(r/2) = o, the
results (5.5.7) and (5.5.8) apply. We find that as u — o,

sec™ ' u+ . Jut— 1)“

uJut—1

F(u) = ~ut2, (5.5.15)

Also, we have
Mle 51 —z]=T01-2). (5.5.16)
Thus, if 1 —a > 0, then

M2 ekt (4 tan 1) di ~ M[F:1] = Y (t+tanode. (55.17)
If « = 1, then we find from (5.5.8) that
fg’z e * 5t (¢ + tan t) dt ~ — log . (5.5.18)
Finally, if a > 1, then (5.5.7) yields

[ er et (¢4 tan 1 di~ 217 T(a—1). (5.5.19)
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5.6. Exercises

5.1. Determine the leading two terms in the asymptotic expansion of each of
the following integrals as A — o0 :

(@) fge~™ P+ 1dr.

(b) fge ™" sin? t dr.

(c) f1, e MUell=D(1 4 1) dr.
(d) f', et V7T cosh ¢ dr.

5.2. Consider the Sievert integral

1(2;0) = fg e™* =< " dt. (5.6.1)
(a) For 0 <8 <n/2, verify that
T - -
1(3;0) ~ A/;le Ml+oY}, iAo, (5.6.2)

(b) Show that (5.6.2) is valid for |arg(1)| < =/2.

5.3. Consider the class of integrals

L(x)= g tme "~ dt. (5.6.3)
(a) Determine the change of variable which recasts (5.6.3) in the form
L(x)= A+ D2 [ gm g=ME U gr o j= 23, (5.6.4)
(b) Show that
T 2_3‘2»1/3)1
1, (A%%) ~ Ami2 £ BT [t+o(A~H]. (5.6.5)

(c) Show that (5.6.5) is valid for |arg(x)| < =.

5.4. Consider

12) = f2 exp{ — Ag()} (1) dt, (5.6.6)

where both fand ¢ belong to C*[a,b].
(a) Suppose that ¢ has a unique absolute minimum at t=to, a <ty <b.
Suppose further that

¢ (1)=0, j=12,...,2n—1, ¢ (t)>0. (5.6.7)
Show that the relation
1) — dlto) = 67" (5.6.8)
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defines ¢ = o(t) in a two-sided neighborhood of t =1, as a C= function with
do/dt > 0 when the ambiguity in the sign of the 2nth root is resolved by taking

sign(a) = sign(t — t,).
(b) Let
Io(A)= f2 2 f(t) exp{ — Ag(1) } dt (5.6.9)

with ¢, as in (a) and the interval [f, — ¢, t, + £] contained in the domain of
regularity of a(t). Introduce ¢ as a new variable of integration in (5.6.9) to
obtain

Io(A) = exp{ — 1(to)} |, Glo) exp{ — is™"} do. (5.6.10)

Determine G(0), ¢,, ¢, in terms of ¢, f, and o. Verify that G(o) e C®( — ¢,¢,).
(c) By using the method of Section 5.1 show that

1_<2j+1)
G0y \ 2
Io(A) ~ exp{ — Ad(t 0)}Z n(zj(),)W, im0, (5611)

(d) Verify that for n = 1, this result agrees with (5.1.21).
(e) Show that for any n, the result analogous to (5.1.21) is

1
fito) r(—)

! 1/2n 2 .
Io(A) = exp{ — Ad(to)} (A (;(22"3&0)) " . [1+0(A™ "], (5.6.12)

(f) Show that I(4) = I4(4) to within an exponentially small error.

5.5. (a) Show that, if t, = a in Exercise 5.4, then

r<j+1)
exp{ — M’(“ 59 G20y ; (5.6.13)

jr auEDiEe =X

I(A) ~

i=0

(b) In particular show that
1 2 l/2n
1y~ 24 21¢(a)} ) r<2_> n)

" ¢>‘2") a)
1 (2n)! f(a) ¢(2n+l) a)
F() [A¢<zn)(a ] [ ) n(2n 1D ¢(2n)( ]
@n)! [ f®@) _ 3f"a) %+ Ya)
o [M""’(a) 2n@2n+ 1) $*%a)
3f(a) ( ( ) ¢(2n+ g)]2
2n(2n + 1) ¢(2n)a) 2n) 22n + 1) ¢®(a)

<
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¢(2n+2)(a) .
~m>]+0(l Y )}. (5.6.14)

{c) Verify that one can obtain (5.6.14) formally in the following manner:
Set

dt)=dl@) +cos*"+ ¢, s ey s 24
f(t)=ao+a,s+azsz+..., s=t—a. (5615)

Substitute (5.6.15) into (5.6.6) and expand exp{ — A[c;s*"* ! + c,s2"* 2 + -]}
in a power series. Finally muitiply this series by exp{ — A[¢(a) + cos>"]} and
the series for f and integrate the resulting series term-by-term from zero to
infinity.

5.6. Suppose that in (5.6.6) both ¢ and f belong to C*®(a,b). Furthermore,
suppose that ¢’ > 0 on (a,b) and that, ast—a +,
()= dpla) +alt — P +0((t —a)*), B >B>0, a>0,
SO =fit = ay +0((t—a)), —1<y<y. (619
(a) Show that the change of variable defined by
af = ¢(t) — ¢la)

with ¢ positive for ¢ > a is one-to-one and differentiable for ¢ in some one-sided
neighborhood of a.
(b) Show that

10) = exp{ — Ad(a)} 2 ——z)(ff,),/,f [1+0G™*)],  (5617)

5.7. Let

12) =5 [T f () dt. (5.6.18)

Assume that ¢ is nonnegative on [a,b], ¢ ¢ C¥[a,b], and f'e C'*'[a,b].
(a) Suppose that the absolute maximum of ¢ on [a,b] occurs at t = a with
¢ a)=0, ¢**a) < 0. Show that, as 1 — o0,

. [¢(a)]x+x/2 =
()= FOE Sfa) /2|4)‘2’(a)|

[¢(a)]l+l f‘“(a) f(a) ¢(3)( ) ¢( P\
i {¢<2’(a) _3(¢‘2‘(a);}+0<[ ;.3‘1/)23) (56.19)

(b) Suppose that the absolute maximum of ¢ on [a,b] occurs at ¢t = b with
¢'V(b) =0, ¢'¥(b) < 0. Show that
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b A+4
=201 10 [t

[o®)]**" [ SOb) _f(b) 9™b) ([d)(b)]‘) 5620
+ A { ¢(2)(b) 3(¢0(2)(b})2 } +0 YEERA ( )

(c) Show that if the absolute maximum of ¢ on [a,b] occurs at the interior
point t = ¢ with ¢¥(c) <0, then

2 P(c)]
1) = [¢0) ]} W;‘Wf (c) +o([—13—,2—>. (5.6.21)

(d) Finally show that if the absolute maximum of ¢ on [a,b] occurs at
t=aandif ast—a+,

&(t) = dla) —alt — aff + ((t —af¥), B >p>0, >0,

fO=flt—ay +0((t—a)), V>y>-1 (5.6.22)
then
; 1
10 =g Lo HOE D [ oaom),
§=min[§' — B,y —,8]. (5.6.23)

58. Letf(p)=a'? p~ ' {/,(p)}'".
(a) Set a'’? = exp{(log a)/p} and show that

a””=l+——lolg)a+0(p‘2), p— ©.

(b) Set p~ /27 = exp{( — log p)/2p} and show that

2
R _lgfé_ew((l_@) ) pos o,
2p p

(c) Show that if fy(p)= 1+ b/p +0(p~ %), p— ©, then
{fip)}P =1+0(p7?).
(d) Verify (5.1.32).

5.9. (a) Suppose that g(t) is a nonnegative function on [o, lv] who§e absolute
maximum occurs at t =0. Furthermore, let g(t) = g(0) — at” + o(t"), t—->0+,
2>0,v>0.Let || g, as defined by (5.1.27) exist for all p = po. Show that

1 log p
lgl,=90 (1 - ﬁvf_%p_l’ + o(—p—)), p— . (5.6.24)

(b) If the absolute maximum of gisatt=1, with
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g(t) =g(1) — B(1 — t}* + o((1 — 1)), t—>1-—,
then show that
1 lo
lgll,=a1) <1 —%M(%)), pooo. (5.6.25)

(c) Suppose that g ¢ C?"*D[a,b] and that the absolute maximum of g
occurs at the interior point t=c. Suppose further that g¢“Yc)=0,
i=12...,2n—-1),g*™(c) < 0. Show that

lo, lo
lgll,=g(c) [1 —2——i§+o<$)], P oo, (5.6.26)

5.10. Consider the following integral representation for the modified Bessel
function of the second kind :

1 a0
K (a) =3 S exp{ —a cosh ¢ + vt} dt. (5.6.27)
(a) Show that ¢ = — vt + a cosh ¢ attains its minimum when ¢t = sinh™?! v/a.

(b) Show that under the change of variable defined by

LV
T=t—sinh™! -,
a

(5.6.27) becomes
1 Zta?+v) (@ 2

K= (VEEEEN T opf oy e =) exp [~ TSR gy
2 a - v+ T

(5.6.28)

(c) Formally apply Laplace’s method to obtain the leading term of the
asymptotic expansion of K, as v— c with a fixed. Here Exercise 5.8 must be
used as well.

(d) With parts (a)—(c) as motivation, develop sufficient conditions for
Laplace’s method to remain valid when treating integrals of the form

1) = 2 exp{ ~ 26(1)} f(t;4) dt. (5.6.29)

5.11. Consider the following integral representation for the associated

Legendre function of the second kind:

(-)"I(n+d r’ cosh mt dt
o (

-1 h )= : )
R R 1 + cosh ¢ sinh n)"*}

(5.6.30)

Use the method developed in Exercise 5.7 to obtain the expansion
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Oy (o~ (— P (aP=te ™ fohee >0, mse (5630

5.12. Show that the function F(u) defined by (5.2.4) is locally integrable on
(¢(a), H(b)).

5.13. Consider (5.2.1) with h a kernel of exponential type. Suppose that, as
t —a+,(5.2.8) holds and that

1) ~y(t — a) [log(t — a)]" +O((t — a)* [log(t —a)]"™1).  (5.6.32)
Show that, to leading order (5.2.1) has the asymptotic expansion
' oM [h

n+1
Vo

I(A) ~( = 1)*(og )~ ®* ¥ (log Y —1

1] [1+0((log 2)~")].(5.6.33)

Vo

5.14. Justify the claim made following Equation (5.2.21). In particular, show
that when the sum on m is made finite with upper limit M, the error is

Of(log ANM+ 1 j=rees =00 (log gMMHD prer fdr). (5.6.34)

5.15. Verify that the following asymptotic approximations are correct:
. ™2 Ai(A /1 + a* — 2a’cos 0) dO
(a) I(A,a)-—jo (1+ a2 — 2a cos g7
cxp{— 232 (1-a)?}
2a(1 —a) A

, O<a<l, i->x.  (5.6.35)

(See Exercise 4.3 for the asymptotic expansion of the Airy function Ai.)

-5/6
(b} I(A;1) ~2—[ﬁr<%>, A—>00. (5.6.36)

Here I{2;a) is as in part (a).
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n (v+1)/2 —
(C)j D, (i sin? 0) cos 20 df ~ — "2 F( L-v3 v 1)
0 g W2 4Ty
472

- 2(v+l)/2

n Sl—-vn—-v 5
- r 2 Fﬁ - Z._
(-1) Tlh+3) (2+4, CERREIRT 1)

A= o0,

©
x .
n=0

—_ 5 ’
2L D1 o e
(3 n)(n+)l“<2 +2

(5.6.37)

Here D, is the Weber function of order v and F(a,b;c;z) is the hypergeometric
function.

(d) (&) = [ F(a,b;c;— A sin 8) (/sin 20 d6

nri"'l’(a+n)l"(b—a—n)l"<§—%

10T § (=
3T@T}) 5 n! l l"(c—a——n)l"(i a+n>

2
AP T(b+mTa—b —n)ré_b;"
* 3 b+
n
l"(c—b——n)I“(E— 2)

A iTn+PTa—2n—PT(b—2n— 3)
Tc-2n—-3)TEG—n)

Here a # b and neither is a half-integer; b — a is not an integer.
(e) Let a = b in part (d) with neither a half-integer. Then

—a 3 a+n
_Lr(c)r(%)i(—ar"ﬁ r“‘*"“(i‘ 2)

\/5 M@ = 0!)? ll"(c a_n)r<§_a+n)
2

, Ao . (5.638)

1) ~

x[logl~|l/(a+n)+2q(l(n+1)—|//(c—a—n)

1 3 a+n 1 3 a+n
‘5“’(5‘7)*“”(“ 2 )]
2(= D" A T2n+HT2a—2n—3 n‘]

Tc—2n—)TG—n) [ A-o0.  (56.39)

(f) Obtain an expansion of I(4) in part (d) for a = 4 and b not a half-integer.
(g) Obtain an expansion of I(4) in part (d) fora=b = 1.

+
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5.16. Let
1) = {3 |1 —A0)| V2 f(¢) dt. (5.6.40)

Assume that ¢(t) is nonnegative on [0,a] with its only zero at t = 0. Furthermore
assume that,as t -0+,

S@O=yt"+o(t"), pu>0,
é(t) = at” + o(t), v>0.
(a) If (u + 1)/v < %, then show that

(5.6.41)

F(M +1
10)= a1 M[G,;§]+(al)“““”" <2> Jr v ) [1 tan "1 T ”]
2 v/ 2 (3 u+ 1) v
s+
2 v
+ o(A™ WD), A—> 0. (5.6.42)
Here
M[G,;z] =, [o0) ] "' f(nd (5.6.43)
(b) If (u + 1)/v = %, then show that
3} y logi ~ .
_ 12 20 12 s
IH=1"?*M [G1 25 e ” +0(A™13), iAo, (5644

(c) If (u+ 1)/v > %, then show that

_ 31 [ .1] 18-
I(A)—M[Gl,4] ATV MG, 5| +0G7);

. fu+13
p = min (—;5) (5.6.45)

5.17. Prove that (5.5.3) is correct under the conditions stated in
Section 5.5.

5.18. Verify that the following asymptotic approximations are correct:

@) }"‘/2 K(itant)dt i~"T(v) j"/’- (tan 1) dt

p— = —, i—-0, O<v<l.
o J1+2 2 o J1+

(5.6.46)

/2 b 2
(b) ( ﬂ,t_ta_n_t)ﬁ" — (log 4) log[E + L + l] +0(1), A—0. (5.647)
Jo 1422 2 4
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/2 o -
(©) j ettt g AT Z {w)
0 2 S L k=D k= 1)t

x [log 4 — Y(2k) =3 gu(k) + § Y3 — k)] +—’ 4—-0.

(5.6.:48)
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h-Transforms with
Oscillatory Kernels

6.1. Fourier Integrals and the Method of Stationary Phase

. In this section we shall consider the asymptotic expansion as 1-» oo, of
integrals of the form

I() = [2 exp{id ¢(t)} £(¢) dt (6.1.1)

with ¢ real.

First, a heuristic development of an asymptotic formula or leading term will
be given, while later in the section a rigorous derivation will be offered. The
consideration here of the Fourier-type integrals (6.1.1) will serve to motivate
the treatment in the sections to follow of h-transforms with general oscillatory
kernels.

.We know from previous work that, whenever f and ¢ are infinitely
differentiable with ¢ monotonic on [a,b], an infinite asymptotic expansion
of (6.1.1) can be obtained via the integration-by-parts procedure. Furthermore,
we recall that it was anticipated in Section 3.3 that points at which ¢’ vanishes
would be critical. Our objective is to derive the leading term of the contribution
to the asymptotic expansion from such a critical point. Before doing so, however,
let us try to better understand the critical nature of the zeros of ¢'(t).

Suppose that t = ¢ is a point in (a,b) at which ¢’ does not vanish. Then there
exists a small neighborhood N, of this point such that, as t varies throughout
N., ¢(t) is changing. Furthermore, if 4 is large, then the change in A¢ is rapid
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so that the oscillations of the real and imaginary parts of exp{ii¢} about zero
are rapid. Now consider

I(4) =, exp{idg}fdt. (6.1.2)

Because N, is a small interval about t = ¢, we may closely approximate f(t)
in (6.1.2) by f(c). Then, upon assuming 4 large, we find that the rapid oscillation
of exp{iA¢} produces cancellations which, in turn, tend to decrease the value
of I(A).

Now suppose that ¢’ does vanish at t = c. Then no matter how large 4 is,
there exists a neighborhood N A) of ¢t =c throughout which i¢ does not
change rapidly. Of course N (/) shrinks to the single point t =c as A— 0.
Nevertheless, as ¢t varies in N (1), exp{id¢} does not oscillate rapidly and
cancellation does not occur. We are therefore led to anticipate that the value
of I(4), for  large, depends primarily on the behavior of fand ¢ near points at
which ¢’ is zero. In calculus, such points are called stationary points of ¢.
Because the length of N (1) goes to zero as A goes to co, we might further
anticipate that, so long as f'is continuous, the contribution to I(4) corresponding
to any stationary point of ¢ goes to zero in this limit.

A heuristic derivation of the leading term of the asymptotic expansion of
I(A) follows closely that of Laplace’s formula given in Section 5.1. Indeed, let
us consider (6.1.1) and suppose that f ¢ C[a,b] while ¢ ¢ C*[a,b]. Suppose
further that ¢’ vanishes in [a,b] only at the point t = ¢. Finally, assume that
@"(c) # 0. [Note that no assumption has been made concerning the sign of
$"(0).1

If we believe the heuristic argument given above, then we can apply the formal
calculations that led to (5.1.8) to conclude that, for any small positive ¢

JAFTN2

I(A)= exp{iid(c)} f(c) \/Wﬁ(cﬂj exp{iut?} dr. (6.1.3)

s JAFENT
Here p=sgn ¢"(c). The approximation (6.1.3) presumably improves as e— 0
with \/Z ¢ > 0. In that event we can write

2 «x©
I(3) ~ exp{iAg(c)} f(c) | o) J.- ; exp{iut?} dr. 6.1.4)

The integral in (6.1.4) can be evaluated explicitly (it exists as an improper
Riemann integral), to yield

5 »
1) ~ explidd(c)} £(0) /7T¢RTC)I exp {Z%ﬁ } (6.1.5)

This last formula is the desired result. We conjecture that it represents the
leading term of the contribution to I(4) corresponding to the stationary point
t=c. In many physical problems, especially those which involve the
propagation of waves, because ¢ has the interpretation of a phase, (6.1.5) has
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come to be known as the stationary phase formula and the analytical procedure
which led to its derivation as the method of stationary phase.

We note that the stationary phase formula heuristically derived above
predicts that the corresponding contribution is (A~ /%) as 1 — oo . If we compare
this to the endpoint contributions which are obtained via the process of
neutralization and integration by parts and which, in this manner and under
the assumed smoothness of f and ¢ are found to be O(1™!), then our original
prediction that the zeros of ¢’ are the dominant critical points is partially
confirmed.

The approximation (6.1.5) can be rigorously derived via the extension of the
integration-by-parts procedure described in Section 3.4. Indeed, as we shall
find, a significant generalization can be obtained in this manner. Thus, let us
again consider (6.1.1) and still suppose that ¢ =c is the only stationary point
of ¢ in [a,b]. Because we wish to study the contribution corresponding to this
critical point, we must first isolate it by neutralization. For our present purposes,
however, we need only assume that f(¢) vanishes infinitely smoothly at the two
endpoints t = a and t = b. Although it is not necessary, we shall further assume
that both ¢ and f are infinitely differentiable on the half-open intervals [a,c)
and (c,b].

We now write

I(3) = |¢ exp{iig} fdt + [* exp{idp} fdt (6.1.6)
=1_(4)+1,(4).
Let us first consider I , (1) and assume that,as t—c.,
o) —dle)y=alt —c)* +o((t ~c)), v>0,
SO =y, —c)® +ol(t — )%, o>—1. (6.1.7)

In deriving (6.1.5) we assumed v=2. In the more general case now to be
considered v can be any positive real number. (Of course, if we insist that ¢ be
stationary at ¢ = ¢, then v must be taken greater than 1.) If v is an integer > 2,
then ¢t = c is said to be a stationary point of ¢ of order v — 1. If v = 2 (and « # 0),
then t = ¢ is usually referred to as a simple stationary point. Even when v is
not an integer, it is convenient to consider v — 1 as the order of the stationary
point at t =c¢.

To analyze I ,(4) we set u = sgn « and

pu = @(1) — ¢(c). (6.1.8)

Then we have
1,(4) = expliio(c)} j':m ~oN By exp{iiuu} du. (6.1.9)

Here
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L0 _ paulrm
S Olmgry  VICD

Furthermore, F(u) vanishes infinitely smoothly as u—-|@(b) — ¢(c)| — and
any ambiguity that arises in the determination of t = ¢~ !(u) is resolved by
requiring that u increase as ¢t increases.

In Section 3.4 we considered integrals of the form (6.1.9) in the case where
Fu)=u"""! I:'(u) with F(u) infinitely differentiable at the origin. That method
can be extended to the case where F(u) has an asymptotic expansion,asu -0 +,
of the form

F(u)

+ o(u@rbr=1, u—0+. (6.1.10).

w N(m)

Fu)~ 3 Y cpyu (log u). (6.1.11)

m=0n=0

In any event, we find from (6.1.10) and (3.4.23) that, as A — o,

J+1
I\ —

L () = exp{iAd(c)} W)Jﬂyv

exp{ium(é + 1)/2v} | [1 + o(A=6+DM)], (6.1.12)

The leading term in the expansion of I_(1) is obtained in a completely
analogous manner. Indeed, if we assume that, ast - ¢ —,

o) — dlc) = Blc —tf +ollc—t)), p>0,
f®=y_(c—t)"+o((c —1)), o>—1, (6.1.13)
then we find that, as A — oc,
y‘I“<U+ 1>
W exp{inn(o + 1)/2p} | [1 + ot~ V)],
(6.1.14)

1_(7) = expliiglc)}

Here n = sgn f.

As a special case let us suppose that t = ¢ is a simple interior stationary point
of ¢ and that ¢ and f are infinitely differentiable at t=c. Then we
find

yy =y =f(c), 0=0=0, p=v=2, a=f=¢"(c)2. (6.1.15)

We note that the sum of (6.1.12) and (6.1.14) in this case agrees exactly with
(6.1.5) thereby establishing the validity of that formula. We might point out
that whenever the stationary point t = ¢ coincides with an endpoint of integra-
tion then, to leading order, either (6.1.12) or (6.1.14) alone yields the asymptotic
expansion of 1.

From the results just obtained, we find that the algebraic order of I(4),
as 4 — o0, increases as the order of the stationary point increases and decreases
as the order of vanishing of f at t = ¢ increases. The latter relation is easily
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understood. To explain the former, we need only appeal to our earlier dis-
cussion where we argued that any stationarity of ¢ tends to increase the value
of I() as A— . This tendency will naturally be enhanced as the order of
stationarity increases.

We now consider several examples to illustrate some of the results derived
above.

EXAMPLE 6.1.1. If n is an integer, then J (1), the Bessel function of the first
kind, has the integral representation

n

J ()= % [, costnt — A sin ) de (6.1.16)

l T
= +i Fiksi .
o g.{o exp{ + int} exp( F i sin ) dt
Each integral in the last sunr is of the form (6.1.1). Indeed we may set
fi()=exp{ +int} and ¢, = F sin ¢ so that t =nr/2 is the only stationary
point of ¢, in [0,7]. Moreover, because ¢, "(n/2) = + 1, we have that t = n/2
is a simple stationary point of ¢, . Upon applying (6.1.5), we then obtain
1

[t nn
J(A) ~\/m;exp[ + 1<Z += - i)

] i cos (1 nm 7'c> . .
=/ A 573/ A— 0, n an integer.
(6.1.17)

Actually (6.1.17) holds even when n is not an integer. Indeed, we have that for
real n and positive A

in nm

1 n o]
J"(A)=—j cos{nt — A sin :)dz—s—'—j exp( — nt — 4 sinh 1) dt. (6.1.18)
nJ, n Jo

To leading order, the asymptotic expansion of the first integral on the right of
(6.1.18) is given by (6.1.17) and, as is readily seen, the second integral is O(4~1).

EXAMPLE 6.1.2. Let us now consider the Bessel function as both its order
and argument get large. We have from (6.1.16) that

Jy(Ar) = %Z J: exp{ il [t—rsint]}dt+0(A"). (6.1.19)
+

We shall assume here that r > 1, in which event
¢, =x(t—rsiny (6.1.20)
has a simple stationary point in [0,7] at t = cos~!(1/r). Also
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¢t”<cos’ ‘(l;» =% sin(cos‘ ‘G)) =+ Jrr -1 (6.1.21)

Upon applying (6.1.5) we now find that

! i3
Jx()vr)"'\/%(rz— 1)~ e cos{}a (,/rz—l—cos ‘(;))-Z},

A= 00, r>1. (6.1.22)
i i for large 4 and note that the

EXAMPLE 6.1.3. We again consider J,(4r)

expansion (6.1.22) breaks down as r— 1 +due to the presence of the factor

(r2 — 1)~ !4_ The reason for the difficuity is that (6.1.22) was derived under the

assumption that t = cos™ ! (1/r) is a simple stationary pO{nt of (6:1.20). th:n

r = 1, however, this is not true. Indeed t =cos™ ! (1)=0 is a stationary point

of order 2 of ¢, = £ [t —sin t].

To obtain an expansion of J;(4) we note thatast— 0+

3
o~ 3y (6.1.23)

Because f = 1/2n, it follows from (6.1.12) that

rd)(3n i ni
Jy(A) ~ %T/)s— {exp(%) + exp (— Z)}

rg2'e

= 5q 316 13

Upon comparing (6.1.22) and (6.1.24) we find tbat. J(Ar) = 0(,1.’ 12y, /1—+'oo,

where r=r, > 1, while J;(4) = 0(A~Y3) in this limit. In .actuaht.y, there is a

smooth transition as r—1+. A single uniform expansion which correctly
describes this transition will be obtained in Chapter 9.

(6.1.24)

6.2. Further Results on Mellin Transforms

Throughout the remainder of this chapter we shall consider integrals
of the form

() = h(A¢) f dt (6.2.1)
in the case where h(t) is oscillatory as t— 0. Indeed, we shall assume thgt h(t)
is locally integrable on (0,0) and has, as t— o0, an asymptotic expansion of

the form
w N(m)

h(t) ~ expliot’} Y Y cpat ™™ (logt)’ (6.2.2)

m=0 n=0
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or a finite linear combination of such forms. In (6.2.2) v is positive, w is real and
nonzero, and Re(r,) T .

At first glance, we might predict that the analysis of (6.2.1) as A — co with h
oscillatory will proceed essentially as in the case where h decreases exponentially
because, under the assumption (6.2.2), M[h;z] has no singularities in some
right half-plane. We shall see below, however, that there are marked differences
between the two cases.

One of these differences can be discussed immediately. We know that the
Mellin transform of an exponentially decreasing kernel decays to zero as z — oo
along vertical lines. Furthermore, it follows from the results of Section 4.7 that
if the kernel is analytic in some sector containing the positive real axis and is
algebraically bounded as t — 0 in that sector, then the decay is itself exponential.
Thus when considering (6.2.1) in this latter situation, an infinite asymptotic
expansion can be obtained under mild restrictions on ¢ and f by applying the
results of Sections 5.2 and 5.3.

We have seen in Section 4.3 that the Mellin transform of an oscillatory
kernel grows algebraically along vertical lines and that the rate of growth
worsens as these lines are shifted to the right. As a result, an infinite expansion
of (6.2.1) with h oscillatory cannot be obtained by the Mellin transform method
unless certain restrictions are placed on f and ¢. These restrictions will be
discussed in detail in the following sections.

In any event, we must anticipate that precise estimates for the behavior of
Mellin transforms along vertical lines will be needed for our subsequent
asymptotic analysis. Thus, we shall devote the remainder of this section to
obtaining such estimates. As we shall see, our problem essentially involves the
study of the Fourier transform

gy= {7 " g(t) dt (6.2.3)

as y— + o. A fundamental result (which we have appealed to before) we state
without proof as the following.

LEMMA 6.2.1. (Riemann-Lebesgue). If in (6.2.3) g(t) belongs to
L(— o0 <t < w), then

gy)=o(1), y->too. (6.2.4)

The above lemma states that the Fourier transform of any absolutely
integrable function goes to zero as its argument goes to + co. With no further
restrictions on g we cannot say how rapid is this decay. To illustrate how more
precise estimates can be obtained we prove the following.

LEMMA 6.2.2. Let g(t) be of bounded total variation on (— %, ) and
let lim, ., g(t) =0. Then the Fourier transform (6.2.3), which exists at least
for y # 0, is such that
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g0 =0(y|™", y-+tw. (6.2.5)
PROOF. For y +# 0 we have
gy)=lim [* e g(t) dt

ra

1 _ _
=5 lim [elya g(a) — g iva g( — (1) . e dg(t)], (626)

through Riemann-Stieltjes integration by parts. Thus,

\ Lo V(g)
d(y)| < — lim j dg| ="
i [yave_, o] |yi (62.7)
Here V(g) denotes the total variation of g. Because V(g) < oo we have
gl=0(y|™", y-tw. (6.2.8)

This completes the proof.
We now turn to the Mellin transform itself and first prove the following.

THEOREM 6.2.1. Let f(t) be n times continuously differentiable on (0, o).
Suppose there exists a real number x, such that for all x> x, and for
p=0,1,...,n

d

Sft;x)y= Gd—) N (6.2.9)

vanishes as t—oco and ¢! f, is absolutely integrable at the origin.
Then

M[f;z]l=o(ly|™, y-otwx (6.2.10)

for all Re(z) > x,.

PROOF. By hypotheses
M[f;z]= L‘;’ @ f)dt = fo 77 folt;x) dt (6.2.11)

is absolutely convergent for all Re(z) > x,. Upon integrating by parts n times
in (6.2.11) we obtain

M[f;z]=(=iy)™" 7 7! fft;x) dt. 6.2.12)

(Note that the assumptions made imply that all boundary terms vanish.) If in
(6.2.12) we set t = ¢“, then we have

M[f;z) =(=iy)™" [T €™ f, (e;x) du. (6.2.13)

But for x > x,, f,(*;x) belongs to L(— o <u < o) and hence it follows by
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the Riemann-Lebesgue lemma that

M[f;z]=o(y|™™, y— + 0, x> Xg. (6.2.14)

COROLLARY 6.2.1. If the hypotheses of Theorem 6.2.1 are satisfied for
arbitrarily large n, then

M[f;z)=o(]y|~®), y—+ 0, X > Xq, (6.2.15)

for all R.
The following two theorems yield improvements on the estimate (6.2.10).

THEOREM 6.2.2. Let fsatisfy the hypotheses of Theorem 6.2.1. In addition,
assume that for x> x,, f,(t,x) is of bounded total variation on [0,0).
Then

M[f:2] =O(|y| "), y>+w®, x>x, (6.2.16)

PROOF. We have that (6.2.13) still holds. Also, for x > x,, f,{¢"; x) is of bounded
total variation on { — o0 < u < o) and vanishes as |u|— . Thus, by Lemma
6.2.2, the integral in (6.2.13) is O(|y|~") as y— £ c which completes the
proof.

THEOREM 6.2.3. Let f satisfy the hypotheses of Theorem 6.2.1. Suppose
that, for x > x,, f,+ 1(¢;x) is of bounded total variation on [0, o) and vanishes
ast— oo and as t >0 + . Then

M[f;z]=0(y| ™", y—>+ oo, X > Xg. (6.2.17)

PROOF. If in (6.2.12) we integrate by parts once more and set ¢ =¢* in the
result, then we obtain

MLf3z]=(—ip) ™" §7 e oy (e*) du. (6.2.18)

By Lemma 6.2.2 the integral is O(|y| ') for x >x, and the theorem is
proved.

EXAMPLE 6.2. As a simple example which illustrates the sharpness of
Theorem 6.2.3 let us consider

(1—1), 0<t<1,

=
0, t>1.

Because f is continuous on [0, «c) and has a piecewise continuous first derivative
which is of bounded total variation on [0,o0), Theorem 6.2.3 predicts
M[f;z]=0(]y| 7%, y— + . Moreover, (t (d/dt)) (t*f) vanishes as t—>0+
for x > 0 so that this estimate should hold in the right half-plane Re(z) > 0.
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Indeed, we have directly
~l

M[f:z] = )0 FT( =) dt = =0(|y]"?), y-+o. (6219

1

z(z+ 1)

We note that not only does the estimate (6.2.19) hold for x > 0, it actually
holds for all x. That is, in this case, the estimate predicted by Theorem 6.2.3
to hold in the original domain of analyticity of M[f;z], also holds for the
analytic continuation of M[f;z] into the entire z plane. In the following
theorem we identify a class of functions f for which estimates of M[ f;z] as
y — + o0 can be obtained for all x.

THEOREM 6.2.4. Let f(t) be n times continuously differentiable on (0, ).
Suppose that, as t >0 +,

SO~ i Pmt*,  Rela,)t . (6.2.20)
m=0

Suppose further that for j =1, 2, ..., n ..., the asymptotic expansion of fU)(¢) as
t — 0 + is obtained by successively differentiating (6.2.20) term-by-term. Finally,
let f,(t;x) = (¢(d/dt))? (t*f) vanish as t = = for p =0, 1, ..., n and x > —Re(ap).
Then

M[f;z]=0(y|™), y-z (6.2.21)

for all x. Here by M([ f;z] we mean the analytic continuation of this Mellin
transform into the entire z plane.

PROOF. If x > — Re(a,), then the result follows by Theorem 6.2.1 when we
note that the conditions imposed on f,(t;x) at the origin in that theorem are
implied by the assumed differentiability properties of the asymptotic expansion
(6.2.20).

Now suppose that p is any real number greater than Re(a,). Also let u(p) be
a positive integer such that

Re(a, ;) < p <Re(a,) (6.2.22)
and let 8(p) be any integer such that
Re(ay) + 0 > Re(a,,). (6.2.23)
We introduce the functions

u-1 .

ap(z)=< > Pn r"*) e ", (6.2.24)
m=0

SO =11 = a,(0), (6.2.25)

and note that 8(p) has been chosen so that, as t -0 +,
f=0(t*). (6.2.26)
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We also note that f has all of the properties attributed to f in Theorem 6.2.1

with xo = — Re(a,). Hence, by that theorem
M[fz1=0(y|™. y—+o, x>—Re@).  (6227)
By direct calculation we have that
nl Z+a
Mloy;z]= Y %” r< - '") (6.2.28)
m=0

in the region Re(z) > — Re(a,) and by analytic continuation in the entire z
plane. Furthermore, we know that each gamma function in (6.2.28) decays
exponentially as y — + oo for all x. Thus, because

M[f;z] = M[f:2] + M[o,;z], (6.2.29)

we have that (6.2.21) holds for Re(z) > — Re(a,). However, p is arbitrary and
lim,_, » Re(a,,) = ©, so that the theorem is proved upon letting p — .

Theorem 6.2.4 can be extended to include functions f(t) whose asymptotic
expansion, as t -0 +, involves integer powers of log t. Indeed, we have the
following.

COROLLARY 6.2.2. If in Theorem 6.2.4 we assume that

o ﬁ(m)
S~ 2 2 Pt (logty', =0+ (6.2.30)
m=0n=0
with N(m) finite for each m and Re(a,) T w0, then the estimate (6.2.21) remains
valid for all x.

PROOF. The proof follows that of Theorem 6.2.4 except now to establish the
exponential decay of M[o,;2] as y — =+ involves showing that derivatives of the
gamma function have such decay. Although the last assertion is true, we shall not
prove it here.

We finally have the following.

COROLLARY 6.2.3. If f(¢) satisfies the hypotheses of Theorem 6.2.4 (or
of Corollary 6.2.1) with n = o, then
M[f;z]=o(|y|™®), y-ztw (6.2.31)

for all R and all x.

6.3. Kernels of Oscillatory Type

We shall now consider the asymptotic expansion of (6.2.1) as A — o in the
case where the kernel h(t) is oscillatory as ¢t — 0. In particular, we shall assume
that, as t — oo, h has an asymptotic expansion given by a finite linear combina-
tion of asymptotic forms (6.2.2).
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From our previous discussions, we anticipate that the set of possible critical
points for the proposed expansion consists of

(1) the endpoints of integration;

(2) points in (a,b) at which either ¢ or fis not infinitely differentiable;
(3) points in (a,b) at which ¢ vanishes;

(4) points in (a,b) at which ¢’ vanishes (stationary points of ¢).

We wish to study the contributions from each critical point separately.
To accomplish this we must first isolate the critical points via the neturalization
process described in Section 3.3.

For the present, we shall assume that both ¢ and fbelong to C*(a,b) and that
¢ is a positive, strictly monotonic function in {(a,b). (Below, ¢ will be allowed
to change sign, which will necessitate our making assumptions concerning
the asymptotic behavior of h as t — — 0.) Under these assumptions, we expect
that the endpoints ¢t =a and t = b are the only critical points and hence total
isolation is readily achieved.

We find from the discussion of Section 3.3 that we can write

I(4) = L(A) + 1,(3), (6.3.1)

where
I(4) =[5 h(Ad) f0) dt, 6.3.2)

Iy(A) = {2 h(ig) filt) dt. (6:33)
In (6.3.2), f, =fin some positive half-neighborhood of t = a, belongs to C*(a,b]
and vanishes for y <t with a<y <b. Also, in (6.3.3), f, =f in some negative
half-neighborhood of ¢ = b, belongs to C*[a,b) and vanishes for t < 6 with

a<dé<b.

In Subsections I and II below, we shall consider the asymptotic expansion
of the integrals I, and I,, respectively. For each of these integrals, there are two
distinct cases to be treated depending on the value of ¢ at the relevant endpoint.
In Subsection III we shall treat the case where ¢ is negative in (a,b).

1. ANALYSIS OF (%)
We first consider the following.

Case (1). ¢(a) = 0. Because ¢ is positive and strictly monotonic in (a,b), we
must now have ¢'() > 0. If in (6.3.2), we set

u= 1), (6.3.4)

then 1) = fgo h(iu) F (u) du. (6.3.5)
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Here
Ja
- s 0<u<
F o) = ) o u < @(y),
(6.3.6)
0, u> ¢(y),

which we note lies in C®(0, ).

Our plan is to derive the asymptotic ex i A i

: pansion of I (4) by applying the
Melgn transform method. To accomplish this we first assume thaft; as
u—0+, ,

w  Nim)

F(u) ~ Zo ZO Prmn 4* (log u)". (6.3.7)
Here Re(a,) 1 o and N(m) is finite for each m. Because we anticipate having
to apply Thcgrem 6.2.2_ and its corollaries, we further assume that, for all n
the asymptotic expansion of F™(u), as u—0+, is obtained by successivé

term-by-term differentiations of (6.3.7).
Although it is not necessary, we shall suppose that I,(2) is absolutely con-
vergent and that M[h;z] exists in the ordinary sense in some vertical strip
Then the Parseval formula (4.2.17) yields .

1

ctico
=ﬁj A7* M[h;z] M[F,;1 —z] dz. (6.3.8)

c—iow

1(%)

Unc}er the.assumption that h has the asymptotic form (6.2.2), because the
analytic continuation of M[h;z] into the right half-plane Re(z) = ¢ can grow
at worst algebraically as | y| — oo ; and, by Corollary 6.2.3, because M[F,;1 — z]
decreas.es faster than any power of || ~! in this limit, we can obtain ana i’nﬁnite
expansion of I, as a residue series in the standard way. Moreover, we have
essentially reduced our problem to that treated in Case 11 of Sectic;n 5.2 and
hence we can freely use results obtained in that section. .

The expansion itself is given by (5.2.12) which we repeat here:

0

N(m) n
Ia('{)"' Z g ZO Do Z (;'>(—Iogl)-’ M("—j)[h;z]
n= j=0

m=0

; A— 0.
z=1+am

If we assume that, as t—a +, (6.39)

f®) ~polt —aye,  dlt) ~aot —a)®, g, ve>0, (6.3.10)
then it follows from (5.2.15) that, to leading order

I(A) ~ (ol - (wo+1)/v 7O Mo+1
(A) ~ (202) VOM[h,—vO : (6.3.11)
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We note that, as we found in Section 6.1 for the case where h = e, the algebraic
order of I4(4), as 4 — oo, increases as the order of vanishing of ¢ as t—>a+
increases, and decreases as the order of vanishing of fas t - a + increases. The
explanation offered in Section 6.1 in terms of cancellation effects remains
valid here.

To illustrate what happens when logarithmic terms appear in (6.3.7), we
suppose that ¢ is as in (6.3.10) while

SO ~y01 (t —a) log (t — a) + yoo (t — a)*. (6.3.12)
After some calculation we find that in (6.3.7) N(0) = 1 and

+1 -
o =#0—"—1, P01=v—0%(°‘o) o 1o,
Vo
_(—(’_)-(un+1)/vo [ Yo log ao]
Poo = v Yoo S (6.3.13)
Thus, it follows from (6.3.9) that in this case
2 —(no+1}/vo
L)~ — (Aoto) {M log A M [h;ﬂo + 1]
Yo Vo Vo (6.3.14)

1
+(Mloga0—y00>M[h;N°+ ]_V"_‘——M[h ]‘ .
Vo Vo vo d z=(Ho + 1)/vo
EXAMPLE 6.3.1. Let h(t) be one of the complex Fourier kernels e**. Then
we have explicitly

Mle**;z]= exp(
If (6.3.10) holds, then we have from (6.3.11)
b 1 + i 1
5 exp{ & i} £,(t) dt ~ (Jeto)™ ‘""“””’%F(”ﬁ )‘*Xp{:}l (ﬂﬁ )}

Vo Vo

)r( 2). (6.3.15)

(6.3.16)

which is in agreement with the result given by (6.1.12).
Of special interest is the case where po=0 and vo=2 in (6.3.10). Then
(6.3.16) reduces to

b : 1 " s “t mi
g exp{ t;zi¢}f‘,dt~§{2n/¢ (@) A} Y2 fa+)exp 2 ) (6.3.17)

If (6.3.12) holds, then it follows from (6.3.14) and (6.3.15) that
b b = (po+1)/vo 1 + 7i 1
5 exp( + iAp) f, dt ~ — (':;LO) r(“_oi_>exp {—T’” (llo + )}

0 Vo Vo

SECTION 6.3  Kernels of Oscillatory Type | 233

{/01 log 2 +~ log oy — 700
0

_Tor (w (#;rl + 11’) \
Vo Vo 2/ (6.3.18)
with  the digamma function.

EXAMPLE 6.3.2. Let us now suppose that h(t)=J,(t) so that I (4) is the
Hankel transform of f,(t). From the Appendix we have

2t r(z;")
M[J,;z]=———> "2

v—z
r 1
(27+)

In this example we shall assume that (6.3.10) holds so that by (6.3.11)
and (6.3.19) we have

(6.3.19)

, F(ﬂo +1 v)
j d))ﬁl([ d[ ~ Aa ) (po+ Ulvo 2( (Ho+ 1)/vo— 1) 2v0 2 (6320)
a Vo v _Hot 1
I'l=
(2 2v, )

In the special case where u, =0 and v, = 2 in (6.3.10), (6.3:20) reduces to

I
: 1 3+
j T fodt~ = (7@ iy 12 N2 Y piapy (6.321)

: 2 (o)

We now turn to the consideration of the following.

Case (2). ¢(a) > 0. In this case ¢ is strictly positive throughout the effective
range of integration in (6.3.2) and hence we can replace h(1¢) by its asymptotic
expansion for large argument and then integrate term-by-term. (See Exercise
6.11.) Indeed, upon using (6.2.2) we obtain the formal result

o N(m) n
GED WD WA (’;) (log Ay (6.3.22)

m=0n=0 j=0

b POt
< e ¢ og gyig, .

a

To analyze the integrals in (6.3.22) we introduce the quantities
W) =Ca(@() — ¢(@), ¢ =sgn(wd), tel(ab),

S =fo¢7 (log gy, A= (63.23)
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In terms of these quantities, a typical integral in (6.3.22) becomes
L e r e [, 7 (log ¢)' 1 dt = expliwi @ (a)} b exp{iEAY} f7 dt. (6.3.24)

In (6.3.24), y satisfies all of the conditions imposed on ¢ in Case (1) above.
In particular, y(a) = 0 while ¥(r) and ¥/(¢) are both positive in (a,b). Thus, we
have reduced the current case to the study of a sequence of integrals each of
the type considered in Example 6.3.1 above.

To illustrate the procedure, let us suppose that ¢, = 0 for n > 1 so that no
logarithms appear in (6.2.2). Then (6.3.22) reduces to a single sum whose leading
term is given by

I(A)~ 27" oo explini’@(a)} (b exp{iAEy} f, ¢~ dt.  (6.3.25)

If we now assume that, as t—»a +,
() — dla)~ 2o (t —a)™°,  vo>0, (6.3.26)
SO~y (t=a)e,  po>—1, (6.3.27)

then it follows from (6.3.16) with the obvious changes in notation that

s Coo Yo - - y o to + 1
L3 ~ —2 2 {{agw| v¥ ™ Y(a)} ~ (ot D/ve = (ot Divo+ro) F(—)
N ) ki } o

x exp{iwi*¢*(a) + % (H0v+ 1) sgn(oow)}, ¢la) > 0. (6.3.28)
0

II. ANALYSIS OF I(4)
Because the study of I, follows closely that of I, above, we shall be brief in our
discussion. Again we must consider two distinct cases.

Case (1). ¢(b)=0. Because ¢ >0 in (a,b) by assumption, we must now have
¢'(1) < 0. Upon setting u = ¢(t) in (6.3.3) we obtain

1(2) = [ h(iu) Fy(u) du. (6.3.29)

Here

(—f—) . 0<u<e),
Fyuwy={ " ¢/ =6

0, u > ¢(9).

Upon assuming that, as u— 0+,

(6.3.30)

o« N(m)
Fyu)~ > P 4™ (lOg 0)" (6.3.31)
m=0 n=0
and that the asymptotic expansion of F{’ (u), j=1,2, ..., as u—»0+, can be

obtained by differentiating (6.3.31) term-by-term, we find that Corollary 6.2.3

SECTION 6.3 Kernels of Oscillatory Type | 235

holds and an infinite asymptotic expansion of I,(4) can be obtained. Indeed
we have that, as 4 — «

x* f\"(m) n
I(3) ~ ZO AT S Y <’?> (—log Y M"=9[h;:z] .(63.32)
m= A=0 =o\J z=1+bn

In the special case where, as t — b —,

Ay~ Bolb— 1), By,3,>0,

1) ~ Eofb — 1y, (6.3.33)
we find that, to leading order,
104) ~ S8 (Byz)~ o o pg [jy Mo+ 1) (6334)
3o 3o

Case (2). ¢(b)> 0. Calculations similar to those made above for I,(1) with
¢(a) > 0 yield

o Nim) n
I(A) ~ ZO ) Cn A7 ZO (’;) (log Ay exp{imA*¢(b)}
x (o™ (log @Y~ f, exp{ — iEA"y) dr. (6.3.35)

Here

Y =Co[¢'(b)~ ¢(1)] (6.3.36)

while ¢ is defined by (6.3.23).

Each of the integrals in (6.3.35) can be asymptotically evaluated by using
the results of Example 6.3.1. Indeed, if we assume that in (6.2.2) Cn =0 for
n> 0 and that

B(1) — d(b) ~ Bolb — 1), 3o>0,

f(e) ~&o(b— 1y (6.3.37)
then
A~ ﬁ«% {[Bow] v~ by}~ (ro oo f-0lmw 10470
X F(Vloé':)‘ 1) exp{iwA*¢*(b) +%i (’705-: l) sgn(Boc)}. 6338)

This completes our asymptotic analysis of (6.2.1) in the case where ¢ > 0 in
{a,b). The expansion of [ itself is of course obtained by summing the expansions
obtained for I, and I,. We wish to stress that care must always be taken in
ordering terms. Indeed, it can happen that the first several terms in the expansion
of 1, dominate the leading term in the expansion of I, or vice versa.

There are several extensions of the above results that can be made. Of
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particular interest is the case where ¢ is negative in (a,b) and the case where
either ¢, ¢’ or both change sign in (a,b). We shall consider the first of these
below, but shall delay consideration of the second until the following section
where contributions from interior critical points will be discussed.

III. ¢(t) <O IN (a,b)
At first glance this seems to be a trivial extension because all we need
do is define

h(ty=h(—1) (6.3.39)
and observe that

1) = & h(3) £(0) dt =[5 (G | 1) f(0) dt (6.3.40)

is an integral of the form already considered. We anticipate treating cases where
¢(t) changes sign in (a,b) in which event we want to make explicit use of (6.3.39).
For the most part, in this subsection we shall simply state results and emphasize
that they are derived as those for the case ¢ > 0 in (a,b).

Because ¢ is negative in (a,b), we must now be concerned with the behavior
of h(t) as t — — o0. We require that h be oscillatory in this limit also and indeed
we shall assume that as t — o

H) = h(— )~ explior”) S-S k17 (log )", 7>0. (6341)

Here o is real, Re(p,,) T =, N(m) is finite for each m.

If we assume that ¢ and f are both infinitely differentiable on (a,b), then
again the only critical points are t =a and t =b which can be isolated by
neutralization. Thus we have

1) = L(3) + 1,(%), (6.3.42)
where

L) =[5 k(3 |9V , dt, (6.3.43)

LAy = [2 k(i |]) £y dt. (6.3.44)

Here f, and f, are as defined below (6.3.3).
We shall now exhibit asymptotic expansions for I, and I, along with the
assumptions that distinguish the various cases.

1A 3 1_“”")%) " NNV et . .
A~ Y i dp i (—log i)' M ’[h(ml),z]l ; (6.3.45)
z=1+anm

m=0 n=0

o N(m)
—fL, ~ z t d,, u' (log uy", u—-0+,
—d) t=¢ " —u) m=0 n=0
o)< 0, ¢la)= 0. (6.3.46)
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If, in particular,

ft)y~yoft —al, =@ ~xplt —a), 25, vo>0, t—a+, (6.3.47)
then

L(3) ~ (ag )~ o+ v 10 pg [h( gyt ] . (6.3.48)
Vo Vo
In the special case where k,,=0 for >0 in (6.341) and where, as
t—a+,

Olt) — Pla) ~ apt —a)™, (1) ~yolt — af, (6.3.49)

we have

X koo 7o \ - + 1
]u(/~) ~ ;0 [ ¢((l) ]Pn {110(I)| 7 l¢(a)|7 1} o+ Divo r(ﬁ(—)——*—vO )
x ;= (Yo +1)/vo+Po) exp :id);." |¢>(a)|7 _ 7}1 (‘&‘4—_1 sgn(xoMm) ] R
0

2
Pla) < 0. (6.3.50)
The analogous expansions for I,(4) are the following:

€O ﬁ(m)
I(A) ~ ZO AT N Y <’;>(—log A ME=A[h( ~t);2]

’

n=0  j=0\ 2=1+bn
. (6.3.51)
ﬁ o0 {m) N
e ~ 5 puut-oguw’,  u-0+,  Gb)=0; (6.3.52)
t=¢"'(-w) m=0n=0
P - o [ o + 1]
I(A) ~ (A ('lo+1)18n_Mh_t.0 .
A) ~ (4Bo) 5 (—1); 5, | 6.3.53)

— () ~Bob— 0%, By, 36>0, fO~Lb—n". (6354

Finally, if k,,, =0, for n > 0 in (6.3.41) and if,as t > b —,
o(t) — d(b) ~ Bolb — ),  §,>0,
£~ Eolb— 1), (6.3.55)

then

koo &0
do |$(b)|*°

{|ﬁod)| Y 1¢(b)|7—1} ~(no + 1)/do 1—(’105+ 1)

0

I4) ~

X A0+ D150 20 expind” | (b)] " — 5 <"°at l) sg0(Bo®)},
¢(b) < 0. (6.3.56)

Throughout this section we have assumed that the functions ¢ and f in
(6.2.1) are infinitely differentiable in (a,b). This has enatied us to apply Corollary
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6.2.3 and to ultimately derive an infinite asymptotic expansion of I(A)as i— x.
If either ¢, f, or both have only a finite number of continuous derivatives in
(a,b), then only a finite asymptotic expansion of I can be obtained by the method
of this section.

Let us suppose then that ¢’ >0 in (a,b) and that ¢(a)=0. Let us further
suppose that F,(u), defined by (6.3.6), satisfies the conditions placed on f in
Theorem 6.2.4. We have from our discussion in Section 4.3 the estimate

M[h;z}=0(|y|="="™),  |y|=o, x>ro, (6.3.57)
while by Theorem 6.2.4,
M[F,;1 —z1=0(y|™, |yl-= (6.3.58)

holds for all x. Hence, we can displace the contour of integration in the Parseval
formula (6.3.8) to the line Re z = R with the result

M ﬁ(m) n n ) )
I(A)= z joime Z p,,,,,(.)(—log Ay M"""[h;z]‘
m=0 n=0 j=0 J z=1+a,
2—R ©
+A2i [" 4= M[WR + ] MIF;1 - R—iv]dy.  (6359)
n

Here M is the largest integer such that

l+ay<ro+vin—1) (6.3.60)
and R is such that
14ay<R<rg+vin—1). (6.3.61)

It follows from (6.3.57), (6.3.58), and the Riemann-Lebesgue lemma 6.2.1
that the last term in (6.3.59) is oA~ %) and hence the sum represents a finite
asymptotic expansion of I,(4).

The conditions (6.3.60), (6.3.61) placed on M and R are not necessarily the
sharpest possible and indeed can often be improved. We shall not discuss
such improvements here, but rather remark that, in applications, the functions
¢ and f are most often piecewise infinitely differentiable, in which event,
after appropriate neutralization, the results of Subsections I, II, and III
become applicable.

6.4. Oscillatory Kernels: Continuation
In the previous section we considered the asymptotic behavior of
1(2) = 2 hAg) fdt, (6.4.1)

as A— o0, in the case where h(t) is oscillatory as t— + oo and where the end-
points of integration ¢ = a, t = b are the only critical points in [a,b]. Indeed,
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it was assumed that both ¢ and f were infinitely differentiable in (a,b) and that
neither ¢ nor ¢’ vanished there. We now wish to extend the results obtained
in Section 6.3 by allowing critical points to occur in the interior of the interval
of integration.

To begin, let us suppose that in (6.4.1) both ¢ and fare piecewise C* functions
and that there are a finite number of points in (a,b) at which either ¢, ¢’ or both
vanish. It then follows that there are a finite number of possible critical points
in (a,b). Let us label these points t = «;, j=1,2, ..., N,where a; <, < - < xy.
Thus, at t = x; one or more of the following occur: ’

(1) ¢ vanishes.
(2) ¢’ vanishes.
(3) Some derivative of ¢ or f'is discontinuous.

If we set 2y = a and a, , = b, then we can write

N

1) = ZO 144, (6.42)
~

()= k¢ fdr. (6.4.3)

In this simple manner we have represented I as a sum of integrals, each of a
form considered in Section 6.3. We note that, by assumption, both ¢ and f are
infinitely differentiable in («;, «;4,),j =0, 1, ..., N.

It appears that having reduced I(2) to a sum of integrals previously treated,
no further analysis is needed. We desire, however, to obtain an explicit formula
for the contribution to the asymptotic expansion of I corresponding to each
type of interior critical point. If we merely apply the results of Section 6.3 to
each I; and then sum the expansions thereby obtained, we shall not have
accomplished our goal. We shall therefore employ a somewhat different
procedure which is based on the total isolation of the interior critical points.

Suppose that we wish to study the contribution from the interior critical
point t =a;, 0 <j< N 4 1. Suppose further that both ¢ and f are infinitely
differentiable at t =a; so that either ¢(x;) =0 or ¢'(a;)=0 (or both). (The
contributions corresponding to jump discontinuities of @, f or their derivatives
are easier to obtain and will be considered in the exercises.)

The total isolation of t =a; is readily accomplished by the neutralization
process. Without going into detail we find that the determination of the con-
tribution from ¢ = «; involves the asymptotic analysis of the integral

L, () =[5 f,, (1) h(29) dt. (6.4.4)

Here /., is infinitely differentiable in (a,b), equals f identically throughout
some neighborhood of t=a;, and vanishes for a <t < f* and p** <t <b.
Here

a;_y < f*<ay, o < B <aj,y. (6.4.5)
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We shall now consider separately the cases where ¢(x;) =0 and

Pla) # 0.
I ¢le)=0. Wefirst write
L4 = §i f,, W) dt + o, i, h:e) dt

=1_(2)+ (4. (6.4.6)

We note that the only critical point for I_ is the upper endpoint of integration,
while the only critical point for I, is the lower endpoint of integration.
Because ¢ is infinitely differentiable at t = «; we have

A
n!

o (6.4.7)
¢(t)~(___1)_¢i(_(a_i)(aj_[)", t—o;—.

n!

Here n is an integer = 1 and we assume that ") #+0.f n=1, then t =a;
is a zero but not a stationary point of ¢. If n=2, then t =a; is a zero and a
simple stationary point of ¢. Finally, if n>2, then t=u; is a zero and a
stationary point of order n—1 of ¢. For simplicity, we shall assume that
f (“j) #0. .

To obtain the leading term in the expansion of I, , we first suppose that in
(6.4.7) n is even. Then ¢ has either a relative minimum or a relative maximum
at t = a;, depending on the sign of ¢"(a;). The asymptotic expansions of 1,(4)
can be obtained by using the results of Section 6.3. Indeed we find that the
asymptotic expansions of I and I_ agree to leading order and that

L 2f(xy) n! tin . 1
I,’ (1)~ ——}_’I—J (W M[h (Sgl’l d)( ) (aj) t),;], neven. (648)
Now suppose that n is odd. This means that ¢ must change sign at ¢ = a;.
The expansion of I, will now differ from that of I_ to leading order. We again
use the results of Section 6.3 which yield

112 )]
~——L M| h(t) ;= |+ M| h( =)= ;> odd. (649
Ixj (4) n (A |¢(n) (aj)l ( ) n + ( ) n ’ n ( )
Of special interest to us is the case n=1. Indeed, in that event, because
t =a; is a zero but not a stationary point of ¢, this case enables us to study the
critical nature of the interior zeros of ¢.
If n = 1 in (6.4.7), then (6.4.9) becomes

fle) . Y
L()~ & ] (M[h(t);1] + M[h(—0):1]}. (6.4.10)
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We can imr.nediat.el.y conclude that if {M[h();1] + M[h( —t);1]} is not zero
then t=a;isa c.rmcal point. Even when this quantity is zero, ¢ = a; may still
beda critical point because there may be nonzero contributions of lower
order.

To examine this last point more closely, let us suppose that
H)=(t—a). (6.4.11)
We also have

0 (m)
fo~ Y LB g

= m!

© (_lm (m) A
f(t)~mzo——M(a,-—r)“, toa;—. (6.4.12)

m!

Now it is a simple matter to obtain an infinite asymptotic expansion of I
Indeed we find v

w 1—(m+1) £(m)
LA~y AT M ()
m=0

po (Mh(t);m + 1] + (= 1y" M[h(— O);m + 1] }.

(6.4.13)

_If any term in.this sum is.nonzero, then ¢ = a; is a critical point. Alternatively,
if every term in the sum is zero, then t = q; is not critical. The issue depends
primarily on the kernel' and at that only through the quantities

MT[h(t);m + 13+ (= 1" M[h(—1t);m + 1], m=0,1,2,.... (64.14)

It can be shqwn 'that the above conclusions hold for general ¢ when n= 1.
In partlcu!ar, interior points at which ¢ vanishes are, in general, critical if
the kernel is such that at least one of the quantities (6.4.14) is nonzero.

EXAMPLE 6.4.1. Let us suppose that h(t) = exp(it). We have

(6.4.15)

MWiﬂﬂ=Hﬂﬁﬂif1

Th'us, whenever t-'—- o; is either a relative minimum or a relative maximum
point of ¢ [n even in (6.4.7)], we find from (6.4.8) that

b 2f(ay) (1 N '
L expliig} f., dt ~ fr(la’) l'(;) (ﬂ¢+(°‘)|) exp{% sgn ¢™ (otj)}. (6.4.16)

When t=a; is a simple stationary point, that is, when n=2, (6.4.16)
reduces to

"’ PR, 2 12 (mi \
1 expll/.d);f,j dt ~ (W) Sy exp-\~4— sgn (i)"(ocj)J . (6.4.17)

1
Iff" (a)=0form=0,1,2, ..., then t =« is not a critical point.
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This will be recognized as the previously obtained “stationary phase” formula
(6.1.5) in the case where ¢ vanishes at the stationary point.
If n is odd, then we have from (6.4.9) and (6.4.15)

’ : 2f(x) (1 nt \" (m
gexp{izd)}._a dt ~ fr(la,)r@ <A—I¢”—(%)I> cos<271). (6.4.18)

Note that when n = 1 the right side vanishes. Moreover, because
M[et;m+ 1]+ (= 1" M[e™“;m + 1] =T(m + 1) {m* D)2
+ (= 1yt mmt N2V (64.19)

vanishes for m=0, 1, 2, ..., we can conclude that the interior zeros are not
critical points for (6.4.1) when h is the Fourier kernel.

EXAMPLE 6.4.2. Now suppose that h=J,() where v is a nonnegative
integer. From the Appendix we have
Z+4v
21*1 r( )
N2 (6.4.20)

v—1z '
1
r(z * )

Because J,(f) is an even (odd) function about t =0 when v is even (odd), we
have

M[J(0);z] =

M[J,(—0):z] = (= 1) M[J,(0):z]. (6.4.21)
Thus, it follows from (6.4.8) and (6.4.20) that when # is even in (6.4.7)

1 v
V ’" ]—(4 + _>
U5 i, de ~ /@) (——"! )l\ i\ 2) (g4
va n

Al () v
———+1
d 2 2n+

x [sgn(¢™ (a))]".
If n is odd in (6.4.7), then from (6.4.9) we have

1 v

T{—+=
b () n! M e <2n 2) o
LJV(A@;“}‘;MT(W) 21 1TC.—1—>[1+( ]

ro
3wt

(6.4.23)
We note that
M[J(t)ym+ 1]+ (= D)" MUJ (= 0;m+ 1]
2" Tm+v+1)

1 — 1" (6.4.24
T+ 1=m) T+(=1"m ( )
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is not zero whenever v + m is even. Thus, we have that interior zeros of ¢ are
critical points for (6.4.1) whenever the kernel is an integer order Bessel function
of the first kind.

It is of interest to investigate further just why the zeros of ¢ are critical for
(6.4.1) when h = J (t) but are not when h = exp{it}. We can attempt to answer
this by using a heuristic argument analogous to the one used in Section 5.4 for
algebraic kernels. Indeed, we argued there that any point in (a,b) having a
neighborhood throughout which h(A¢) cannot be replaced by its asymptotic
expansion for large argument would be critical. If we again use this argument
we might conclude that any zero of ¢ is a critical point for (6.4.1). This, however,
is contradicted by the result obtained in Example 6.4.1 for the Fourier kernel
h=exp{it}. In this case, however, h(A¢)=exp{ilp} is its own asymptotic
expansion which holds throughout [ a,b] regardless of whether or not ¢ vanishes
in (a,b). For h = J,(t) this is not the case, because the asymptotic expansion of
J,(A¢) for large argument cannot be used throughout any interval which
contains a zero of ¢.

II. ¢(a;) 0. By assumption, because ¢(t) cannot change sign in the effec-
tive range of integration in (6.4.4), we have that sgn ¢(t) = sgn ¢(x ;) in that
region.

Let us first suppose that ¢(x;) is positive and that (6.2.2) holds with ¢y, =0
for n>1. We still have the decomposition (6.4.6) and the remarks following
that equation remain valid. Now, however,

) (o
60— o)~ ey, o,
n: (6.4.25)
-1 () (o
¢(1)—¢(aj)~w(aj—t)", L TR
n!
Here n is an integer 22 and ¢™ (x))# 0. We shall again assume that
f(o) #0.
It follows from (6.3.28) and (6.4.25) that

1, (3) ~ k(e v,m) A~ *70) explioni" (o) + % sgn(e¢™(@))}, (6.4.26)
where
(n] -
(e, v,n) =nc[‘(’;(£ ()“]’) {M E","'M v ¢““(a,-)} i 1"('17) (6.4.27)
; i

Moreover, from (6.3.38) and (6.4.25) we have

I_(A) ~ K(oj,v,m) A70MH0) explil*mg(a)) + ;—: (— 1y sgn(wd™(a,))}.
(6.4.28)
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Thus

2uc(aj,v,n) A~ explil’wd(a) + —;—E sgn(wd™(a;))},  neven,
Iu‘ (A) ~

2icfaj,v,n) A7 explid’wg(a)} cos Zln »  nodd. (6.4.29)

The analysis when ¢(«;) is negative proceeds exactly as above. Indeed, if
we assume that (6.3.41) holds with k,, =0 for n>1, then we find by using
(6.3.50), (6.3.56), and (6.4.25) that

2k(aj,y,m) A9 expliwA | o - —;—; sgn(wd™(a)))},  neven,
I, (A~
L

2%(at;,y,m) AP0 expliA” |$la;)| "} cos o

n odd. (6.4.30)

Here

T koo f(@) {|¢™(a))) g | (l>
x(a;,/,tt)~n[|¢(aj)|]po{ o |#(a))] y} r(~) (643D

EXAMPLE 6.4.3. Suppose that h(t)=exp{it}. Then in (6.2.2), coo=1,
ro=0, v=1, and @w=1. Thus, it follows from (6.427) and (6.4.29)

that
2f(a) < n! )1/" 1_(1)
n o \|o™(e)]|4 n

x exp{ilg(a;) + % sgn ¢™(a)}, neven, $>0,

2f(@) [ n! )1/" r(l
o Q_W)TA 5)

x exp{iAg(a;)} cos % nodd, ¢>0. (6432

fa explilg} £, dt ~

As, is readily seen, the same results hold for ¢(x;) <O0.

EXAMPLE 6.4.4. Now suppose that h = J (t) where u is any real number.
We have from (6.1.17) that as t » «©

\/;_m g exp{ii(§+%—t)}. (6.4.33)

If we assume that ¢(«;) is positive, then upon replacing J,(i¢) in (6.4.1) by
the asymptotic expansion (6.4.33) we obtain two integrals of the form considered

Ju(O)~
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in this subsection. Each can be asymptotically evaluated by using formula
(6.4.29). Indeed, after some calculation we find that, if in (6.4.25) n is
even, then

b 4f(a;) ! U AN
J, Do, de~ (Id»‘:(a.n) r(;)* e
a j j

b

2n

um)

x cos {w(a,.) + - sgn (o)) — g -5 6439

while if n is odd, then

’ 4oy LS A N
[ s, im0 (i) r({) 1o e

X COS {Aqé(aj) - % - %}cos % (6.4.35)

To conclude this section we remark that, in principle, we can obtain as
many terms in the above expansions as desired. To find any more than the
leading term is quite tedious, however. Moreover, if either ¢ or fis not a piece-
wise C* function in (a,b), then, as pointed out at the end of Section 6.3, at best
a finite expansion can be obtained.

6.5. Exercises

6.1. Calculate the leading two terms in the asymptotic expansion, as 4 — o,
of each of the following integrals:

(a) j; eMin ¥ oog( [t 4+ 1) 312 dt.

(b) f5 e™ sin mt dt.

(c) _(i . it cosht \/I-:det.

(d) ', sin(4 log(1 + %)) sinh(1 — ¢*) dt.
6.2. (a) Show that, as A— oo,

1
j XU (1 = x2)~34 sin(%) cos(h T = %) dx

0
[n w3\ (2\*"* 3n
~ ﬂ+zr<z)<z) COS[/‘L—?].

(b) Show that the error in (a) is 0(A~"/4).
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6.3. Show that the result (6.1.22) can also be written in the form

G T AF) (reNTTINE L esh
0~ T\ =) ’ -

Here the notation . means add the summand with upper sign to the summand
with lower sign.

6.4. (a) Let
12) =, f(pyexplit [x /1 — p* + ypl} dp

with x> 0, f(p) ¢ C*(— 1,1). Suppose that, as |p|— 1, f(p) = 0((1 — p?)°) with
o > —3. Show that the leading term of the asymptotic expansion of I(4) arises from
the stationary point p = p, where

1—p}

Po Y.
x

(b) Show that

exp{zl N

1(1)~/' ( Nt +y> ST 6.52)

(c) What role does the constraint on the behavior of f near p= + 1 play in
the determination of (6.5.2)?

6.5. Let
IN=[@- a)® g(t) exp{idg(r)} dt, 6> —1. (6.5.3)

Here g ¢ C*[a,b] vanishes infinitely smoothly at ¢t =c <b and is identically
zero on [¢,b]. Also, ¢’ =av (t—a)*~ ! p(t) with h infinitely differentiable and
positive on [a,c] and h(a) = 1.
(a) Show that the change of variable from s to t defined by
@) —Ppla)=ps’,  p=sgn(x) (6.5.4)
is infinitely differentiable and one-to-one when we define (s*)'/* =s.
(b) Show that, under the transformation (6.5.4), (6.5.3) becomes

I(A) = **@ [ 5% G(s) exp{idus’} ds, (6.5.5)

SECTION 6.5 Exercises | 247

where
g(t(s) d (I(s}s ) s* <|o(c)—d(a)],
G(s)= (6.5.6)
0, s 2| pte) — Pla)|,
is infinitely differentiable on [0, ).
(c) Set -
Gs)~ 2 G, 5" (6.5.7)
n=0

and apply the method of Section 3.4 to obtain

L6 r(& +n+1 )
m;t (0 + 1) Z v ginuni2y -
n=0

(6.5.8)

I(A) ~ CXP{M ¢la) + v GO
(d) Show that

gla)
Gy = W' (6.5.9)

(e) How must (6.5.8) be modified if in (6.5.3) (t — a)® is replaced by (t — a)®
log (t — a)?

6.6. With little modification the discussion of Section 2.7 can be applied to
the case of scattering in two dimensions. In this case (2.7.20) is replaced
by

KA =p3{,., <onn)pu, explidlp, —p_]-n}ds. (6.5.10)

Here s is arc-length along the curve defined by 5 = 5(s). The unit vectors g,
and p_ are respectively in the directions of incidence and observation of the
signal. Also n=n(s) is the unit outward normal and the choice p, in the
amplitude depends on what boundary condition is used. -

(a) Show that the phase function ¢ =[u, — u_]'n is stationary at a point
on the boundary curve 5 = 5(s) where g, and u_ make equal angles with the
normal n(s). (This point is called the point of specular reflection which suggests
that the contribution corresponding to the stationary point represents the
reflected wave.)

(b) Under the assumption that the stationary point is an interior point of the
domain of integration, show that the asymptotic expansion of I(4) has, to
leading order, the following parametric representation :

2 .
1)~ 0% [T " o0l — D)+ I, (651D

u,T(s) = p_ - T(s). (6.5.12)
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Here T(s) is the unit tangent vector to the curve 5= n(s) and «(s) = |T(s)| is
the curvature.

(c) Show that in the special case of backscattering, that is, when g, = —p_,
the expansion becomes
T , in
IA)~ p3 /m exp {-—211n(s)-q(s)+ ik (6.5.13)
u,T(s)=0. (6.5.14)

6.7. Consider
IA=10 exp{ilg(t)} dt. (6.5.15)

Suppose that ¢ has at least k + 4 continuous derivatives on [a,b] for some
positive integer k and that ¢ has a stationary point at t =a of order k—1.
Suppose further that f(t) has at least four continuous derivatives on [a,b] and
is identically zero in some left half-neighborhood of t = b.

(a) Show that

- _ ipmy ({1 ki O\l
=k 1exp{1l¢(a)+ﬁ} HE)( %@ ¢""(a)l) f(a)

2 ko _ 24" Ya)fla) | ,
”(E)(mwwn) [f O~ kT 1>¢<*>(a)] vt

3 ( k! )3/k [f(z’(a) _ 3 p*+1(a)fUXa)
* r(;) X 16%(a) 2 k(k+ 1) $P(a)

3 6%+ a)f(@) +( 6+ Xa) )11(1)

TkE+ Dk+2)¢%a)  \(k+ DigMa)l/ 2
» ;,k (% + 1)] . 0(1-4/1:)}_ (65.16)

Here u = sgn ¢¥(a).
(b) Similarly, show that if the roles of a and b are interchanged, then

iy’ 1 k! O\
1) =k~ exp {iw(b) + %(E} :r@ (W> f(b)

2 KU\ _ 2¢<k+l>(b)f(b)] _—
"F(E)(ud*’(b)n) [f O - T+ D) 60|

+r(3)< k! ),,k [f‘”(b) _ 3¢%rNB)Op) f(b)

k) \216®(b)| 2 kk+1)¢®k) 2

3 ¢&+2(b)f(B) +< ¢+ 1(b) )
Thk+ Dk +2)¢Pd) | \(k+ 1)1¢P(b)|
3 (3

X 7 (E + 1)] ewnlk 4 0(,1—‘/")}. (6.5.17)
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Here y' = (— 1) sgn ¢¥(b).
{c) Show that if ¢ has only one interior stationary pointatt=c,a<c < b,
and if f vanishes sufficiently smoothly at ¢t =a and t = b, then

I() = k" exp{iid{c)) {r(%) (ﬂ%)lﬂc S©) [2 cos(%;—z)

+[1+ (=14 sm(%)] + r(%) (Iﬁ%)m [f M)

_ 260 | e ﬂ) - }
k(k + 1)d>""(c)] (1= m'sm( ) TOEI s
Here yu = sgn ¢™(c).

(d) Modify (6.5.18) to account for a discontinuity in fat t = c.
(e) Modify (6.5.18) to account for a discontinuity of ¢ at t = c.

6.8. Let
IA) = [ (c) h(Ag) dt (6.5.19)

with h(t) oscillatory in whichever of the limits ¢ — & oo is relevant. Assume
that ¢(a) = 0 and that ¢ and fare otherwise as in Exercise 6.7(a). Show that we
can obtain an asymptotic expansion of I(1) by modifying (6.5.16) in the
following manner:

(i) Set ¢(a) =0.

i I\ exp T _ iw.i] [ .i]
(ii) Replace F(k> SXp % M[e e by M h(,ut),k .

6.9. Let

72 Aj( — \/'_—2—_——
I(}“;a)=".o Ai(— A1+ a?—2acos 0) do

(1+a*—2acos9)*

where Ai(t) is the Airy function.
(a) Show that for 2 —» co with 0< a< 1

cos[z A1 - a)3/2]

Al-a)'*J2a

I(A;a)~

2 32 2374,
cos[3l (1 +4d% +4—]

17/4 \/Fa (1 +a2)1/8
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(b) Show that

3/2

A n]
4=
—3-1/3 cos[Z 3 +3

- 5/2
iTe  argEeE T

IA; )=

6.10. Consider

u»@-fwjxl‘y+ﬁ_2“““gde y>0, O<asl.
0 J1+a*—2acosb

Here J, is the Bessel function of the first kind.
(a) Show that

2 cos [/1(1 —a)—- %]

)~ —— =g T
(b) Show that

O<ax<l, A— 0,

1
IA;1) ~5, A= 00,

6.11. Consider
1(2) = [5 h(4 $(2)) fu(8) dt

under the following conditions:
o
(i) h(t) ~ exp{iwt”} Z C,t™"™, t— 0, o real, v>0;
m=0

(i) f.(t) e C™(a,b] with f vanishing for y < ¢, a<y<b;
(i) (&) ~ yolt —ap, t—a+, —1<Relu);

(iv) hand ¢ e C*(a,y];

(v) o(t) — dla) ~ aolt — a)™, t—a+t; $(a), ag, vo>0;
$t)>00n(ay]; PO~voalt—a) !, t-oa+.

Define for any real k
S, =expliot’y Y Cut'™"

Relr) < k
and
L) = {& SA¢) f(0) dt.
show that, for any real k,
I(2) = I,(A) +O(A ™k~ Yo* Divey A= 0.
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The Method of
Steepest Descents

7.1. Preliminary Results

Throughout this chapter we shall be concerned with integrals of the
form

I(3) = { . g(2) exp{Aw(2) } dz. (7.1.1)

Here C is a fixed contour in the complex z plane, while g(z) and w(z) are analytic
functions in some region D that includes C.!

Our objective is to study I(2) in the limit 1— co. We note that, with the
integrand functions analytic, the Laplace-type integrals studied in Section 5.1
and the Fourier-type integrals studied in Section 6.1 are special cases of (7.1.1).
As we shall find, complex function theory, whose use is made possible by the
assumed analyticity of w and g, affords the additional machinery needed to
handle the general class of integrals (7.1.1).

The results we have already obtained for Fourier- and Laplace-type integrals
serve as partial motivation for the method of analysis to be employed here.
Indeed, we have found when considering Fourier-type integrals (6.1.1), with
f and g infinitely differentiable, that the critical points are the endpoints of
integration and the stationary points of ¢. Although the stationary points
are, in general, the dominant critical points, we must consider the contribu-

! We can allow g and w to have singularities at the endpoints of C as long as I(A) is convergent.
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tion from the endpoints if more than a leading term is desired. In contrast,
we found that, for Laplace-type integrals (5.1.2), the entire asymptotic expan-
sion depends only on the behavior of the integrand functions in a small
neighborhood of the global minimum of ¢ along the interval of integration.
As a result, the analysis of Laplace-type integrals is significantly simpler than
that of Fourier-type integrals.

Complex function theory, and in particular Cauchy’s integral theorem,
tells us that we may deform the contour of integration C in (7.1.1) to a large
extent without changing the value of I(). This fact, coupled with the remarks
of the preceding paragraph, suggest that we should seek to replace C by a
contour or sum of contours in such a manner that not only is the value of
I(A) unaltered, but also the resulting contour integrals are all of Laplace type.
Our immediate task therefore is to develop the theory necessary to
systematically carry out this deformation.

Let us first consider w(z) which has already been assumed analytic in the
region D. We shall further assume that w # const. because otherwise the

w=u(x,y)

(xo.¥0. u(x0,¥0))

<\

u=u{xg,¥yq)

u

|
i
|
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|
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|
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I
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:dircctious
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wx.y) = ulxg. vo)

Figure 7.1.1.
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asymptotic analysis of (7.1.1) is trivial. We now set
z=x+1iy, w(z) = u(x,y) + iv(x, ) (7.1.2)

with u(x, y) and v(x,y) real.

It will prove important for us to be able to identify curves in D along which
u(x,y) and hence |exp{lw(z)}|is monotonic.To aid us in this task we shall now
make several definitions.

DEFINITION 7.1.1.  Let z, =X, + iy, be a point in D. Then a direction
away from z =z, in which u decreases from the value u(xo,y,) is called a
direction of descent from z = z,. (See Figure 7.1.1) In an analogous way we
define a direction of ascent as a direction away from z, in which u(x, y) increases
from the value u(x,, y,).

The concepts of directions of descent and ascent lead us naturally to the
following.

DEFINITION 7.1.2. If C is a directed curve from the point z = z, to the not
necessarily finite point z = z, and is such that its tangent is always in a direc-
tion of descent (ascent), then C is called a path of descent (ascent).

Of course, emanating from z = z,, there are many (in fact, a continuum of)
directions of descent and hence many paths of descent. It is often possible and
highly desirable to identify directions in which the rate? of descent (ascent) is
maximal. Such directions are called directions of steepest descent (ascent).
We might point out that at any point in D at which Vu # 0, the direction of
steepest descent is unique and coincides with that of (—Vu); while the direc-
tion of steepest ascent coincides with that of Vu.

DEFINITION 7.1.3. A directed curve whose tangent at each point has a
direction of steepest descent (ascent) is called a path of steepest descent (ascent).

The words ‘“‘descent” and “ascent” have, of course, a topographical
connotation. Indeed, their use in the present context is prompted by the graph
of the surface u = u(x, y) which is suggestive of a rolling countryside. We carry
this analogy further in the following.

DEFINITION 7.1.4. A point z, = x, + iy, is said to lie in a valley of w(z)
with respect to zo = Xo + iy if u(xy,y,) < u(xe,y) and on a hill of w(z) with
respect to z = zo if u(xy,y)>u(Xe,¥o). If u(xy,y1)=u(xo,yo), then z =z, is
said to lic on the boundary of a hill and valley of w with respect to z = Zo.3

2 Here, rate is with respect to arc-length or any other reasonable parameter.

3 Note that for u harmonic or, equivalently, the real part of an analytic function, if u = const.
along a curve which separates either two hills or two valleys, then u = const. in D.
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Thus, as we “move” along a path of descent from z = z,, we are moving
steadily into a valley, while as we “move” along a path of ascent, we are moving
steadily up a hill. In order to penetrate a valley most “rapidly” (climb a hill
most “rapidly”) we would choose to move along a path of steepest descent
(ascent).

To aid us in identifying the curves of steepest descent and steepest ascent
we prove the following.

LEMMA 7.1. The curves of steepest descent and steepest ascent from any
point z = zy = (X, + iy,) are those curves defined by

(X0, Yo) = Im(w) = v(x, y). (7.1.3)

PROOF. Let éw denote the variation in w near z =z,. It is defined by
ow = w(z) — w(zy) = du + idv. (7.1.4)

Clearly, dv=0 if and only if z lies on the curve(s) v(x,y) = v(xe,¥). In
that event we have

ow = du. (7.1.5)
In general,

|6w|2 = (6u)* + (6v)* = k% p*" [1 + 0(p)], (7.1.6)

where « is the magnitude of the first nonvanishing derivative, n is the order
of that derivative, and p = |z - zo|. Hence,

[6u| < |ow| (7.1.7)

with equality holding only when dv=0. But equality implies that |5u|
is maximal. If we now let z = z, in such a manner that 6v = 0, then |6u| remains
maximal. Hence, we can conclude that the directions of steepest descent and
steepest ascent at z =z, coincide with the directions of the tangent to the
curves defined by (7.1.3) at z = z,,. Finally, it follows from Definition 7.1.3 that
(7.1.3) defines the curves of steepest descent and steepest ascent through z = z,.
This completes the proof.

A somewhat more difficult problem is the explicit determination of the
directions of steepest descent and steepest ascent at points where dw/dz vanishes.
The answer is given in the following.

THEOREM 7.1. Suppose

& '

S =0 a=t2..n-1 0 =ad® a>0.(118)

z=1zq

If z—z, = pe'®, then the directions of steepest descent, steepest ascent, and
constant u at z = 2, are as given in Table 7.1.
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Table 7.1
Directions of 2]
Steepest Descent —%+(2p+1)§ p=0,1,...,n—1
Steepest Ascent —%+2—;’f p=0,1,...,n-1
o I\n _ _
Constant u —’—'+<p+§>—i p=0,1,...,2n—-1
PROOF. We introduce
5 aeiu n ,inB
w=w(z)—-w(zo)=—n—'—p e [14+0(p)], p—-0, (7.1.9)

which follows from (7.1.8). We now consider

Sw aei[a+n9]
rg Y

[1+0(p)] (7.1.10)

and note that in a direction of steepest descent dw/p” is real and negative.
Hence, the directions of steepest descent correspond to those values of
which satisfy

(a+nf)y=Q2p + )m, (7.1.11)

where p is an integer. Upon solving for 6 we obtain the first entry of Table 7.1.
Because we are only interested in distinct directions we require that
0<p<n-1.

In a direction of steepest ascent dw/p" is real and positive so that the corres-
ponding values of § must satisfy

o+ nf =2pm, p=0,1,...,n—1. (7.1.12)
This yields entry 2 of Table 7.1.

Finally, in a direction of constant u, éw is purely imaginary which implies
that

a+nf=p+P=n, p=0,12..,2n-1 (7.1.13)
This then yields entry 3 of Table 7.1 and the proof is complete.

Let us consider two boundary curves (curves of constant u) emanating
from z=z,, with z, as defined in the theorem above, with initial
directions

N\ =

_%+ (2k +1 ij) =,  kaninteger. (7.1.14)
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These curves contain in their acute angle a valley of w(z) with respect to z = z,
and exactly one steepest descent path. This path, moreover, has the initial
direction

o n
—'—1+(2k+1);. (7.1.15)
Note that in the range

—9+<2k+1)5<0<—5+ (2k+§>5 (7.1.16)
n 2/n n 2)/n
dw has a negative real part which is consistent with our definition of
a valley.

We also have that the two boundary curves emanating from z=z,
with initial directions

o W\=n .
—;+ <2k + 5) e k an integer (7.1.17)

contain in their acute angle a hill of w with respect to z =z, and exactly one
path of steepest ascent having the initial direction

el (7.1.18)
n n

Thus we find that any neighborhood of z = z, is divided into 2n sectors*
each having a vertex angle equal to n/n. These sectors are alternately valleys
and hills. The bisectors of the vertex angles of these sectors define the directions
of steepest descent and steepest ascent at z = z,. Thus as we proceed around
any circle enclosing z = z, (but no other point at which dw/dz = 0) we alter-
nately intersect curves of steepest descent and steepest ascent, there being
exactly n curves of each type in all.

We should point out that Theorem 7.1 is equivalent to a form of the maximum
principle for harmonic functions and the maximum modulus theorem for
analytic functions. Indeed, from our results, it follows that in the interior of
D, u=Re w can attain neither a maximum nor a minimum value so long
as w# const. Naturally, similar statements hold for v=Im(w) and for
|exp Aw|.

Let us return to Theorem 7.1 and, in particular, to the case where n=2.
Now there are two distinct directions of steepest descent away from z =z,
defined by
3n

n o
3 —3t5  (descent). (7.1.19)

NIR

“In actuality, except when w(z) — w(z,) = (z — z,)", the boundaries of these sectors are not
straight lines but can be approximated by such whenever the neighborhood is small.
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u

u=u(x,y)

u=u(xg, ¥0)

-

u(x, y) =u(xg, o)

(x0,¥0)

u(x, y) = u(xg, ¥o0)

Figure 7.1.2. The Surface u(x, y) near a (Simple) Saddle Point.

The two directions of steepest ascent are defined by

o o
27 T2
Thus we find that the two steepest descent directions are opposite as are the
two steepest ascent directions. Figure 7.1.2 depicts a typical surface u = u(x,y)
about the point (x,,y,) in the case n = 2. In this figure the directions of steepest
descent are labeled (D) while the directions of steepest ascent are labeled (4).
We see that, locally, the surface is shaped like a saddle. For this reason a com-
plex stationary point, that is, a point at which dw/dz =0, is called a saddle
point of w no matter how many derivatives of w vanish there.

In Figure 7.1.3 we depict a portion of the surface u = u(x,y) near z =z,
in the case where n = 3. It is convenient to designate as the order of the saddle
point at z = z,, the order of the last vanishing derivative of w at z = z,. Thus,
Figure 7.1.2 depicts a surface near a saddle point of order 1 (or simple saddle
point), while Figure 7.1.3 depicts a surface near a saddle point of order 2, often
referred to as a monkey saddle.

As we might anticipate, the explicit determination of steepest descent paths

0= +n (ascent). (7.1.20)
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2

Figure 7.1.3. Monkey Saddle.

is rather difficult even when w(z) is a fairly simple function. Fortunately, for
our purposes it will not be necessary to determine these curves in great detail
and moreover any features that will be required we shall find are readily
obtainable. Nevertheless, it is instructive to consider an example for which
the steepest descent paths from the saddle points can be obtained in as much
detail as desired.

EXAMPLE 7.1. In Section 2.5 we considered the integral representation
of the Airy function of positive argument and found it to be of the form
(7.1.1) with, from (2.5.10),

23
w(z)=z -3 (7.1.21)
Because
wi(z)=1-2z2, w'(z)= — 2z, (7.1.22)
we find that w has two simple saddle points at z = + 1. Moreover,

wi+)=+%  wi(t)=7F2. (1.1.23)
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We wish to study the hills, valleys, and paths of steepest descent and ascent
corresponding to each of the two saddle points. By carrying along the 1 signs
as in (7.1.23) we can consider both saddle points simultaneously. We first
note that

o+ 1,0)=Im(w( £ 1)) =0 (7.1.24)

and therefore the paths of steepest descent and ascent from z = £ 1 must lie
along the curves

v(x,y) = Im(w) = — y(x? ~y—32— 1)=0. (7.1.25)

Hence these paths, which are depicted in Figure 7.1.4 consist of the straight
line y =0 and the two branches of the hyperbola x? — y?/3 = 1.

We naturally want to distinguish among the ascent and descent paths.
To do this we need only use Table 7.1 with n =2 to determine the steepest
descent and ascent directions at the saddle points. From (7.1.23) we
have that

argw'(£ ) =oay, o, =T, a_=0. (7.1.26)

We can now fill in Table 7.1 for each of the saddle points. Indeed for the saddle
point at z=1 we find that the directions of steepest descent are given by
arg(z — 1) =0, = so that the paths of steepest descent lie along the line y =0.
We also find that the directions of steepest ascent at z = 1 are arg(z ~ 1) = +n/2
and hence the branch of the hyperbola x2 — y%/3 =1 through z=1 is to be

Figure 7.1.4.
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Figure 7.1.5. Hills and Valleys of z — z%/3.

viewed as two semiinfinite paths of steepest ascent away from the saddle
point.

For the saddle point at z= — 1, « =0 and the directions of steepest descent
are arg(z + 1) = 7/2, 3n/2. Hence, the branch of the hyperbola xZ — y/3 =1
through z = —1 are two semi-infinite paths of steepest descent away from this
saddle point. Also, the directions of steepest ascent in this case are along the line
y=0.

We note that the line segment y =0, |x| <1 is a path of steepest descent
from the saddle point at z = 1 and a path of steepest ascent for the saddle point
at z= — 1. Upon reflection, we realize that this is no contradiction. Indeed,
if we consider any two points along a path of constant v, then the connecting
path will be a steepest descent curve from one point and a steepest ascent
curve from the other. We also observe that the path of steepest descent from
z=1, directed toward z= —1 has a nonunique continuation away from
z= —1. In fact, whenever a steepest descent path goes through a saddle
point, it may continue along any of the steepest descent paths from that saddle
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Figure 7.1.6. The Surface

Z)=xlr-5+1)
u—Re( -3 =xly _T+1 s

Viewed from a Point in the Third Quadrant of the
(x, ) Plane. (Computer plot by PUREJOY, provided
by ERDA Mathematics and Computing Laboratory
at Courant Institute of Mathematical Sciences at
New York University and modified for implemen-
tation at the University of Denver by Louis Krupp.)

point. Finally in Figure 7.1.5 we depict the hills and valleys of the function
(7.1.21) with respect to the saddle points.

7.2. The Method of Steepest Descents

We wish now to study, in detail, the asymptotic behavior of (7.1.1)
as A - + . The technique to be employed is known as the method of steepest
descents and consists of the following five basic steps:

(1) Identify the possible critical points of the integrand. These are the
endpoints of integration, singular points of g(z) or w(z) and saddle points
of w(z).

(2) Determine the paths of steepest descent from each of the critical
points.

(3) Justify, via Cauchy’s integral theorem, the deformation of the original
contour of integration C onto one or more of the paths of steepest descent
found in (2).

(4) Determine the asymptotic expansions of the integrals that arise as a
result of the deformation in (3). (Note that each integral is of
Laplace type.)
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(5) Sum the asymptotic expansions obtained to determine the asymptotic
expansion of I(2).

We shall, of course, expand on the above outline and, in fact, shall analyze
each of the steps in great detail. Before doing so however, we wish to make
some general remarks. As we might expect, although step (2) offers no con-
ceptual difficulties, it is often tedious to carry out. It may happen that we can
judge in advance that certain critical points have steepest descent contours
which will not be involved in the ultimate deformation of C described in step
(3). In that event we need not identify these contours at all. Thus, whenever
possible, steps (2) and (3) should be applied simultaneéusly rather than in
strict sequence. We shall elaborate on this point below. (See, in particular,
Example 7.2.1.)

The importance of step (3) cannot be overemphasized. Unfortunately, it is
not only the pivotal step in the analysis, it is also often the most difficult to
apply. This last statement might appear strange, because the actual asymptotic
expansion is derived in steps (4) and (5). We consider these latter steps simple,
however, because the theory for Laplace-type integrals has already been
fully developed in Chapters 4 and 5. Also we have previously alluded to the
computational difficulty of step (2). As we shall see, we do not need detailed
information about the steepest descent contours in the large. In fact, quantita-
tive information about these contours is needed only near the critical points
themselves. Away from the critical points, qualitative information will prove
sufficient.

Suppose then that the critical points identified in step (1) are zg, zy, ..., z,.
Then from our theory for Laplace-type integrals, we know that the contribu-
tion to the asymptotic expansion of I(1) corresponding to z=z; is
O(exp{A Re(w(z;))} A%) for some finite ;. We might argue that only those
terms should be retained which correspond to values of i for which Re(w(z;))
is maximal, because all others are asymptotically negligible compared to
them. We recall, however, that in many applications, asymptotically negligible
terms are associated with physical phenomena of interest and hence should
be retained and studied. Furthermore, in the analysis of Stokes phenomenon,
such terms often play a crucial role.

We now wish to study the implementation of our five basic steps. Steps (1)
and (5) are trivial and need no special discussion. Step (2) has already been
considered to a large extent in Section 7.1. This leaves steps (3) and (4). We
shall begin with (4), the easier of the two. Thus suppose that in (7.1.1) C is
already a path of steepest descent from a critical point z = Z, to some other
point z = 2. In most cases of practical interest  is the point at co and u = Re(w)
has the limit — oo as z — o along the path of steepest descent.

Let us for the moment suppose that z = z, is a saddle point of order n — 1.
Hence (7.1.8) holds and the directions of steepest descent are determined, as
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indicated in Table 7.1, by the n distinct angles

9=_%+(2p+1)1;-, p=0,1,....,n—1. (7.2.1)
If we make the change of variable in (7.1.1) defined by
t=—[w(z) — wlz)], (122

then we find that the path of steepest descent C is mapped onto the positive
real axis. Indeed we have

I(2) = exp(Aw(z,)) _[: G(t) exp( — At) dt, (7.2.3)
where

dz g2
CO=9D T = = W), s rwns (1.2.4)

We see from (7.2.3) that our problem has been reduced to the analysis of
an integral of Laplace type. Hence we may use the results of Chapter 4. Indeed,
if we assume thatas t—0+,

o ﬁ(m)

GO~ Y 3 Pamicto~(logt) (7.2.5)

m=0 k=0

subject to the conditions following (4.3.15), then it follows from (4.4.24)
that

@ ﬁ(m) k
1)~ exp(A wi(zp) 3 &@*D'Y p 3 (f) (—log 2y

m=0 =0 =0 I\
~j
X("E) I'(z)

As always, it is desirable to relate the constants in (7.2.6) to the original
integrand functions w(z) and g(z). Let us do this now for the leading term in
the case where, as z— z, along C

g(2) =gz — 2oyt + o(z — )/, Re(B) > 0. (7.2.7)

We then find after some computation that, in (7.2.5),

(7.2.6)

z=a,+1

= E —-— = = & (_2!__.)’/’. 1
2%=""1 p,=0, n=l po=% W] exp(iff)

(7.28)
with 6 given by (7.2.1). In determining p,, we have used the relations

t=%|w"”(zo)l |z —zo]" {1+ 0(|z — 20])],

1 1/n
z—zo =t/ (ng) exp(if) [1 +0(t'")],

which follow from (7.1.8) and (7.2.2). We have taken care to define the phase
angle of — 1 so that arg(t) = 0 on the path of integration as required.
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It now follows from (7.2.6) and (7.2.8) that to leading order

n 5
1)~ 9_: (_"!_>W r(g) exp[l w(zo) + iB ([Zp +1] g - ;)] (7.2.9)

A w"(zo)] n

We might point out that (7.2.9) remains valid even when n is not an integer
(that is, when w has a branch point at z = z) if n!/|w®™(z,)| and « are replaced by
the appropriate constants in the expansion of dw along the contour C.

Two special cases arise so often that it is worthwhile to exhibit separate
formulas for them. Thus, if at z=2z,, w has a simple saddle point, that is,
n = 2 and g(z) is regular, then (7.2.9) becomes

5
I(2) ~g(zo) | 711‘;,(—20' exp [i w(zo) + i((Zp +1) % - %)], p=0,1;

(7.2.10)

while, if at z = z,, w(z) has no saddle point and is regular, that is, n= 1, and g
has an algebraic branch point, then

90 I'B)

T (W) WP

We note that the various asymptotic expansions just obtained depend only
on the local properties of G(¢) near t = 0 + or, equivalently, the local properties
of w and g near z = z, in a sector containing the particular direction of steepest
descent. This observation has certain important implications. Firstly, we
need only know detailed information about the path of steepest descent near the
critical point in question. In fact, suppose that C, is a contour that coincides
with the original steepest descent contour C for some finite length starting
from z = z,,, but then continues merely as a descent contour. Then the integral
along C, would have the same asymptotic expansion as that derived above
for the integral along C, differing at most from the latter by an exponentially
smaller quantity.® We recall, however, that such “small”” terms may have a
physical significance and hence may be of interest. Modulo such cases we
shall say that C, and C are asymptotically equivalent contours.

Suppose now that C, is any descent contour from z = z, and initially in
the same valley as C. Suppose further that the sectors of validity of the approxi-
mations for w and g used above contain a finite length of C, from z =z,.
Then we can conclude that C and C, are asymptotically equivalent contours
because, by Cauchy’s integral theorem, C, can be deformed onto C near z = z,
thereby arriving at a contour of the type C, described above.

Again we must stress the fact that we have not, as yet, considered the most
difficult task in the analysis. Indeed, although it is relatively simple to deter-

I(%) exp[A w(z,) + if(n —a)].} (7.2.11)

¥ We point out that the asymptotic validity of these results depends on (7.2.6).
S This is the basis of the so-called saddle point method.
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mine directions of steepest descent from various critical points and to determine
valleys of w(z) with respect to these points, it is, in general, not so simple to
justify the replacement of an original contour C by one or more paths, each
being asymptotically equivalent to a steepest descent contour from a critical
point. In fact, the only reason we need to know anything about the steepest
descent contours away from the critical points is to accomplish this justification.
These latter issues shall be clarified in the examples of the present and
subsequent sections. It is our belief that the finer points of the method of
steepest descents can best be learned by careful study of examples such as those to
be presented here.

EXAMPLE 7.2.1. Here we shall consider the Airy functions originally
introduced in Section 7.1. Much of the groundwork for our analysis has been
laid in that section. We begin by repeating the integral representations
(2.5.9):

17 z3
49 =5 JC" exp <— Z+ sz) dz, n=1,2,3, (1.2.12)

which are related through (2.5.11), (2.5.12) to the Airy functions Ai and Bi.
In (7.2.12) the contours C, are as shown in Figure 2.5. We seek the asymptotic
expansion of f,(s) as s— + oo. We observe that the exponent in (7.2.12) is not
in the “canonical” form Aw(z). To place it in that form, however, we need
only introduce the “stretched” variable of integration /5 z which yields

11/3
=13 =5 L exp[4 w(z)] dz. (7.2.13)

Here

wz)=2z— A=s32 (7.2.14)

z
?;
and the contours C, can, by Cauchy’s theorem, remain unchanged.

In Section 7.1 we have developed all of the information necessary for the
implementation of steps (1) and (2) of our basic procedure. In particular, we
call attention to Figure 7.1.4. We shall also require the information contained
in Table 7.2 which, in turn, is obtained from (7.1.23) and the discussion following
(7.1.25).

We now wish to replace the contours C, by combinations of steepest descent
contours from the two saddle points z = + 1. [ Note that because the contours
C, are infinite in extent and because w(z) is an entire function, there are no
other critical points.] We can use Table 7.2 to aid us in this task. For example,
we know that along C, (or equivalently along the imaginary axis) Re(w(z)) <0,
while w( + 1) = 2. It then follows that the saddle point z = 1 cannot contribute
to the asymptotic expansion of I,(4) because any such contribution would
perforce be exponentially larger than the integrand all along C,. From this
we can conclude that the replacement of C, should not involve any contours
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Table 7.2
Saddle Point Descent Path w(z) w'(z) 0
z=+1 D, Z -2 0
z7=+1 D, H -2 T
=-1 D -2 T
z 1 £ 2 3
z=—1 D, -3 2 -‘g

emanating from z=1. In general, given an original contour C along which
Re(w) < a, then no critical point z =z, at which Re(w(z,)) > a can contribute
to the asymptotic expansion of the integral along C. We say that such a critical
point is inadmissible.

The utility of these last observations will not be apparent in the present
example because, as we shall soon see, step (3) of our procedure is readily
carried out. However, in cases where there are many critical points and, in
particular, saddle points of higher order than the first, the concept of
inadmissibility is quite useful in that it eliminates certain steepest descent
contours from consideration.

Upon considering Figures 7.1.4 and 7.1.5, we find that we can replace C,
by D,-D,, C, by Dy—D, —D,, and C; by D, + D, — D,. In arriving at
these conclusions we have, of course, used Cauchy’s integral theorem and the
fact that, in each case, the contours of steepest descent go to infinity in the same
valley as does the original contour C;. Although this completes step (3), we
must warn the.reader that the implementation of this step is not always so
simple.

We are now prepared to apply steps (4) and (5). We shall be content here
with obtaining leading terms only. Let us first introduce

1/3

H(A)= % Liexp[zlw(z)] dz (7.2.15)
so that
L) =I'() - I*(2),
L) = PPQ) — I'(3) - I*(4),
I3(A) = I*(2) + I*(A) — I¥(A . (7.2.16)

Because each of the saddle points is simple and because g(z) =1 we may
use (7.2.10) and Table 7.2 to conclude that, as A —» o,

ATYS 21] ATYe 2
Y P _ A 20\~ 24,
I'(A) 4ﬁexp[ T | I*(A) 4ﬁexp[ 3],
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i e
Py~ i\;fexp[u] IO~ - 57= 7= exp[z’]. (7.2.17)

It then follows from (7.2.16) and (7.2.17) that
-~ 24
1,(A) ~ T exp [— —3-] ,

L~ e %),

1)~ ;:\;f exp [2} . (7.2.18)

Finally, the asymptotic expansions of the Airy functigns themselves are
obtained from (2.5.10), (2.5.12), (7.2.13), and (7.2.18) which yield

—1/4 2 3/27
Ai(s) ~ 35— exp [ =

PN
—1/4 25312
Bi(s) ~ > T oXP [—53—] (1.2.19)

as s—+ 0.

EXAMPLE 7.2.2. The Hankel function of type j, of argument kr, and of
order ka, is denoted by HY (kr) and has the integral representation

HY (kr)=% L exp{zk[r cos z + a(z - i)]} dz, j=12. (7.2.20)

N /

Figure 7.2.1. Contours of Integration for
the Integral Representations of Hankel
Functions.
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Here the contours C; are as depicted in Figure 7.2.1 and, in particular, extend
to 2 in the unshaded regions of that diagram. We have expressed the argument
and order by kr and ka respectively because such forms naturally arise in
applications.

The main purpose of this example is to illustrate how asymptotic expansions
can be obtained via the method of steepest descents when quantitative informa-
tion about the paths of steepest descent is known only near the critical points.
Here we shall seek the asymptotic expansions of the two Hankel functions
as k— co. In the important application of wave propagation, this corresponds
to what is called the ‘‘high-frequency limit.”

The integrals (7.2.20) can be cast in the form (7.1.1) by introducing

A=kr, f= g (7.2.21)
in which event we have
HY) (kry=1(4;p) = 71? j exp[Aw(z;f)]dz, j=1,2. (7.2.22)
Here J
w(z;B) = i[cos 2+ B (z - g)] (7.2.23)

In most problems a and r have the dimension of length, while k has the
dimension of (length)~!. Thus, A and B are both dimensionless. In this example
we shall assume that 1 —» co while

0<pg<l. (7.2.24)

Furthermore, for convenience we shall henceforth suppress the explicit
dependence of I;and w on f.

It is clear from (7.2.23) and the definitions of the contours C; that the only
critical points are the saddle points of w. Because

w)=i[—sinz+B]; W'(z)=—icosz (7.2.25)

we have that, in the strip —7/2 < Re(z) < 3#/2, w has two simple saddle points,
denoted by z = z, ,z_ and defined by

sinz, =f, 0<z+<g, g<z_=7r—z+ <. (7.2.26)
There are additional saddle points on the real axis located at the points
2=z, +2nn, n=1,2,3,.... We claim, however, that they can be ignored,
but shall delay establishing this claim until later on in the analysis.

If we define the inverse function sin~! g so that

O<sin"'f<Z  or z,=sin"'B, (7.2.27)
2
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then it follows that
. n
wiz,)= + i[,/l -+ B(sm ! ﬂ—§>]

= +i[/1 - p*—Pcos™' B];
FiJl—p2 (7.2.28)

w(z,)
Here we have taken
0<w§‘ﬁ<; (7.2.29)

Now upon applying Theorem 7.1 we find from (7.2.28) and Table 7.1 that
the directions of steepest descent at the two saddle points are

n 3n n  3n
e 9(2_)-—1, -7 (7.2.30)
The paths of steepest descent from the saddle points are those curves
defined by

0z,)=—

v(x,y) = Im{w) = cos x cosh y + f Qc - %)

= + (/1= p*—Bcos™! B)=TIm(w(z)) (7.2.31)
along which
u(x,y) = Re(w) =sin x sinh y — By (7.2.32)

decreases monotonically.

Although we cannot draw the steepest descent paths here as precisely as
we could the cubics that arose in the analyses of the Airy functions, we can
nevertheless obtain enough qualitative information to carry out our procedure.
We observe from (7.2.32) that u continually decreases as |y|— oo so
long as

R
%”zlx—;\zg; y— + 0. (7.233)

Also, in order that the left-hand side of (7.2.31) remain finite as ly|— o0, it
is necessary that x approach an odd multiple of n/2. Hence, the vertical lines
x= +m/2, x = 3n/2 are the asymptotes of the paths of steepest descent (and
of the paths of steepest ascent as well).

The information we have obtained is sufficient to complete Figure 7.2.2 which
depicts the saddle points under consideration and the paths of steepest descent
and steepest ascent from them. Also shown are the hills and valleys of u with
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Figure 7.2.2. Hills (Shaded) and Valleys for
w(z) =i[cos z+ Bz —n/2)], B < 1.

respect to these saddle points. They, of course, are bounded by the curves
u(x,y) = Re(w(z,)). The qualitative information necessary to approximate
these boundary curves is obtained in a manner similar to the analysis above.

Our next task is to replace the contours C, and C, by linear combinations
of steepest descent paths from the saddle points. Upon referring to Figures

72.1 and 7.2.2 we readily find that we should replace C, by D, — D, and
C, by D, —D;. Aside from their local behavior near the saddle points, we
need no further information about the paths of steepest descent to obtain
the complete asymptotic expansions of the integrals I;.

. All of the information needed to find the leading terms of the desired expan-
sions has already been obtained. Moreover, the computations are rather
straightforward, so that we shall only present the results here. Indeed
we have

e [LCY TR g -]

j=1,2.

(7.2.34)
In terms of the original variables, (7.2.34) becomes

exp{( —1y*! i[k Jr2—a*—ka cos“(g)_ﬁ]}
Hﬂ“”“'v/é oMo,

(r2 _ a2)1/4

(1.2.35)
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We note that we can also write

exp((— 1y+! i[,/pz——vz—vcos“<z>—z]}
) 2 l P 4 LY 1. j=
Hv (p)~ ;{ ( 2_v2)1/4 sp< ,f—1,2,
P (7.2.36)

which is the leading term of the asymptotic expansion of HY (p) as both v
and p— oo with v<p. We might further point out that, to leading order,
the asymptotic expansion of HY (p) for finite order and large argument can
be recovered from (7.2.36) by assuming v fixed and p large, so long as
we set

. afvy =
plirg cos <p)— 3 (7.2.37)

From (7.2.34)~(7.2.36) we see that the results we have obtained are invalid
when the order and argument of the Hankel functions are equal, that is, when
r/la=1 or v=p. In that event, we have z, =z_=m/2, while w'(n/2)=0.
Thus, if r/a=1, instead of having two distinct saddle points of first order,
we have one saddle point of higher order. All of the above calculations, how-
ever, have been based on the assumption that there are two distinct saddle
points. This explains the breakdown of our results when r = a. We naturally
want to treat this anomalous case and we shall do so in the following example.

There is still one point that remains to be discussed and that is the question
of the ignored saddle points z=z, +2nn, n=1, 2,3, .... To understand why
the ignoring of these saddle points was not only valid but indeed necessary,
we first point out that the configuration of hills, valleys, and paths of steepest
descent and ascent corresponding to the saddle points z, + 2n= for any fixed
integer n, is precisely that given in Figure 7.2.2 with the values of x shifted by
2nn. The original contours C, and C,, however, are confined to the strip
— /2 <x < 3n/2. It should be clear that it is impossible to replace either
C, or C, by a combination of steepest descent contours which involves any
emanating from the saddle points z, +2nn, n=1,2, ... except in a trivial
manner. This is so because to accomplish this at least one hill of (7.2.32) would
have to be crossed “at infinity”; an operation which cannot be justified by
Cauchy’s theorem. Indeed, we can say that with C, and C, as originally
described, all saddle points other than z=z, are inadmissible and must
be ignored.

EXAMPLE 7.2.3. We shall now consider the Hankel functions when the
order and argument are equal and large. Hence we set f=1 in (7.2.21)
so that

w(z)=i|:cosz+< —g)], w’(z)=i[—sin z+ 1:],

w'(z)= —icos z, w"(z)=isin z. (7.2.38)
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We now find that there are no longer two distinct saddle points, but rather a
single saddle point of order 2 located at z = n/2. Indeed we have

Q) o oo

so that in (7.1.8), n=3, and a = =/2. It then follows from Table 7.1 that the
directions of steepest descent are

Sn

0= /9
=7 ?’ - i (7‘240)

=]

T}}e steepest descent paths are as depicted in Figure 7.2.3 from which we
readily conclude that we may replace C, by D, — D, and C, by D, —D,.
Then a simple calculation yields

' rd) [4\e ey 2mi .
1,<A,1)~—Mf,3(§) exp[(—l)’“T]; j=1,2  (1241)

or, equivalently,

. r@) (4Ve o1 2mi

HP (ka) ~ — Tkizs))m <§> exp [( —1y*! 2?], i=L2. (7242
From (7.2.34), we see that I,(A;8)=0(A"'/2) when 0 < f <1, while from
(7.2.41) it follows that I(4;1)=0(A~'). Evidently there is a transition in
order as f—1 which is not completely described by our results. It would be
desirable to have a single expansion that remains uniformly valid for all B
in [0,1]. Such an expansion will indeed be obtained in Chapter 9 where the

general subject of uniform asymptotic expansions is discussed.

| A

w2 Tl wf2

D,

Figure 7.2.3. Paths of Steepest Descent for
w(z)=i[cosz+z—n/2],B=1.



274 | cHAPTER 7 The Method of Steepest Descents

To complete our analysis of the Hankel function, let us consider the
following.

EXAMPLE 7.24. Ifin (7.2.21) we take 8 > 1, so that the order of the Hankel
function is greater than the argument, then we find that there are again two
simple saddle points z=1z, in the strip —7/2 <Re(z) <3n/2. These are
defined by

z,=5%icosh™" . (7.243)

The steepest descent paths from the saddle points are shown in Figure
7.2.4. As is readily seen, we may replace C, by D;—D,—D, and C, by
D, + D, — D;. We also note that the contributions from z =z, are exponen-
tially smaller than those from z = z_ and hence can be ignored. Indeed, after
some calculation we find that to leading order

2exp{l[ﬁcosh“ﬁ—\/ﬂz—1]+(—1)jig}.
Iﬂiyﬁ)"\/n_: (B2_1)1/4 s
i=1,2, B>1. (1244

D, Dy

~/2 D, 3x/2|
2

D;

Figure 7.2.4. Paths of Steepest Descent for
w(z) = i[cos z + Bz - #/2)], B> 1.
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./

//

Figure 7.2.4(a) Hills (Shaded) and Valleys
with Respect to the Saddle Point z, for
w(z)=i[cos z+ Bz —m/2)], B> 1.

W
§ :i : 32
3

Figure 7.2.4(b) Hills (Shaded) and Valleys
with Respect to the Saddle Point at z_ for
w(z) = i[cos z + B(z — n/2)], B> 1.

)
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From (7.2.44), it follows that

3 exp{ka cosh™ ‘(%) - k\/zzfr2 +(=1y %}
HY(kr) ~ \/;I; (@ — )i >

j=1,2, ";>1 (1.2.45)

and v —— mi
. 2exp{vcosh ) -Jvi-p +(—1)’7}
HY (p)N\/: (2 = p?) ;

j=1,2, %> 1. (7.2.46)

To illustrate how the method of steepest descents is applied to integrals
over contours of finite extent let us consider the following.

EXAMPLE 7.2.5. Here we shall show that, in certain instances, the stationary
phase results obtained in Section 6.1 can be derived via the method of steepest
descents. Thus, let us consider the Fourier-type integral

1(4) = [° g() exp(id f(r)) dt. (7.2.47)

We shall assume that a and b are real and finite while both f and g are entire
functions of the complex variable ¢. Furthermore, we shall assume that f(¢)
is real for ¢ in [a,b].

Let us suppose for simplicity that

ft)=0, f't)#0, a<to<b (7.2.48)

and that f'(t) does not vanish at any other point in the complex ¢ plane. In
the notation of Chapter 6, t = t, is a simple stationary point of f. Here, how-
ever, we choose to look upon (7.2.47) as a contour integral so that the results
of this section can be applied.

If we set

if(t)=w(), (7.2.49)

then we have that w(t) has a simple saddle point at ¢ = ¢,. Because there are no
other saddle points, the set of critical points consists of t=ty, t=a,
and t=b.

Our first task is to determine the directions of steepest descent from each
of the critical points along with the configuration of the hills and valleys of
u = Re(w) at infinity. From Table 7.1 we find that the directions of steepest
descent at t = t, are given by

arglt — 1) = — KR4 T _#m 3T (7.2.50)
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Here

4= sgn f"(to) = sgn f"(b) = — sgn f"(a). (7.2.51)

The directions of steepest descent from the two endpoints of integration a, b
are respectively

arg(t —a)=7n+ f)_TE Hu, (7.2.52)
argit —by=n —g I (7.2.53)

The configuration of the hills and valleys of u = Re(w) with respect to the
saddle point clearly depends on the value of . In each of the two possible
cases it is readily determined. The hills and valleys at infinity are, of course,
independent of the particular finite point under consideration. In Figures
7.2.5 and 7.2.6 we have depicted typical configurations corresponding to
u= —1and u= + 1, respectively. Also, paths asymptotically equivalent to
the steepest descent paths from the critical points are depicted. In both cases
we find that the original contour C can be replaced by the combination of
contours D, + u(D, — D,) — D,. Hence, we can write

IA) = L,. + fup, — Jup, — _be g exp(iif) dt
=1, —1,+u, - 1Ip). (7.2.54)

The leading terms in the asymptotic expansions of I, and I, are obtained

Figure 7.2.5. Descent Paths for w = if, with
pu=—1
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Dy
Dy
/2
\ 3 /4
/4 o "\Q

Figure 7.2.6. Descent Paths for w = if, with
p=1

by applying (7.2.10). Indeed we find upon using the definitions of D, and

D, that
L)~ 1tto) /gy P (Af(to) ;”)
LA~ —pglto) / EJT;W exp(i/lf(to) + H?) (7.2.55)

From this it follows that

ply —I,)~glto)  / M_fz1€t()—)| exp (iA flto) + %) (7.2.56)

To obtain the asymptotic expansions of 1, and I, to leading order, we apply
(7.2.11) with f=1 and mn—« given by (7.2.52) and (7.2.53), respectively. In

this manner we find

I,~ 7 lf(‘z))l explilf(a) +in +5 n)]
~T f (b)| 2 exp[iAf(b) +i(n — 5 n)] (7.2.57)

and hence

gb) ~ 9@ i . 7.2.58
o= 1o 1 [ 98 expta 60 — 49 expin ) (1.258)
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As we might have anticipated from the fact that f(a), f(b), and f(t,) are all
real, the endpoint contributions are comparable to the saddle point contribu-
tion at least to exponential order. The leading term of the asymptotic expansion
of I(4) comes from the saddle point contribution and, indeed, is given by (7.2.56).
This is in agreement with the stationary phase formula (6.1.5). If any more
than the leading term is required, then the contribution from the endpoints
must also be included.

From this example we might argue that we should have delayed considering
Fourier-type integrals until after the method of steepest descents had been
developed. This would imply, however, that the method of stationary phase
is a special case of the method of steepest descents. That this implication is
false is seen from the fact that the derivation of the stationary phase formula
does not require the strong analyticity assumptions made in the present
section. Indeed, although the two methods are applicable to overlapping
classes of integrals, neither is by any means a special case of the other.

To conclude this section, we wish to consider a fundamental question.
In step (1) of our basic procedure, we indicated that the set of possible critical
points for (7.1.1) includes the endpoints of integration, points of nonanalyticity
of either w or g, and saddle points of w. Except perhaps for the saddle points
themselves, the critical nature of this set has been motivated by previous
discussions. We now shall investigate the critical nature of the saddle points
to better understand why such points play a vital role in the method of steepest
descents.

Suppose that in (7.1.1), C is a contour of finite extent and that w and g are
entire functions. If, in particular, w = z, then there are no saddle points of w
so that the only possible critical points are the endpoints of integration. The
configuration of the hills and valleys of u = Re(w) at infinity is of course quite
simple. Indeed, there is just one hill and one valley. The steepest descent
contours from the endpoints must perforce go to infinity in the same valley,
namely the left half-plane. As a result, C can always be replaced by a combina-
tion of these two contours.

Now suppose that w has a single saddle point in the finite plane located at
z = z,. Then the configuration of the hills and valleys at infinity is more com-
plicated than above. In the simplest case where z = z,, is a simple saddle point,
there are two hills which alternate between two valleys. Now the steepest
descent contours from the endpoints need not go to infinity in the same valley.
Indeed let us suppose that they do not. Then it is impossible to replace C by
a combination of these two contours alone. The reason for this is that, in order
to connect them a hill at infinity must be crossed which is not permissible.
Thus, if only steepest descent contours are to be used, then an additional
critical point must come into play. As the results of Example 7.2.5 indicate,
this point is the saddle point z = z,,.

Thus we might say that the saddle point and the descent paths emanating
from it are the means by which distinct valleys can be connected at infinity.
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Hence, the saddle point is, or is not, critical according as to whether or not the
location of the original contour C necessitates such a connection.

In the following sections we shall, via four examples worked out in detail,
extend and apply the resuits already obtained. In the first two of these examples
we shall consider the determination of sectors of validity for asymptotic
expansions obtained by the method of steepest descents. This will involve
the occurrence of the Stokes’ phenomenon discussed in Section 1.6. In the
last two examples we shall illustrate how the method of steepest descents arises
in applications by considering a partial differential equation that models
certain wave propagation problems and by establishing a simple version of
the central limit theorem of probability theory.

In the previous chapters, methods originally developed for integrals with
exponential kernels were extended to integrals with more general kernel
functions. In a completely analogous manner, the method of steepest descents
can be generalized to integrals of the form

I(2) = [ . h(Aw(2)) g(z) dz. (7.2.59)

Here h(t) is assumed to be a transcendental function of ¢, having asymptotic
expansions as ¢t — oo of the form (4.4.7) valid in various sectors of the complex
plane. It is further assumed that these sectors cover enough of the plane to
allow for any required deformation of the contour C.

In contrast with the method of steepest descents already developed, there
are two new features with which we must now contend. Firstly, zeros of w(z)
are possible critical points of the integrand. Because this was also true in our
extensions of Laplace’s method and the method of stationary phase, this
should not be surprising. Secondly, there now can exist boundary curves
which separate two hills, two regions of exponential growth, of the kernel
function. (We recall that for the exponential function a boundary always
separates a hill and a valley.”)

The following functions illustrate this phenomenon: sin ¢, J (t), and A1( ).
For the first two, the entire real axis is a boundary curve which separates two
hills with respect to the origin, while for Ai{t), the negative real axisisa boundary
between two hills with respect to the origin.

As a consequence of this latter feature, there need not always exist a path
of descent from a critical point, that is, a path along which |h(Aw)| decreases
exponentially and monotonically. Thus, after deformation, we find that, in
general, C has been replaced by a combination of descent paths and boundary
paths. On the former, the extension of Laplace’s method developed in Sections
5.2 and 5.3 can be applied, while on the latter, either the theory of Section
5.4 or that of Sections 6.2 to 6.4 is applicable because the kernel is either algebraic
or oscillatory. The actual procedure is outlined in Exercises 7.27 and
7.28.

7See the discussion on page 256.
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7.3. The Airy Function for Complex Argument

Let us again consider the function f(s) = Ai(s) defined by (7.2.12). We shall
now, however, assume that s is a complex variable and write

s=|s| €. (7.3.1)

Upon introducing the *“stretched” variable of integration \/[s| z into (7.2.12),
we obtain

fie)=1,(2;0) = %j—j- LI exp[iw(z;0)]dz,  A=|s|¥2 (7.3.2)
Here C, is as in Figure 2.5 and
. 2 i0
w(z;0)= — 3 +e%z. (7.3.3)
From (7.3.3) we easily find that

3
u(x,y;0)=Re[w(z;0)] = — (% - xy2> + x cos 6 — y sin 8 (7.3.4)

and
3
v(x,y;0) =Im[w(z;0) ] = — (xzy - %>+ x sin 8 + y cos 0. (7.3.5)
Because
w(z;0)= —z* 4+ €'°, w'(z;0)= — 2z, (7.3.6)
there are simple points at
z=z, = 1%, (1.3.7)
Also
w(z, ;0)= +3%¢&¥%2 w'(z, ;0) = F 22, (7.3.8)

It follows from (7.1.8), (7.3.8), and Table 7.1 that the directions of steepest

descent from the two saddle points are
0 0
arg(z—z+)=—3, —Z-Hr, arg(z—z_)= ig—g. (7.3.9)

As ‘usual, our major problem is to justify the deformation of the original contour
of integration C, onto a combination of contours, each asymptotically equi-
valent to a steepest descent path from one of the two saddle points.

The curves of steepest descent from the saddle points are defined by

3
(x y— %) +xsinf@+ycosf= % n<3—20) (7.3.10)
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For 6 # 0, these are rather difficult to determine explicitly. Since, as we have
pointed out, away from the saddle points the curves used to replace C, need

only be descent paths, we proceed in a more qualitative way.

We know that any path having a directed tangent vector whose nonzero
components are always of opposite sign to the corresponding components of
Vu is a path of descent. Thus we can determine paths of descent merely by
considering the vector field defined by

Vu = (u,,u) = (y* — x>+ cos 8, 2xy = sin 0) (7.3.11)
and, in particular, the signs of the components of Vu.

Suppose first that 0 < 8 < n/2. Then u, is negative “outside’” the two branches
of the hyperbola

x%2—y*=cos 0 (7.3.12)

and positive between them. Also, u, is positive outside the two branches of
the hyperbola

2xy =sin 0 (7.3.13)
and negative between them. These hyperbolas clearly intersect at the saddle

points themselves. The situation is schematically depicted in Figure 7.3.1.
The directions of the horizontal and vertical arrows reflect the signs of u,

o

7~

Hill at o

Figure 7.3.1. 0<8 < n/2.
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and u, respectively in the various regions shown. In addition to the original
contour C, we have drawn D, and D, which, from the above discussions, are
seen to be descent paths from z = z_. Moreover, they are assumed to be coin-
cident with the steepest descent paths near that saddle point and hence have
directions at z = z_ given by the latter of (7.3.9). It is readily seen that C, is
deformable onto the contour D, — D,.

Now suppose that § = n/2. In this event, the hyperbola (7.3.12) degenerates
into the 45-degree lines x =+y. The resulting vector field is qualitatively
described in Figure 7.3.2. We again find that C, can be replaced by D, — D,
with D, and D, asymptotically equivalent to the steepest descent paths from
the saddle point z =z _.

For n/2 <0 < m, u, =0 on a hyperbola having a vertical focal axis. Between
the two branches of the hyperbola, u, is negative, while outside of the branches,
u, is positive. The sign of u, remains as in the cases already considered, thereby
producing the situation depicted in Figure 7.3.3. Once again we find that C,
can be replaced by D; — D, and hence only the saddle point at z=z_ is
involved.

Finally, when 0 = =, the sign of u, is as in the immediately preceding case.
Now, however, u, is zero on the coordinate axes x =0, y=0. The vector
field V u is described schematically in Figure 7.3.4. We now find that we can no

longer replace C, by descent contours from z = z_ = — i alone. Any deforma-
AN o =
Valley at o\cl \\ !
1O
X —
*S

A ..\ 1\

Valley

at oo

Valley at
Vb 2hai

Figure 7.3.2. 6 =n/2.
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Figure 7.3.3. n/2<8<m.

tion of C, onto descent paths from the saddle points must include paths from
z =z, =ias well. In Figure 7.3.4, D, and D, are seen to be descent paths from
z=z_ while D; and D, are descent paths from z =z, . Furthermore, we find
that C, can be replaced by the composite contour D, + D, — D, — D,.

From the above discussion we can conclude that, for 0 < arg(s) < m, the
asymptotic expansion of Ai(s) involves a dominant contribution from the saddle
point at z=z_ only,® whereas, for 8 = x, it involves contributions from both
saddle points. Moreover, because w(z,,m) is purely imaginary, the two con-
tributions in the latter case are of equal order. Because completely analogous
statements hold for the range — 7 < arg(s) <0, it follows that the asymptotic
expansion of the Airy function Ai(s), as determined by the method of steepest
descent, and which is valid in the sector |arg(s)| < 7, has a Stokes line along
the negative real axis. In other words, the analytic continuation of the expan-
sion valid in |arg(s)| < = is not the asymptotic expansion of Ai(s) outside of
this sector.

Let us now calculate the leading term of the expansion itself. If |arg(s)| <=,
then C, can always be replaced by D, — D, as shown above. Because D, is

8 However, in the range n/3 <8 <7, z, is in the valley of w with respect to z_. Now we can
find descent paths through z, as well as z_. Thus we would include a term which remains sub-
dominant in 7/3 < 8 < 7 but becomes dominant in n < 6 < 5z/3. See Exercise 7.26.
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Hill at oo

1
\ Valley at oo

e

Figure 7.34. 6=nm.

asymptotically equivalent to the steepest descent path from z=z_ with
initial direction arg(z — z_) = n/2 — 0/4, while D, is asymptotically equivalent
to the steepest descent path from z=2z_ with initial direction
arg(z —z_)= —n/2 — 6/4, it follows from (7.2.10) and (7.3.8) that

AT e 2. a2 00

Upon using the relations

A eJiB/Z = 53/2, A—l/ﬁ e‘i9/4 - s—l/4’ (7315)

we finally obtain
. s-1/4 { 2 s3/2
Ails) ~ 2—— L5
i(s) N exp 3
An expansion of Ai(s), valid as s » — <, can be found by using the informa-
tion obtained above. Indeed, we have

}, [s|>c0, |arg(s)|<m. (7.3.16)

. s -1/4 . 2 3/2
Ax(s)~'\|ﬁ sm( [53| +§), arg(s) = . (1.3.17)

We leave the details of this last derivation to the exercises.
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7.4. The Gamma Function for Complex Argument

Although we have previously derived the asymptotic expansion of the gamma
function for complex argument in Section 3.2, we wish to do so again via the
method of steepest descents. We start from the integral representation of
T'(s + 1) given by (2.2.7) which states

_E‘_F’{___]Ls} s+1 . _ 2,0
I's+1)= > sin s AL IA;0), s=Ae". (74.1)
Here
I(A;0) = _[C exp[Aw(z;0)] dz (74.2)
with C the contour depicted in Figure 2.2 and
w(z;0)=e®logz—z. (7.4.3)
Because
eiO eiﬂ
w(z;0) = - 1, w'(z;0)= ——, (7.4.4)
z

we find that w has one simple saddle point on each of the sheets of the infinite
sheeted Riemann surface of log z. These are defined by

z = z, = exp{if + 2nmi}, n=0+1,+2,.... (7.4.5)

The saddle points, together with the origin, which is a branch point for w,
constitute the set of possible critical points of I. Also, in what follows, we shall
refer to the region defined by 0 < arg(z) < 2r as the “principal sheet” of the
Riemann surface of log z.

It follows from (7.4.4) and Table 7.1 that the directions of steepest descent
from z = z, are given by
09

35t (7.4.6)

arg(z —z,) =

The paths of steepest descent from the saddle points are not as readily
determined. We can, however, resort to the mode of analysis employed in the
previous example. Thus, if we set

w=ulx,y)+iv(x,y), z=x+iy=re?, (7.4.7)
then it follows from (7.4.3) that

u=cosflogr—¢sinf—x,

v=sinflogr+¢cosf—y. (7.4.8)
Because
Gt (8= im0 =0)), 749
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we have that, on each sheet of the Riemann surface of log z, u, =0 along the
circle through the origin and the saddle point on that sheet. The curves along
which u, = 0 are simply the rays defined by

¢=0+nn, n=+1+2, ... (7.4.10)

In Figures 7.4.1, 7.4.2, and 7.4.3, we show schematically the gradient field
of u in the cases 0 <0 <=r/2, 0§ =mn/2, and n/2 < § <7, respectively. In each
instance we can verify that the contours designated by D, and D, are asymp-
totically equivalent to paths of steepest descent from z = z,, the saddle point
on the principal sheet. Furthermore, we find that the original contour C can,
in each case, be replaced by the combination of contours D, — D, . As a result,
z = z, is the only contributing critical point.

The asymptotic expansion of I, to leading order, is obtained by applying
(7.2.10) to each of the descent integrals and thus forming the indicated com-
bination. In this manner we find

Figure 74.1. 0<8< /2.
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Hill Valley
ate at oo
Figure 74.2. §=mn/2.
2n 00 _ ey, 10
I12;0)~ — T exp AiBe® — e ]+7 , 0<f<n. (74.11)

We shall delay writing the corresponding expansion of I'(s + 1) itself until a
wider range of values of arg(s) has been considered.

The case @ =0 is somewhat more difficult to treat. Indeed, although (7.4.1)
is correct for s real, it is quite awkward due to the presence of removable
singularities at the positive integers. Furthermore, if we were interested in
real positive s only, then we would naturally use the simpler representation
(5.1.22) and apply Laplace’s method as in Example 5.1.1. Nevertheless we
shall find it instructive to pursue the asymptotic analysis of 1(4;0).

In Figure 7.44 we depict the gradient field of u when 6 = 0. There is no
apparent replacement of C by a combination of descent paths from z =z,
alone. Suppose then we attempt to make use of the saddle point z=z,. It can
be shown that it is possible to replace C by a combination of descent paths
from z =z, and z=z,. Two of these contours, however, are spirals along
which |arg(z)| > = while |z| - 0. Fortunately, a detailed knowledge of these
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Figure 74.3. n/2<8<m.

fairly complicated curves is not necessary. In fact, we need not consider them
at all.

From Figure 7.4.5, we see that C can be replaced by the combination
D,-D,—D;+D,+C. The contours D, i=1,2,3,4, are each
asymptotically equivalent to a steepest descent contour from one of the two
saddle points under consideration. Although C is not even a descent contour
it has the property that along it

u(x,y)<logr— x<0. (7.4.12)

This last inequality assures us that the integral along C is asymptotically
negligible compared to the integrals along the paths D;, i =1, 2, 3, 4. Heuristi-
cally, we might say that C connects the contour D, — D, to the contour D, — D,
*“deep” in a valley of both saddle points.

It is now a simple matter to obtain the leading term of the expansion of
I(2;0). Indeed, upon applying (7.2.10) to each of the relevant integrals and
forming the appropriate combination, we have

1(2;0) ~ \/2’77[ e (e — 1), (7.4.13)
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Valley

at oo

Figure 7.44. 6=0.

In the range — 7 < 6 < 0, the saddle point at z =z, lies on the principal
sheet, while the one at z = z, lies on the next “lower” sheet. The analysis in
this case is completely analogous to that given above for 0 <6 <. Indeed,
we find that

14;0)~ / 27” exp{l[i(@ +27) €' — ] +§ ,  —m<0<0.(74.14)

Our original goal was, of course, to obtain an asymptotic expansion of
I'(s + 1). To this end, we note that

lim M= g<g<n

Is|»w 2i8IDTS ’ ’

lim %%%:1, —n<6<0. (7.4.15)
Is| >

1t then follows from (7.4.1), (7.4.11), and (7.4.13) to (7.4.15) that

SECTION 7.4 The Gamma Function for Complex Argument | 291

L TR0 e

Figure 74.5. 6=0.

(s + 1) ~ /275 @ |arg(s)| < 7.2 (7.4.16)

When |arg(s)| ==, I'(s+1) has poles at the negative integers. In the
representation (7.4.1), these poles are due to the factor (sin ms)”!. Because
I(4;6) is perfectly well behaved for § near n, we could obtain the asymptotic
expansion of I(A;n) and use it in (7.4.1) to find a meaningful expansion of
I'(s + 1) along the negative real axis. In Figure 7.4.6 we show Vu along with
the descént paths from the relevant saddle point. A simpler procedure, how-
ever, would be to use the relation

n

T sinmsT(—s) (7417

I's+1)=
and then replace I'(—s) by its already determined asymptotic expansion
for arg( — s)=0.

?1f we set x =s + 1 in (3.2.40) and use the result lim,_, (1 + 1/5)* = e, then we can show that
(7.4.16) agrees with the former result.
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Figure 746. 0=m.

7.5. The Klein-Gordon Equation

Here we shall consider the following *‘source” problem for the Klein-
Gordon equation:

e u,, — t, — b*u = 8(x) exp{ — iwgt}, — 0 <x<®, t>0, wo>5p, (15.1)
u(x,0)=u,(x,0)=0, u(x,t)=0, t<0. (7.5.2)

From the discussion of Section 2.6, we find that the solution u(x,) represents
a wave propagating in a one-dimensional dispersive medium. The wave itself
is produced by a stationary disturbance or source located at the origin.

We imagine that the source is “turned on” at time t =0 and subsequently
oscillates with frequency w,. Because the medium is source-free for ¢ <0,
the last of conditions (7.5.2) must be satisfied.

Our first objective is to obtain an integral representation of u(x,t). To
accomplish this we introduce

i(x,0) =3 u(x,t) ¢ dt, (7.5.3)
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the Fourier transform of u(x,t) with respect to time. From (7.5.1), we readily
find that u satisfies the ordinary differential equation

22 2 p2y A i (x)
‘U, + (0 b)u—————~w_wo. (7.5.4)

The solution to (7.5.4) which, when inserted into the Fourier inversion
formula, results in the satisfaction of the “outgoing” condition is

exp{i(lw® — b¥)'? |x|/c}

ix,0) = S T (1.5.5)
Thus the desired integral representation is given by
exp{i[(w? — b})'12 ILCI —ot]} do
) == 5.
w0 =5z L 2 — o) (@ — )7 (7:56)

Here on the contour I', Re(w) goes from — oo to co and I' passes above the three
singularities of the integrand, each of which lies on the real axis. Furthermore,
we shall take the lines drawn from the points w = + b vertically downward to
infinity, as the branch cuts for (w? — b?)'/2. (See Figure 7.5.1.)

If we introduce the dimensionless quantities

_ _o _Ix
A=bt, v=4, 6= (7.5.7)
then
. 1 exp[A¢(v;0)]
H=U =
ulx,t) = U(k;0) = L, 0 v (07 = )7 dv. (7.5.8)
Here
;) =i[(2—1)"20—v], vo= %9 (7.59)
r
—b h o wy

Figure 7.5.1. o Plane, Contour I', Branch Points + b, Branch Cuts
Extending from + b to +b — i Pole at w,.
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Because the new contour I” is simply I stretched by the positive number b,
we have Figure 7.5.2.

For 6> 1, that is, for |x| > ct, we can close the contour of integration in
the upper half-plane. It then follows by Cauchy’s integral theorem
that

u(x,t)=0, |x| > ct. (7.5.10)

This last result is simply a reflection of the fact that the signal travels at a finite
speed. Hence, if we remain ahead of the wave fronts |x|= ct, then we do not
observe any disturbance at all. The fronts themselves travel with the *‘charac-
teristic speed” c. We might also mention that the portion of the wave at and
just behind the fronts is called the “precursor” because it is the first signal to
reach any particular point x.

We wish to study U(4;6) in the limit A— oo, that is, as time gets large com-
pared to b~ !. To accomplish this, we shall apply the method of steepest descents
to (7.5.8). From (7.5.9) we have

;. vl . . 0
Thus, ¢ has a simple saddle point at each v satisfying

(v2 _ 1)1/2 .
v

0= (7.5.12)

If 0 < 8 < 1, then there is a solution ¥(6) to (7.5.12) such that 1 < () < oo
and given by
1

~/1—02‘

Moreover, — ¥(6) also satisfies (7.5.12) because, with the branch cuts as shown

3(6) = (7.5.13)

Figure 7.5.2. v Plane, Contour I"", Branch Points + 1, Branch Cuts
Extending from + 1to + 1 —iw Pole at v,.
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in Figure 7.5.2, (v — 1)V2/y is even and positive for v real and outside of the
interval (— 1,1). Clearly v= 4 %(0) are the only saddle points.
At the saddle points we have

P(EV0)=FiJ1-6% ,

_ p2y32
g0 =710

As 61—, v(0) goes to + oo and we must expect difficulties to arise. Also,
when 6 =0 the saddle points coincide with the branch points and again we
might anticipate complications. We shall investigate these issues in subsequent
chapters but now insist that 0 < 6 < 1.

From Table 7.1 and (7.5.14) we obtain

(7.5.14)

Saddle Point Directions of Steepest Descent
50 _I3n
v6) 43
s n  3n
"0) -7

To obtain sufficient qualitative information about the paths of steepest descent
from the saddle points, we first note that for |v|> 1

b= —iv+ifv+0(|v|Y). (7.5.15)

Here the plus sign is taken when |v|— o outside of the branch cuts, while
the minus sign is taken when |v|— o in between the branch cuts.

Because |6l < 1, we have from (7.5.15) that, on a path of steepest descent,
Im(v)— — . Furthermore, the fact that Im(¢) is constant on paths of steepest
descent implies that Re(v) must remain finite on such paths. Finally, because
Re( + v(6)) = 0, we must have that Re(¢) <O on all descent paths away from
the saddle points.

From the information just obtained, we can conclude that the steepest
descent paths are qualitatively as shown in Figure 7.5.3. This diagram is
symmetric about the vertical, and although this information is not needed,
we note that the asymptote for D, is

Re(v) = /%}%, (1.5.16)
Re(v)= | }—;—g (7.5.17)

If vy is located as in Figure 7.5.3, then we have by Cauchy’s

while that for D, is
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r

w0 O\ N

-1 1 vy

Dy D3 D, D,

Figure 7.5.3. Paths of Descent #(8) > v,.

theorem

U(1:0) = —— _expidd0i0)} (7.5.18)

V.

4nbc L. —py+Ds-p. (v —v) (V2= 1)12

Alternatively, if |vo| > v(0), then a residue term must also be included. See
Figure 7.5.4. Indeed, we have

B explid:0)] .

U0 =35 Lo oo, G o O DT

exp{i2 [ve — 10— vo]}
2i be (v —1)!/2

, vo>¥6).  (7.5.19)

The leading terms of the saddle point contributions are readily obtained.
We need only apply (7.2.10) which yields

exp{—ii I—BZ—R—I}

1 exp{2¢(v;0)} . 4
75 0, v (02 J2mA2be(l — %) [(1 — 7)1 = vg]

4nbc
(1.5.20)

ex {i) 1-0%+ ﬂ}
1 exp{ip(v;0)} v~ P 4
4nbe L, o, (V=) 2= D)2 J2md 2be(1 — 03)VA[(1 = 63712 + v]

4nbc
(7.5.21)

Upon combining (7.5.18)—(7.5.21) we find that
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r

KO 0)~

—1 i Vo

Figure 7.5.4. Path of Integration Replacing I" When $(6) < v,.

1
UA;0)~
*:0) 2ibe\/2rA (1 — 6314

exp [—ii \/1—92—¥] exp[i/l 1—02+§§]
+

| -6y 7] [vo+(1—69 7] |
2 _ 1172
150500 g5
Vo
and
. T 1 2 1y1/2
U0~ SR =10 —vo]} ), (5-D (7.5.23)

2ibc (vi — 1)1/2 ’ Vo

Let us compare (7.5.22) with (7.5.23). We first note that the latter being 0(1)
as A— oo is a stronger signal than the former which is O(4~/2). The right side
of (7.5.23) is clearly a wave which oscillates at the source frequency v,. It is
the main signal, but is observed continuously only if we move at a sufficiently
slow speed. Indeed, we must remain in the region |x|<(vZ — 1)/ ct/v, to
“see” a sustained signal from the source. Outside of this region, we do not
observe the main signal but rather see the algebraically damped wave (7.5.22)
whenever ct > |x| > (v3 — 1)/ ct/v,. Because the region near the wave front
has been called the precursor region, we have that (7.5.22) represents the
asymptotic expansion to leading order of the precursor wave.

If 0 =(v§ — 1)"/*/vy, vo > 1, then the saddle point ¥(6) and the pole of the
integrand at v = v, coincide. This case is not covered by the above analysis
because the integrand is not regular on the steepest descent paths from v = v,,.
Nevertheless, with: minor modifications, the method' of steepest descents can
be applied. Indeed, we find that
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exp{i/Nl -+ %}
2beV27A [vy + (1 — 6 V2)(1 — 2

U(A;0) ~

exp(—iAVl — P} [ et (1 — 02)1/4] X
4+ - VI -6 —— -
4ibct g V2nd 0 » Vo=W0)
(7.5.24)

but shall leave the details of the derivation to the exercises.

We note that neither (7.5.22) nor (7.5.23) has (7.5.24) as its limit when
0 — (v3 — 1)2/v,. Indeed, in both cases | U| - o in this limit. A single expansion
which goes smoothly from (7.5.22) to (7.5.24) as 0 increases throughout the
range 0 <0 <1 is said to be uniformly valid as the saddle point v(8) passes
through the pole at v = v,. Such an expansion would be useful, in that it would
enable us to study the interaction of the precursor with the main signal. We
shall consider this situation in Chapter 9.

7.6. The Central Limit Theorem for Identically Distributed
Random Variables

Let X,, X,, ..., Xy be independent random variables having the common
probability density function f. We shall assume here that f (x) = 0(e 311,
6>0, |x| - o0, so that all moments of f exist. In particular, we have that the
mean y and the variance o2 of each X, are given by

u=§7_ xfx)dx and  o? =7 x*f(x)dx—u’,

respectively.

In Section 2.3, we introduced the characteristic function of a random variable
as the Fourier transform of its probability density function. Thus, the charac-
teristic function of each X is

p)=["_ e fl(x)dx. (7.6.1)

Let us now suppose that Y is a random variable with probability density
function g(x). Suppose further that

Z=aY +b, a,b constant, a > 0. (7.6.2)

If we denote the probability density function of Z by h(x), then we clearly
have

a

h(x) = %;;(x - ”)- (7.6.3)

Hence $(a), the characteristic function of Z, is related to ¢(«), the characteristic
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function of Y, in the following way:

= e §(aa). (7.6.4)
If we now set
N
Y= Zl X, (7.6.5)
and
Y- Nu
Z= ,
- \/N (7.6.6)
then we have
Pla) = e~ Ve (-2,
oyR (7.6.7)

But by the convolution theorem for Fourier transforms [see (2.3.13) and
(2.3.14)] it follows that [see 2313

)= [ ]" (1.6.8)

Plo) = e~V Fwre [¢<a\;‘*>]N (7.69)

qu objective is to study the limiting behavior, as N — oo, of the density
function h(x;N) of the standardized random variable Z defined by (7.6.5) and
(7.6.6). We have from (7.6.9) and the Fourier inversion formula that

1 {* ]
Wi N) =5 J_ _exp{—i NLE=E) [qs (ﬁ) ]N de.  (16.10)

and hence

If we introduce the quantities
o X

oJN’ ﬂ=ﬁ, (7.6.11)

then (7.6.10) becomes

N 00
h(x;N) = %ﬁC j_ _exp{N w(z:h)} dz. (7.6.12)
Here

wiz;f)=log ¢ —i(u+ p) z. (7.6.13)
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We note that the assumed decay of f guarantees that ¢(z) is analytic': in the
strip |Im(z)| < é. Also, it is readily seen that ¢(z) >0 as |z| > oo in this strip.
Hence, as |z|—» % in |Im(z)| <, Re(log ¢)— — oo, and therefore so does
Re(w).

We now want to apply the method of steepest descents to study (7.6.12) as
N — o with B < 1. This last restriction, of course, implies that |x|< \/N/o.
Before proceeding, we note that

o0)=1, ¢'0)=ipu,
" 0)=—(c*+p?), ¢"0)= —iu,, (7.6.14)

where 5 is the third moment of f. .
We seek the saddle points of w, which satisfy

w’(z;ﬁ)=%—i(ﬁ+u)=0. (7.6.15)
We also have
" ’ 2
w'(z;p)= q;((zz))_ [%] . (7.6.16)

Certain saddle points of w are clearly not admissible. To see why, we not.e
that, for z real, |¢| <1 and hence Re(w) <0. Therefore, the eptlre real axis
lies in the valley of w with respect to any saddle point at which Re(w)> 0.
Thus, such saddle points are inadmissible. Also, |¢| < 1 for z real and nonzero,
so that all points on the real axis lie in the valley of w with respect to thp origin.
The above discussion suggests that we should seek a saddle point near
z=0 and that, of the admissible saddle points, this will be the dominant one.
We cannot hope to obtain the saddle point near z = 0 precisely. How'ever3 by
taking advantage of the smallness of #, we can obtain a useful approximation.
From (7.6.14) we find that (7.6.15) takes the approximate form
: 2 0.2 + 2 22
iu—(e*+pdz— % +0() =B+ ) [1 +ipz — (—2“—)— +0(z3)] .
(7.6.17)

For small 8 we can solve (7.6.17) by iteration. Indeed, after two iterations, we
find that the desired saddle point z = z is given approximately by

;ﬂ ’f—j ’y+M+’;—?2—”—3)} +OB%).  (16.18)

We must now calculate w and w” at z=z,. From (7.6.14) and (7.6.16)

we have
" ’ 2
wizosh) = (S0 (ﬂ-ﬁggg) | (1 +om)

=~ {1+0p). (7.619)
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Hence the paths of steepest descent from z = z,, are approximately horizontal
and — w"(zy; ) is approximately the variance 6. The above discussion shows
that the deformation of the original contour of integration, namely the real
axis, onto paths of steepest descent through z = z,, is easily justified.

To find w(z, ; B) we first write

WziB) = wOsH) + WO:B)z + w00 540G, (7620)
We then use (7.6.13)—(7.6.16) to find
. 2 2
eoi)= =18 |~ r0um) - (1 +00)] [~ oup)
2
=-53 +0(83). (7.6.21)

Upon applying the steepest descent formula (7.2.10) to each of the two
steepest descent integrals we obtain

\/2_1r 20

In terms of the original variables x and N this becomes
Mx;N)~ L exp

e |- 3‘23 (1 +o(j—%)> } {1 + o(\‘;—%) +O(N~ 1)} - (7.6.23)

A random variable X having the probability density function

—_ 1 —-x%/2

h(x) N e ",
is said to be a normal random variable with mean zero and variance one. From
(7.6.23) we can conclude that Z defined by (7.6.5) and (7.6.6) approaches such a
random variable as N — co. More precisely, there is a region centered®about
zero, the mean of Z, whose width is o(y), y = N'/¢/g, and throughout which
the probability density function of Z approaches, as N — oo, that of a normal
random variable with mean zero and variance one. This result is known as
the central limit theorem of probability theory.

The central limit theorem can be established under conditions on f much
less restrictive than those assumed here. In particular the assumption that f
decreases exponentially as |x|— co can be replaced by the assumption that
the first three moments of f are finite. Furthermore, we need not insist that
the X’s are identically distributed. We have considered the special case above

because it most readily lends itself to analysis by the method of steepest
descents.

—W<Xx< 0,
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7.7. Exercises

7.1. Let w(z) = u(x,y) + i v(x,y) with ug=1u(xo,yo) and vy = v(xg,yo)-
(a) Use (7.1.9) to show that if z, = x, + i y, is a point of analyticity for w
and if (7.1.8) holds, then

n
w+vi=ul+0v3+ z—z‘,z— [uo cos(nd + a) + v, sin(n + )] +0(p"* 1),

p—o0+.  (171)

Here, z — z, = pe'®.

(b) Use the result in (a) to prove the maximum modulus theorem: If z, is an
interior point of the domain of analyticity of w, then |w(z)| cannot attain a
local maximum there unless w(z) is identically a constant.

7.2. Letw(z)=z%/4 —z.

(a) Find the saddle points of w(z) and fill out Table 7.1 for each of
them.

(b) Find the “valleys at infinity” for w(z), that is, the regions at co in which
exp{4 w(z)} decays exponentially to zero.

(c) Draw approximate paths of steepest descent of w from the saddle
points.

7.3. Repeat Exercise 7.2 for the function w= — z7/7+ 2 2° — 2> + z —1z:

(a) t>1.
b)0<t<1.
(c) t<O.
d) t=0.
(e)t=1.

7.4. Repeat Exercise 7.2 for the function

22

w=—"5— ez, (71.1.2)

7.5. Consider w as given by (7.7.2).
(a) For each of the following choices of 6, show that the path of steepest
descent from the origin is a segment of a hyperbola:

@ 6=0,x.

(i) 0= +6,, 0<00<z—‘-

(iii) 0=+ 7"
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(iv) 0= +8,, 4E<90<¥.
") 6=+T
(vi) 6= +6,, ¥<90<-‘:‘_ﬂ.

(b) What is the significance of the angles § = + 7/2?

(c) Discuss the family of descent paths for each choice of 0 in (a).

(d) Show that for n/4 <6, < 3n/4, there are descent paths from the origin
which end at + oo and descent paths which end at — oo,

(e) Suppose that e® = i. Suppose further that in (7.1.1) g(z) has an algebraic
branch point at z=0 with the branch cut being the positive real axis. Then
show that the contour C of Figure 7.7.1 can be deformed onto the contour D,
consisting of a circle around the origin and descent contours. In Figure 7.7.1,
the dashed segments of D depict paths on the next lower sheet of the Riemann
surface of g(z).

, 7(2 ) Show that C is also equivalent to the set of contours in Figure

(g) Corresponding to the two deformations of contour depicted in Figures
7.7.1 and 7.7.2 are two distinct asymptotic expansions of the underlying
integral (7.1.1). Explain how this can be possible.

Figure 7.7.1.

Figure 7.7.2.
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7.6. Draw a diagram such as Figure 7.1.5 for each of the following
functions:

(a) w(z)=z>.
2

(b) w(z)=z— —22—

(c) w(z)=cosh z.

7.7. Use the method of steepest descents to calculate the asymptotic expan-
sion of the following integrals as A— . In each case the contour C is an
infinite straight line parallel to but above the real axis. Also in parts (a) through
(d) compute an expansion correct to 0(A~ 1/2) while in parts (€) and (f) compute
the leading term only.

(e) L sin Az exp %j} dz.
(H) fc exp{il [Z—; + cos z] } dz.

7.8. Let w(z)=1i[zcos 8+ ./1—2?sin8]. Here the square root is taken
to be positive for — 1 < Re(z) <1 and the branch cuts are taken from +1 to
+ (1 + i ©), respectively.

(a) Show that for 0 <@ < n/2, the location of the saddle point and the
paths of steepest descent from it are as depicted in Figure 7.7.3.

(b) Show that for n/2 <0 <, the location of the saddle point and the
steepest descent paths from it are as depicted in Figure 7.7.4.

(c) Discuss the case 0 =n/2.
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m2+0

72 -6
-1 |
cos 6 W sec §
Figure 7.73. 0<8<n/2.
79. Let
I2) = | . (z — 2,)" g(2) exp{Aw(2)} dz. (7.7.3)

Here g(z) and w(z) are analytic near z = z, and w(zo) # 0. For v not an integer,
we suppose that the branch cut for (z — z,)" from z, to o is a descent path for

w(z). _Finally, let C be a “loop” contour counterclockwise about the branch
cut with endpoints at .
(a) Show that if

w(zo) = — |w(zo)| e, (1.7.4)

then the direction of steepest descent at z = z, is arg(z —zo)=6.
(b) Show that the change of variable of integration

—t=w(z) — w(z,) (7.7.5)
leads to the integral

I(4) = exp{A w(zo)} [ t* G(t) e ™ dt, (7.7.6)
where

6() = (2'—,"’) o0

is an analytic function in some neighborhood of ¢t = 0.
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sec @ Acos [/
—7/4 1
0 —mf2

2-6
Figure 7.74. m/2<6<m.
(c) Assume
GO= 2 " (1.1.7)
near t = 0. Apply Exercise 4.8 to show that
2 — (2mi)c,, €MV
I(A) ~ exp{4 w(zo)} mzo om0 A— 0. (1.1.8)
Note that this result holds even when v is an integer.
(d) Show that in (7.7.8)
g(zo) ei(v+ 1)8 (7 7 9)
Co= T 3 vF1 -l
0 lw (zo)l +1
7.10. (a) Find an asymptotic expansion, as A — oo, of the integral
2
I(4,6;r)= J z " texp {— A [% + e z] } dz (7.7.10)
c

in the case 8 = 0. Here C is the 0+ contour of Figure 7.7.1.

(b) Show that the result obtained in part (a) is valid for |6]< 3n/4.
[Caution: Different arguments are required for the ranges || <m/2 and
0] = =/2.]

e
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(c) The Weber function D () is given by

T 1 2

25;:,!2)cxp [—-%+ rni] I(1,0;r)
with I defined by (7.7.10), r not a negative integer, and ¢ =",
Show that

D)= (7.7.11)

2

D)~ { exp ‘—%}, 1] - o, |arg(¢)|<§45 (1.7.12)

(d) Show that

DAL ~ _% exp {%2 + mi} [1+034"3]

2
+{" exp {—%}[1 +0(¢]731,  [¢]- oo, %<arg({)<%".
(7.7.13)

[Hint: Deform the contour of integration as described in Exercise 7.5.]

(e) Explain how both results (7.7.12) and (7.7.13) can be valid for
n/4 < arg({) < 3n/4.

(f) Formally apply L’Hospital’s rule to the representation (7.7.11) to
obtain the result

N
D_ (0= —I“(n)4_ J.: 2" !exp :— [%+ Cz] } dz,

(g) Derive an asymptotic expansion of the integral (7.7.14) and show that the
result agrees with (7.7.12) for r = — n.

n=1,2,.... (17.14)

7.11. Let
w . T2
)= j exp{iA[z cos 6+./1 — 2% sin ]} dz_ (7.7.15)
-® (z—cosa) /1 —22
Here the contour of integration passes above the branch point z = — 1, below

the branch point z =1, and above the pole z = cos a. Furthermore, /1 — 22
is defined to be positive for —1 < Re(z) < 1 and sin 6 = 0.
(a) Show that for.cos 8 > cos «

57 SXP {il —1—475}
I(2) ~ /:——— [1+0(27H].

A cos 8 — cos o (7.7.16)
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(b) Show that for cos 8 < cos o and sin & > 0

L _in }
2mi explid cos(0—a)} . [2x P {’ 4 _
1)~ - = exp{lsin o * 1 cos @ —cos a [1+0@7H]. (7.7.17)
7.2, Let
1) = L z—g_(z—;o exp{A w(z)} dz. (7.7.18)

Here g(z) and w(z) are analytic near z = z, and the contour C, w(z) has a simple
saddle point at z = z,, and C passes from one valley of w with respect to z,
to another, avoiding z, in a counterclockwise manner.

(a) Introduce a new variable of integration ¢ by the equation

w(z) — w(zg) = —t
and then use the result of Exercise 4.8 to show that
I(3) ~ i glzo) exp{A w(zo)} [1 — 03~ 113)], (1.7.19)

that is, the leading term of the asymptotic expansion is given by the “half-
residue” corresponding to the pole. _
(b) Show that if C avoids z, in a clockwise manner, then the result is the
negative of (7.7.18).
(c) In Exercise 7.11, show that
_ mi exp(id)

IA)~ “ena sin 8 =sina > 0. (7.7.20)
sin

(d) For the integral (7.5.8) show that when 8 = (v — 1)!//v,,
i exp{—iivg!}

U(4;6) ~ b (R — )2 (7.721)

7.13. Let
I(A) = [¢ (z — 2o)P g(2) exp[ A w(z) ] dz. (1.7.22)

Here w(z) and g(z) are analytic near z, and C, while w(z) has a saddle point at
z =z, with w”(zo) = ae’®, a > 0. The contour C passes from one valley pf w(z)
with respect to z, to another, avoiding z, in a clockwise manner and 'dlI'CCth
into the valley containing the direction of steepest descent given by
arg(z — zo) = m/2 — /2. Also (z — zo)? is defined on C by its principal value.
Then show that

PPl LI B+ 1
I(2) ~ g(zp)e™= [ Ta ] cos—-e /2 T [—2— (7.7.23)
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[Hint: Introduce t as a new variable of integration as in Exercise 7.12(a)
and reduce I(4) to a loop integral to which Exercise 4.8 can be applied.]

7.14. Let )
I(A)=j e T4z, (1.7.24)
C

where g(z) is analytic in a domain containing the origin and the contour C.

(a) Let C be the contour C, of Figure 2.5. Obtain the asymptotic expansion
of I as A— . [Hint: Introduce the new variable of integration ¢ defined by
113 @23 = 7]

(b) Repeat part (a) with C the contour C, in Figure 2.5. [Hint: Here set
13 =7z]

(¢) Repeat part (a) with C being the contour C; in Figure 2.5. [Hint: Here
set 113 ™3 = 7]

(d) Let C be a contour from oo e*™ to oo which avoids the origin in a coun-
terclockwise manner. Obtain the asymptotic expansion of I(1).

{e) Let C be the contour 0+ and again obtain the asymptotic expansion
of I(4).

7.15. Let I(A) be given by (7.7.18). Suppose that g(z) and w(z) are analytic
in a domain including the point z=z, and the contour of integration C.
Further, suppose that w(z) has a saddle point of order n — 1 at z = z, and that
C passes from one valley of w with respect to z, to any other. Derive the leading
term of the asymptotic expansion of I in this case.

7.16. Let I(1) be given by (7.7.3). Suppose that w, g, and C are as in Exercise
7.15. Find the leading term of the asymptotic expansion of I in this case.

7.17. The Sommerfeld representation for the Bessel function J (4) is given by

I =55 | explizwizip)} dz,

w(z;p) =i [cos z+p (Z - g) ], b=+ (7.7.25)

Here C, is the contour shown in Figure 7.7.5.
(a) By comparing (7.7.25) with (7.2.22) and C, with the contours C, and C,
of Figure 7.2.1, show that
JA)=3[HP D +HP D]
(b) Use the method of steepest descents to show that
exp {— v cosh™! £+ NI 12}
J (A~ , A, vo 0, v> 4.
ﬁ?r (v2 _ 12)1;4

(1.7.26)
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G
—nf2 0 w2 n 372
Figure 7.7.5.
(c) Show that this result can be rewritten as
1 eV E
J(A) ~ ,  Ayvoowo, v>i (112D

\/E:(vl—ﬁ)“‘*(v /T )

(d) From (c), deduce that for fixed 4,
1 fedY
~—— = . 7.7.2
J,(A) o <2v> , V- 00 (7.7.28)

7.18. (a) Calculate the leading term of the asymptotic expansion of J(v) as
Vv 0.

(b) Calculate the leading term of the asymptotic expansion of J A,
v, A= 00,v<Ai.

7.19. Let
SGid) =S T e, (1729
n=0

(a) Show that the series converges. [Hint: Use (7.7.28).]
(b) Show that

o) ing
S(A;¢) = "Zo eZ—n L exp {a cos z+ in<z - g) }dz. (7.7.30)

Here C, is the contour shown in Figure 7.7.5.
(c) Show that because Im(z) = y, > 0 on C;, the summation and integration
processes can be interchanged in (7.7.30) and obtain

S(i¢) = L _explilcosz} (1.131)

2n Je,1 — eild +(z—/2)]
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(d) Verify that, as 1 - o,

SGig)~ i) = SRLEATIA - n ) 3 g

J2r0 (1 £ ie')

(e) Verify that,as A — o,
S(;4) ~ exp(id sin ¢} +S,(1:0),  |¢] <3
(f) Verify that, as A — oo,

S(i: T ~ 5 exp{id).

7.20. Define
( — tZ n
S(t) = 'Zo ol (2n))!' (7.7.33)
(a) Show that
e
1 exp{z -7 }dz
S(t) = 3mi § — (7.7.34)

where the contour of integration is any circle about the origin.
(b) Show that

S() = 5 fﬁ exp{/l [z _ ziz] }dz 1=, (7.1.35)

2ri z ’
(c) Use the method of steepest descents to show that

3/2 423

S(t) ~ exp{2™%2 3t**} sin (3—2?3~+ g) (7.7.36)

21/3
'3 [3n

7.21. Consider the differential equation

-4
Tdt
(a) Show that seven solutions to (7.7.37) are given by

(D* =P u+i5tu=0, D (1.7.37)

;
“":LCXP{—1[%—%zs+z3—z+z2]}dz, j=1,..,7, (13.38)

with contours I'; as shown in Figure 7.7.6.
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Figure 7.7.6.

(b) Using the results of Exercise 7.3 calculate the asymptotic expansion to
leading order of u, for ¢ =8.

(c) Repeat (b) fort=4.

(d) Repeat (b) for t = — 8.

(e) Repeat (b)fort=0.

(f) Repeat (b)fort=1.

7.22. Let

Lw) = j exp {— ot =i S e e, (7.7.39)
]

(@) If 1 <vand a > 0, then introduce the new variable of integration
t=t VD (7.7.40)
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and show that

—nf(v—1) -
I(w)~ v2_7ll o w™# exp {— (%) +iZ ” ! @"= Do 1 — in/4}.
Here (7.7.41)
_v2+r—1 _r—12
B= =1 ST (7.7.42)

(b) Show that I (w)—0 as w— oo if either of the following conditions are
true

@i 0<r, v>2;

(i) 0<r, 1<v<2, r>1—§-

(c) Show that I (w)—»0asw— 0 ifa<0,r>0.

7.23. Let
I(@) = { f(¢) expiot} dt. (7.7.43)
Suppose that f(t) is locally integrable and
f@O~exp{—iat’} 3 Cnt™'-, t—ooo, (1.7.44)
m=0
with Re(r,,) t . Set f(t) = s(t) + g(t) where
s(t) =exp{ — t~2 —iat"} ; C,t " (7.7.45)
Re(r, ) <1

and
g(t) = £ (1) — s(t).
(a) Show that g(t) is absolutely integrable on [0, ).
(b) Use the Riemann-Lebesgue lemma and Exercise 7.22 to show that

I(w)—0 as w— oo whenever the conditions of either 7.22(b) or 7.22(c) are
satisfied. In these conditions Re(r,) =r.

7.24. Let

L@ =[exp{ =t ** DV yior'} ™" dt, z=x+iy, x<r. (1.746)

(a) Show that I;(z) can be analytically continued to the entire z plane as a
holomorphic function by deforming the contour of integration in an appro-
priate way.

(b) Introduce the new variable of integration t defined by

t=|y| e (1.7.47)
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and use the method of steepest descent to show that as |y] - o,

o(ly|= 7Y,  sgn(w)= —sgn(y),

I=
o(ly|~™), any N,  sgn(w)=sgn(y). (7.7.48)
7.25. Let
MLf;2]=[0f0O ¢ dt,  z=x+iy. (7.7.49)
Suppose that
f(t) ~ expliwt*} Z C,t™ ™, t— o0,
m=0
) =0¢), t-0+, —c<Relr). (1.7.50)
Introduce
slt)=explior’ — =%} 2 Cut (1.1.51)
Re(r,) S Re(rp) +k
and

fi=f =5 (1.7.52)

(a) Show that M[ f,;z] is analytic for — ¢ < x <Re(ro) + kand M Lfi;z]-0
as |y|— o in this strip.
{(b) Use Exercise 7.24 to show that

(i) M[s.;z] can be analytically continued to the entire z plane as a
holomorphic function and

(i) M[s.;z] = 0(|y|lx ~Relrol/v=1),

7.26. (a) Show that the line connecting z, and z_ in Figure 7.3.1 is a path
of ascent with respect to z_ for 0 < 8 < m/3, a boundary for 6 = n/3, and a path
of descent with respect to z_ for n/3 <0 < x.

(b) For /3 < 8 <, justify deforming the contour C in Figure 7.3.1 onto a
sum of descent contours from z_ and from z. .
(c) Show that (7.3.17) is actually valid for n/3 <f<mn if we replace |s| by

(d) Show that, with |s| replaced by se'", (7.3.17) is valid for n/3 < 6 < 5n/3.

se

7.27. Let
12) = [ WA w(2)) g(z) dz. (7.1.53)
Here I is a path of steepest descent from z, to oo for k(4 w(z)) and
w(zg) = wi(zg) = =w" D (z0)=0, w"(z)=ae*#0. (7.7.54)
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(a) Let
t =w(z). (7.7.55)
If T is an image of the ray of descent,

argt=4 (7.7.56)
in the t plane. Then show that locally

n ) tin ,—ia/n 1/
z—ze=\,) t'"e [1+0(t|*™] (7.7.57)
and the direction of I at z, must be of the form
_B-a 2mp
arg(z — zo) = ——+ =~ (7.7.58)
for some fixed integer p,0<p<n-—1.
(b) Let
t=se® (1.7.59)
and
hg(4s) = h(Ase'®). (7.7.60)
Then show that
12)= [ hy(4s) G(s) ds, (7.7.61)
where
dz
G(s) = g(z(s)) 75~ (7.7.62)
() If
Gs)~ D pms, 50+, (1.7.63)
m=0
with Re r,, 1+ + oo, show that
I3~ Y. pnd™™ "' M[hg;r, +1]. (7.7.64)
m=0
(d) If
9(2) =golz — zo)" ' + 0|z = 25|77 ) (7.7.65)
in some sector containing the descent direction at z,, then show that
go (i Y\ inB — a+2np) ¥
Iy ~= (g) eXP{———n } M [hp;;]- (7.7.66)
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(e) Specialize these results to the case
h(it)=¢ (7.7.67)

and show that (7.7.66) agrees with (7.2.9).
(f) Suppose that I' is a boundary contour between two hills. Show that the

above results hold and are derived in exactly the same way.

7.28. (a) Show that the results for the Airy function Ai(t) in Section 7.3 can
be summarized as shown in Figure 7.7.7. [The point t = — 4 and the capital
letters are related to part (b).]
(b) For the function
2

AiAw(z));  w2)= % —z, (1.7.68)

show that the hills and valleys of the exponent with respect to its zeros are
as shown in Figure 7.7.8. Here z=0 and z=2 are the points where w =0
and z =1 is the saddle point. [Hint: Find the images of the relevant contours
and points of Figure 7.7.8 under the mapping ¢ = w(z); verify that t = — 3 is
the preimage of the saddle point.]

C B
£,
fg.% Hill
G ~°‘9
\ &
% o
Hill Valley
0=x3
Boundary D, \ Steepest descent
D t= _.% A

Hill Valley

w o Ny

Figure 7.7.7.
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D

Arepunog
St
®CPes, "

D’
z=]

Steepest descent
z2=2

A A

Arepunog

Hill

Figure 7.7.8.

7.29. Let
A= . AiA w(2)) g(2) dz. (7.7.69)

Here w(z) is as defined in (7.7.68) above; g(z) is assumed to be analytic when-
ever necessary to perform the deformations of contour required below. With
the contours described in Figure 7.7.9 show that

(a) I(2;By) ~ A~ g(1) sin [%@)3/2]}+ % @- (1.7.70)
(b) 1(2;D,) ~ %- (1.1.71)
© I(4;B,) ~ —'lglﬂ)cosg@m} : (1.1.72)
() I(3;D5) ~ zgf/z;:)li’ff{[jz'i’)l]':ff ‘223/_2 }1)- (1.7.73)
() I(2;B,) ~—1(4;Dy). (7.7.74)
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(f) Find the leading term of the asymptotic expansion of the integral from
Z, 10 {00,

(9) Find the leading term of the asymptotic expansion of the integral from
Z3t0 — .

z;, &
Z,
Dy Dy B
Ds
Dy 0 By 1 2
Figure 7.7.9.
A}
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Asymptotic Expansion
of Multiple Integrals

8.1. Introduction

A natural extension to the problems treated in Chapters 4 through 6 would
be to consider the asymptotic behavior of functions defined by multiple integrals
of the form

I(l)=,“g h(j'(»(x)) g(x) dx3 x=(x1,x2,...,x,,), (811)

Here 9 is some (not necessarily bounded) domain in in-dimensional x space.

Unfortunately, the techniques developed for the one-dimensional analog of
(8.1.1) cannot be directly extended to the general multidimensional case.
There is a class of multidimensional integrals, however, for which we can
develop an asymptotic theory. Indeed, throughout the remainder of the chapter,
we shall assume that the kernel function h(f)=exp(t) and hence we shall
restrict our consideration to the study of integrals of the form

I(A) = [, exp{Ap(x)} g(x) dx. (8.1.2)

We shall further assume that ¢ is real, and 4 is either real, in which event I(4)
is said to be of Laplace type, or purely imaginary, in which event I(1) is said
to be of Fourier type. Although we could consider (8.1.2) in each of the limits
|A]> o and |4]|—0, we shall only investigate the former here because it is
of greater interest both mathematically and physically.

There are many problems of mathematical physics in which integrals of the

321
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form (8.1.2) arise. Of special interest are those of electromagnetic theory which
involve the diffraction or scattering of radiation by obstacles. Indeed, in
Section 2.7 we formulated such a problem. There we considered only the
scalar or “acoustic” case, but we could treat the vector case as well.

8.2. Asymptotic Expansion of Double Integrals of Laplace Type

Here we shall consider the behavior, as 4— oo, of functions I(4) defined
by integrals of the form

1) =, exp{Ap(x)} go(x) dx, X =(x1,X3). 8.2.1)

For ease of discussion we shall assume that the domain 2 is finite, simply
connected, and bounded by a smooth curve I'. More precisely, if " is para-
metrized by the relations

x; = x4(8), X, = X5(5), 0<s<L, 8.2.2)

where s is arc-length, then both x,(s) and x,(s) are to be continuously differenti-
able on [0,L]. In addition, we suppose that, as s increases, I' is described in a
counterclockwise sense. With regard to the functions ¢(x) and go(x) we assume
both are sufficiently differentiable for the operations below.

As we have indicated, our objective is to study I(4) as 1— oco. From our
analysis of one-dimensional integrals of Laplace type, we might anticipate
that the results here will depend heavily on the behavior of ¢. In particular,
it is reasonable to expect that the critical points for (%) are those points in 2,
the closure of 2, at which ¢ achieves its absolute maximum. As we shall show,
this is indeed the case.

Let us first suppose that ¢ # 0in 2. This of course implies that the absolute
maximum of ¢ in 2 must occur on the boundary I'. For simplicity we assume
that the point at which this occurs is unique and we label it xo = (X;0,X20)-
We have that the first directional derivative of ¢ in the direction of T, the
unit tangent vector to I', must vanish at x = X,. If we let s =0 correspond to
X = X,, so that

x4(0) = X0 x5(0) = x50, 8.2.3)
then
Vo Tio0 = bx, (X0) X,(0) + 65, (x0) X2(0)=0,  ()=7 (824
It follows from (8.2.4) that y¢ is normal to I' at X = Xo. If we introduce
N(s) = (x,(s), — x4(5)), (8.2.5)

the unit outward normal vector to I, then we find that
Vé(xo) = |V(xo)| N(O). (8.26)
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Actpally we can only conclude from (8.2.4) that V¢(x,) is either parallel or
antlparallel to N(0). That (8.2.6) is correct follows from the fact that the absolute
maximum of ¢ in @ occurs at x =X, which, in turn, implies that v¢ must
point out from 2 at that point.

. In t.he treatment of one-dimensional integrals of Laplace type we found that
if ¢’ is nonzero throughout the domain of integration, then the asymptotic
expansion can be generated via integration by parts. The same is true here

except now the analog of integration by parts is the divergence theorem of
vector calculus.

We begin by introducing the vector

Vo
H,= .
0=9o Wz (8.2.7)
Because
¢ _ e“ 1
€ go=—=V Ho + -V (H, ') (82.8)
we have by the divergence theorem
1 1
2=~ 3% e* Hy-Nds— ;—Jg e* g, dx. (8.2.9)
Here we have set
g, =V H,. (8.2.10)

We claim that, to leading order, our problem has been reduced to the study
of the boundary integral in (8.2.9) which, of course, is one-dimensional and of
'Laplace type. Indeed the area integral in (8.2.9) is of the same form as I(4)
itself .arlnd has the multiplicative factor A~!. Hence it is reasonable to expect
that it is of lower order than I(4) and that the leading term in the expansion

comes from the boundary integral. We shall elaborate on this point below.
Let us now consider

1
J(l)=2§ e Hy*Nds 8.2.11)
r
to which we can apply the theory developed in Chapter 5. Indeed, if we set

Y(s) = $(x(s)), (8.2.12)

then it follows by Laplace’s formula (5.1.21), with ¢ in that formula set equal
to — i(s), that

2n
A2[Y0)]

Here we have assumed that the maximum of at s=0 is si
that y(0) <0. ¥ is simple so

J() ~ &0

(Ho*N) (8.2.13)

s=0
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Upon applying the divergence theorem to

L=1 j@ Mg, dx (82.14)
we obtain
I (1)=i§ Y H,'N ds—iJ. e* g, dx. (8.2.15)
1 Az r 1 ,12 9
Here
H,=g, -I—'% and  g,=V-H,. (82.16)

Laplace’s method can be applied to the boundary integral in (8.2.15) and the
area integral can be easily estimated. Indeed we find that

1

770 & H,Nds=0(e 17%7), (8.2.17)
g
2—12 j &M g, dx =0(eM 1=2) 1 (8.2.18)
2

It therefore follows that I, =0(e**** A~2) and hence I(4) ~ J(1). Thus from
(8.2.13) we find that

2n
22 |§(0)|

We of course wish to express (8.2.19) in terms of the original functions ¢
and g,. From (8.2.6) and (8.2.7) we have

1(A) ~ e (8.2.19)

(Hy'N)

s=0

9olXo) (8.2.20)

HoN)| = Wemo)]

Also
i0=4ve|_T0+v000 ()],
= B, (%0) H0)+2 s, () 51(0) 5,0)
+ e, x (Xo) X3(0) + k(0) V $(x,) n(0). (8.2.21)

Here «(0) is the curvature of I at x = X, and n(0) is the principal normal vector

! Actually the estimate (8.2.18) is extremely crude. It is, however, sufficient for our present
purposes.
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to I' at that point. Because n(0) = F N(0) according to whether I' is convex or
concave at X = X4, we have

¥(0) = ¢,.,,, (Xo) X3(0) + 2 ¢, (Xo) X,(0) %,(0)
+ By, (X0) X3(0) F K(0) |V p(x0)]. (82.22)
Clearly the minus (plus) sign holds when I is convex (concave) at x = X,.
We can further reduce our expression for Y(0) by noting that (8.2.6)
implies
- ¢x3 (XO) . d’x, (xO)
2 %(0) =
|V é(xo)] v ¢(xo)]
Upon combining (8.2.19), (8.2.20), (8.2.22), and (8.2.23) we finally obtain

x,(0) = (8.2.23)

1) ~ exp{i9(xo)} ga(xo) /%

X [|frx, 92 —2¢sis, s, s, + bsye, 92 F|VO|?|1122. (8229)

If g, and ¢ are both infinitely differentiable in 2, then the above process
can be repeated indefinitely and an infinite expansion can be obtained. In this
section, however, we shall be content with obtaining leading terms only,
while in the following section, where Laplace integrals of higher dimension
are considered, further terms will be found.

We now consider I(1) in the case where the absolute maximum of ¢ in 2
occurs only at the interior point x,=(X;q,X;0). In particular we assume
that

V¢(X0) = 0’ d)x,x, (XO) ¢x,x, (XO) - ilx, (XO) > 0’ ¢x,x, (XO) < 0 (8225)

and that V¢ is nonzero at all other points of 2. If, in a given problem, this last
restriction is not satisfied, then 2 can always be subdivided into regions so
that, in each, V¢ vanishes at only one point.

Because we anticipate that x = X, is the dominant critical point, we must
be concerned with the local behavior of ¢ near this point. By Taylor’s
theorem we have

_ 2
D(x) = d(Xo) + Py s, (Xo)('———‘—‘x‘ zxm) + @z, (Xo) (X1 — X10} (X3 = X30)
+ b, (w(o)(fi%"’)2 NI (8.2.26)

Our method of analysis involves the reduction of I(1) to an integral of
canonical form in which the exponent ¢ is replaced by a quadratic function.
Once this is accomplished, the asymptotic expansion, at least to leading order,
is readily obtained as we shall show.
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It is well known from linear algebra theory that there exists an orthogonal?
matrix Q which diagonalizes the symmetric matrix

A= (e, (X0)), B, j=1,2. (8.2.27)
Indeed
A4 0
QT4Q = , (8.2.28)
0 A,

where 4, and 1, are the eigenvalues of A. These eigenvalues are both negative
and are such that

Ay Ay =det A=, , (Xo) by, (Xo) — %, (Xo)- (8.2.29)

Let us introduce the vector z=(z,,z,) and the function f(z)
defined by

| ,11 l —-1/2 0
(x—xo)"=QRz", R= y @)= 0(x0) — d(x(z)).
0 l 12 | -1/2
(8.2.30)
We note that x = x,, corresponds to z =0 and that nearz =0,
f@)~5@t+23). (8.2.31)
We now seek a second change of variables so that this local behavior will

hold in the large. B
We can readily show that because V¢ vanishes in & only at x = x,, there
exist functions

¢ =h{z), i=1,2 (8.2.32)
such that
e =hi+M=2f@, §=(¢) (8.2.33)
and '
h;=z;+ o(|z}), i=1,2, (8.2.34)

as |z| » 0. If we denote by D the image of 2 under the two transformations
(8.2.30) and (8.2.32), then we further have that the Jacobian

0x;
det (az)

of the composite transformation is nonzero and finite for & in D. In other

J(§) = (8.2.35)

2An orthogonal matrix Q=(g;) is such that I g; qu =8y, j, k=1, 2. Here d; is the
Kronecker delta. We note that Q! = Q7.
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words, the mapping from 2 to D is one-to-one. We also note that
JO0) = (A1 22) 712 = (¢, (Xo) By, (Xo) = D1 5, (x0)) ™2 (8.2.36)

Although only the existence of the functions 4, and h, is needed for the actual
determination of the asymptotic expansion, it is instructive to indicate their
construction. Thus let us introduce the “polar” coordinates consisting of the
“radial” variable

p? = f(2) 8.2.37)
and the “‘angular” variable 6 defined by

V,p:V.0

—f"m— =0. (8.2.38)

From (8.2.38) we see that 6(z) is constant along a “‘ray” or orthogonal trajectory
of f. That constant, moreover, is determined by

. V.S
lim
20 | sz |

where the limit is taken along a fixed orthogonal trajectory. We
now set

=(cos 6, sin 0), (8.2.39)

Ey=h =\2pcos®, ¢,=h,=,/2psinb (8.2.40)

and clearly (8.2.34) is satisfied. That the Jacobian J(§) has the stated properties
follows from the simple geometrical fact that the level curves of ¢ and their
orthogonal trajectories form a simple covering of & — x,. This in turn relies
on the fact that V¢ # 0 in 2 — x,.

In terms of the new variables &, , &,, the integral I(1) becomes

1(3) = exp{A¢(xo) } K(), (8.2.41)
where
K)=[ Gaoreww (-4 e.¢) az. 6242
Here
Go(§) = J(§) go(x(3)). (8.2.43)

Our problem now is to obtain an asymptotic expansion of K(4). This integral
is significantly simpler than (8.2.1) due to the simple nature of the exponent
in (8.2.42). As the first step we set

Go(§) = Go(0) + §-Ho(§),  Ho=(Ho,, Hoy). (8.2.44)

Clearly H, is not uniquely determined by (8.2.44). Our results however will
be independent of the particular H, chosen as long as it is well behaved through-
out D. We can select, for example,



328 |/ CHAPIER 8 Asymptotic Expansion of Multiple Integrais

Ho, =clT [GolE1. &2) — Gol0, &5)],

Hy, = flz [Go(0, &;) — G40, 0)], (8.2.45)

which we note are well behaved, even at the origin, as long as G, is differentiable
with respect to both of its arguments there.

Perhaps it is worthwhile to motivate the representation (8.2.44). We anticipate
that the only critical point for K(4) is the origin £ = 0. Because ¢ -H,, vanishes
at §{ =0, we might expect that the contribution corresponding to Gy(0) will
dominate that corresponding to ¢-H,. Of course this will only be so if G,(0) is
not zero which we shall assume.

To establish the validity of the preceding remark we first note that

St ey = 5[V (oo -5 e4]) - (Voo )]
(8.2.46)

exp

so that by the divergence theorem we have
_ Aol g1 R de.
K()=Gol0) [, exp {— Leeg)ae fﬁr (HoN) exp {— 5¢ :} ds

4l f., 6,(®) exp {_ 2 g.g} ic. (8.2.47)

Here N is the unit outward normal to f‘, the boundary of D, and
G, =V-H,. (8.2.48)
Because £ #0 on IA“, the boundary integral in (8.2.47) is exponentially small
as 1 . Also due to the factor 17!, the integral involving G, is dominated
by
A
K,4(3) = G4(0) jb exp {— 5 e-c} de. (8.2.49)
We now prove the following.
LEMMA 8.2.1. If¢ =0 is an interior point of D, then, as A— oo,
k()= L exp {—121 c-c} de = 2/1—" +o(A™™) (8.2.50)
for any m.
PROOF. Let R, be the radius of a circular disk C,, centered at § =0 and

contained in D. Let R, be the radius of a circular disk C,, centered at { =0
and containing D. (See Figure 8.2.1.) Then clearly
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Figure 8.2.1.

A A
f exp {—5 z:-z:} &<K@S [ exp {— 5 g-:} . (8251)
C, G,
Simple calculations yield
2 A 5 2 A
7{—‘- (1 —exp {—5 Rf}) <K@ < 7" Q —exp {— 5 Rg:) , (82.52)
which proves the lemma if we simply let 1 — .
It now follows from (8.2.41), (8.2.47), and the above lemma that
2
1) ~ Tﬂ Gol0) exp{Ad(x,)}. (8.2.53)
But, as is easily seen from (8.2.36) and (8.2.43)
1 golXo)
<) = (8.2.54)
TT ) S (G 00 o, 60) — B, GO

so that we finally have

Go(0) =

2n go(Xo) exp{id(xo) } .
A (¢x,x, (XO) ¢x,x, (xo) - ¢;2:|x, (XO))U7

From this last result we see that the asymptotic expansion of I, at least to
leading order, is indeed independent of the selection of the functions hy, h,,
and Hj,. Of course we must have (8.2.34) and (8.2.44) satisfied and H, must be
well behaved throughout D. We might then argue that the above procedure
is not necessary and could be avoided. This is in fact true, there being several
distinct methods for arriving at (8.2.55). The advantages of our procedure
will not be apparent until the following section where infinite expansions are

I(4) ~ (8.2.55)



330 |/ CHAPTER 8 Asymptotic Expansion of Multiple Integrals

obtained. There we shall find that the method we have described yields a
concise representation of the complete asymptotic expansion of I. It appears,
moreover, that the other methods we have alluded to can recover
this representation only with some difficulty.

From (8.2.55) we see that when the absolute maximum of ¢ occurs at X = X,
an interior point of 2,

exp{ — A¢(xo) } I(2) =0(A™"), (8.2.56)

as A— co. This is to be compared with the previous result which showed that
when the absolute maximum of ¢ occurs at the boundary point x = x, and

V¢(X0) % 0’
exp{ — Ad(xo) } I(2) =0(A~1), (8.2.57)

as A— .

It still remains to consider the case where absolute maximum occurs at the
boundary point x =x, with V¢(x,) =0. We shall still assume that (8.2.25)
holds so that the analysis for this case proceeds precisely as that for an interior
maximum, through Equation (8.2.47). Now, however, & = 0 lies on the boundary
of D and hence Lemma 8.2.1 does not apply. Furthermore, we can no longer
conclude that, as A— o, the boundary integral in (8.2.47) is exponentially
smaller than the area integrals.

To handle this case, we now prove the following.

LEMMA 82.2. Let K(A) be defined by (8.2.50) and suppose that & =0 lies
on the boundary of D. Then, as 1 — o,

K(A)~ % (8.2.58)
PROOF. There is no loss of generality in assuming that the tangent to r

at & =0 is horizontal. We let C, and C, be respectively the circular disk of
radius a and the semicircular region of radius R, depicted in Figure 8.2.2. %

C1
Ry

Figure 8.2.2.
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(Note that C, is tangent to D at § = 0.) As is readily seen

JC. exp {— % ¢ -c} dE < K() < fc exp {— % 3 :} dE. (82.59)

1

We now have

[, o [-5eea

13 >

<1 —exp {— % Rf}) , (8.2.60)

jc' exp {- % c-:} =" <1 - }t fo exp {- 2142 sin? 9} d9> . (8261)

The integral on the right side of (8.2.61) can be asymptotically evaluated via
Laplace’s method. In this manner we find that

Ay, n J/2n )
fc. €xp {_ 3 ¢ §} dé~ YYD (8.2.62)

The lemma is finally established upon combining (8.2.59), (8.2.60),
and (8.2.62).

Returning to the boundary integral in (8.2.47) we find by applying Laplace’s
method that it is 0(1~3/2) and hence does not affect the expansion of I(1) to
leading order. Indeed, it follows from Lemma 822 that, when V ¢ vanishes
at the boundary point x = x4, which, in turn, is the point where ¢ achieves
its absolute maximum in 2,

I ~ E exp{l¢(x0)} go(xo) 82,
(03] A (@ px, (Xo) D, (Xo) — B2, (Xo)'/*’ (8.2.63)

as A— co. We observe that (8.2.63) differs from (8.2.55), the corresponding
result for an interior maximum, only by the multiplicative factor 4. This, of
course, is not surprising, especially in the light of the analogous result for
one-dimensional integrals.

8.3. Higher-Dimensional Integrals of Laplace Type

We shall now consider the asymptotic behavior, as 41— o, of integrals
of the form

I(2) = [, exp{A¢(x)} go(x) dx, X=X, .eey Xp). (8.3.1)

Here n is any positive integer and 2 is a bounded simply connected domain
in n-dimensional Euclidean space. The boundary of 2, which we denote by
I', is an (n — 1)-dimensional hypersurface. We assume that it can be represented

parametrically by
x = x(o), 6=(0,,...,0,-1)EP. (8.3.2)

As in Section 8.2, we suppose that ¢ and g, are sufficiently differentiable
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functions of their arguments throughout & for the operations to follow.
Also the same is to be true of the functions x{g) for ¢ in 2.

To obtain an asymptotic expansion of I(d), as A— co, we shall apply
techniques analogous to those described in Section 8.2 for the case n=2.
Indeed, let us first assume that V¢ does not vanish in & so that the absolute
maximum of ¢ in & is only achieved on I'. We shall further assume that x = x,
is the only point on I" where this maximum occurs. Because the parametrization
in (8.3.2) can always be selected so that x, = x4(6,) With 69 =@, ..., Gg,-1)
an interior point of 2, we must have

0x _ . _ _( 0 3\
V.o aj‘idz%—O, i=1,2,...,n—1, v, = 6—xl,,a—xn> (8.3.3)
If we set
Ylo) = ¢(x(a)), 8.34)
then (8.3.3) is equivalent to
0 0
\a" . 0, Vo= (577?’ oo 5—0..-1> (8.3.5)

To ensure that 6 =0, is a maximum point of ¥, we assume that the
quadratic form

(6—00)Blo—0a,)"; B=(f,,(00), i,j=1,2,...,n—1 (83.6)

is negative definite.
As in the two-dimensional case, we now set

Ho =g, ‘—V%q 8.3.7)

so that by the divergence theorem

1) = % fr (Ho*N) exp{id} dE — % fg g, explAd} dx.  (838)

Here N is the unit outward normal vector to I', dZ is the differential element
of “surface area” on the (n — 1)-dimensional hypersurface I', and

g,=V-H,. (8.39)
On the right-hand side of (8.3.8), because the last term is an integral of the
same form as I(A) multiplied by A~ !, it is reasonable to suppose that the leading
term in the expansion of I comes from the boundary integral. Thus we can
look upon the integral over 2 on the right side of (8.3.8) as an error term.
Furthermore, we can apply the same integration by parts procedure to this
error term. Indeed, this process can be repeatedly applied with the result that
after M steps we have the exact representation

M=1 WM
W=~y (=70 [ @,-Nexp(ig} = + 2 [ gu expias) ax
ji=0 r 2
(8.3.10)
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Here the quantities g; and H; are defined recursively by

Ve
H'_g—’
J J|V¢|2
j=0,1,2,...,.M—-1, V=V_
gj+1=V-Hj, (8.3.11)

In terms of the parametrization (8.3.2), each term of the sum in (8.3.10) is
an (n — 1)-dimensional integral of the form (8.3.1) with x replaced by . Further-
more, we know that the absolute maximum of  in 2 occurs in the interior of
2. To obtain a useful asymptotic expansion of I, each integral in the sum must
itself be expanded and the resulting terms then appropriately combined. In
addition, it must be shown that the last term on the right in (8.3.10) is asymp-
totically small compared to each term in the sum and hence constitutes the
error made in approximating I(4) by the sum. If this is so, then our problem
has been reduced to the study of integrals of the form (8.3.1) in the case where
the absolute maximum of ¢ occurs in the interior of 2. Therefore, we shall
suspend the discussion of this case until after the analysis of an interior
maximum.

Let us now suppose that the absolute maximum of ¢ in & is achieved only
at the interior point X = x,. Then we must have

Vélior, =0. 8.3.12)
Also, near x = x,,
B(x) — P(xo) & § (x — Xo) A(X — Xo)", (8.3.13)
where
A=(d,,, (X)), i,j=1,2,...,n. (8.3.14)

We shall assume that the quadratic form in (8.3.13) is negative definite and that
V¢ does not vanish at any other point in 2.

Following the discussion in Section 8.2, we let Q be an orthogonal matrix
which diagonalizes A so that

QTAQ =A. (8.3.15)
Here
A O
A= (0‘ 1) (8.3.16)
where A,, ..., 4, are the not necessarily distinct eigenvalues of A. We, of

course, have that each 4, is negative and

det A= TI A, 8.3.17)

i=1
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If we now set

o
(x —xo)"=QRz", R= . ; (8.3.18)
0 [2n] 12
then nearz =0,
(@) = ¢(xo) — p(x@)~ 1 z-2. (8.3.19)
To make this approximation hold in the large, we introduce the quantities
¢ = hy(z), i=1,2,...,n. (8.3.20)
These are to be such that
h;=z; + o(|z]), |z} -0, i=1,2,...,n (8.3.21)
and
Zn: h:=2f. (8.3.22)
i=1

Because V¢ vanishes in & only at x = x,, it is known that such quantities
exist for which the Jacobian

0(Xy, v s X,)

O=ac., &)

is positive and finite throughout D, the image of £ under the two changes of
variables (8.3.18) and (8.3.20). It follows from (8.3.18) and (8.3.21) that

J( E=(&, ..., 8 (8.3.23)

JO) = T1 |47 = (|det(d..., (xo)])™ . (8.3.24)

The functions h; are obviously not uniquely determined by (8.3.21) and (8.3.22).
Nevertheless, it turns out that, in this case, we need no further informa-
tion about these functions to derive the complete asymptotic
expansion of I.

Upon introducing &, ..., £, as the variables of integration in (8.3.1) we
obtain
A
10 =explidxol} | Go@yowp [~Eeeefae. 6329
Here
Go(&) = go(x(§)) J(E). (8-3.26)
We now set
Go($) = Go(0) + &-H,. 8.3.27)
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As in Section 8.2, H, is not uniquely determined. Nevertheless we need only
require that H, be well behaved throughout D. One possible choice is
given by

H, =6—11 [Go(&ys oy &) — Go(0, &2, ..., €N,

H, =¢i2 [Go(0, &3 -rv &) — G0, 0, &5, ., E)],

H, = éi [Go(0, ..., &) = GolO, ..., 0)]. (83.28)

The ambiguity in H, will not affect our determination of the asymptotic
expansion.
It follows by the divergence theorem that

1) = expl2otxo)} [ G0 [ exp [-Lev¢] e

-3 BeRyen ed)as e[ c@ew S]]
(83.29)

Here [ denotes the boundary of D, d3 is the differential element of surface area on

I, and N is the unit outward normal to I'. Clearly, the boundary integral is

exponentially small as A — . Anticipating that the integrals over D are not expo-

nentially small, we shall neglect the boundary integral in our future considerations.
Upon repeating the process M times we obtain

M-1
Y 60 [ exp | -5 a4 de

i=0

1)~ exp{idix0)} |

M f,, G (&) exp {— % :-g} d.’,‘] : (8.3.30)
The functions G; are defined recursively by
GO =G0+ $-H(Q),
Gy 1(§) =V-H{Q).

It should be noted that (8.3.30) is not an exact representation because we have
omitted the M exponentially small boundary integrals.
Because

(8.3.31)

|a=™ L exp {—%g-«:} Gr(®) de| <,1£an exp {_%g.g} & (8332)

for some constant K, we immediately have that the sum in (8.3.30) represents
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an asymptotic expansion of I(4) to M terms. More precisely
M A
I(2) ~ exp{Ad(xo)} Z AT GL0) L exp {— 2 §-§} dé (8.3.33)
j=o

is an asymptotic expansion of I to M terms with respect to the asymptotic
sequence

(/1‘j exp{A¢(xo)} L exp {—-%{-C: dC), j=0,1,2,.... (83.34)

We can improve on this result however by simplifying the asymptotic sequence.
Indeed we now prove the following.

LEMMA 8.3.1. Let £ =0 lie in the interior of D. Then, as A oo,
A ni2
K(#)= f exp {— % ¢¢ } d§ = <27”) +0(A™™) (8.3.35)
D
for all m.

PROOF. The proof follows closely that of Lemma 8.2.1. Indeed, let Sp, be a
sphere of radius R, centered at & =0, and contained in D. Let S;, be a sphere
of radius R,, centered at & =0 and containing D. Then

L. exp {—%:-{}KSK(A)SL exp{_gg.g}d@ (5336

We have
n/2 mkz "
[ ewl-jee)ae- G) o, [ e i, ®337)
Sa, 1]
where
_ 2(7t)"/2
“n = Tw/2)
is the surface area of the unit sphere in n space. Thus we obtain the bound
2m\"?
(%)

L exp {—%;-c} TN j: e 1 dr = (27")"/2 (8.3.39)

Ry

(8.3.38)

To determine a lower bound we write

I, o0 -gee a=(5)" o

1
0

x“m e el dr—j e 1 dr]‘ (8.3.40)
0 JOTDR,
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If \/A/2 R, is greater than 1 and n is greater than or equal to 2, then we have

L exp |- % c-c} &> (27”)"/2 [1 - %’;;—; ] (8.3.41)

Upon combining (8.3.36), (8.3.39), and (8.3.41), we obtain finally
A R?

/2 €Xp {——F5— . n/2
0" b s e

for A sufficiently large. This completes the proof.

By using the result of this last lemma in (8.3.33) we find that
M-1
I(4) ~ exp{Ad(x,) } Z Qry"2 A~(@D*D G (0) (8.3.43)

j=0

is an asymptotic expansion of I(4) to M terms with respect to the asymptotic
sequence

(A™@DD exp(Ah(x0)}),  j=0,1,2,.... (8.3.44)

As usual, we wish to express G0) in terms of the original functions ¢ and
go- Except for the leading term this is extremely difficult to accomplish. One
significant simplification is achieved, however, through the following.

LEMMA 83.2. Let the functions G{§) be defined by (8.3.31)
Then

G{0)=—1—AfG A =(§f—+---+a2 ) (8.3.45)
T Tha e PP 7 a2 .

PROOF. Consider any n vector F(£). Then, because Al =0, we
have

Al F)=§AF+2V,F. (8.3.46)

Repeated applications of this result yield
A& F)=¢-AL F +2j A7}V, F), (8.3.47)

which, when evaluated at £ =0, becomes
ALEF)|e=o =2 A (Ve F)l¢mo - (8.3.48)

Now for any { and j we have
AL Gleny = AiEH)| o0 = 2 A}V Hy)
=2j A{;;“ Gy |¢=" . (8.3.49)
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From this last result we readily find that
A Golg=o=2 AL Gyl ;0
= 22] (I - 1) Ajr:,-z G2|g=o

=2j1Gjlewo

and the lemma is proved.

If we use (8.3.45) in (8.3.43), then we obtain

2 n/2 M—1 Aj G _
I(A) ~ exp{Ad(x,) } <7> ,;, —5(27"),|]‘—"’ (8.3.50)
Thus we have established our previous claim that our expansion is independent
of the particular vectors H; selected in the integr_ation by parts procedure.
Although it still remains to express the quantities A{ G, | ¢~ in terms ofth and
go, we wish to point out that (8.3.50) is an extremely concise representathn of
the asymptotic expansion. In fact, whenever Go(§) is explicitly determined,
the complete asymptotic expansion is readily obtained. Unfortunate_ly, we
rarely can determine Go(¢) explicitly in which event the computation of
Al G|, _, is extremely awkward for j > 1.
From (8.3.24) and (8.3.26) we have that

= 9o(Xo) 8.3.51
Go0) = ([qet(d.. xg)'™ ®3.31)

and hence to leading order

exp{Ad(xo)} <§§)"’2 £3.52
I()v) ~ (ldet(¢x,x, (xo))l)1/2 7 go(x0)~ ( )

The quantity
Ag Go|¢=o = Ag(go-’)| :=0

is quite complicated when expressed in terms of g, and ¢ and we shall merely
quote the result.

AGO lg =0 — (‘ det(¢x‘xj (XO)I)— 12 [ - ¢x,x,x, Bsq Brp(g())x, + TI(CB)
+ g0{¢x,x,x, ¢x,x.x. (ZL Bps qu Btu + % Bps Bqt Bru)
- -41' ¢x,x‘x,x, Bpr qu}]x:xu (8'3'53)

Here we have used the summation convention where repeated indices are to
be summed from 1 to n. The matrices B and C are defined by

B= (qu)’ qu d’x.x, (XO) = 5pr9 (8.354)
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C = ((go)s,x, ) (8.3.55)

and Tr(CB) denotes the trace of the matrix CB.

Although we have not exhibited the calculations leading to (8.3.53), we wish
to emphasize that (8.3.22) is the only information concerning the functions H,
used in these calculations. This presumably would be the case for the higher
coeficients as well, a result that as yet has not been established.

Let us now suppose that the absolute maximum of ¢ in @ occurs at the
boundary point x =x, with A¢(x,)=0. The analysis for this case is more
complicated than that for an interior maximum because the boundary integrals
produced in the integration by parts procedure are not asymptotically negligible,
as A— . Indeed we now have

M-1

1) ~ exp{2¢(xo)} [ 2 (A G0 [ e {—% &) ae

j=

_,1—0+1)Jf ;N exp {—%{'{} di)

R L exp {— % c-c} Gol®) dc] : (8.3.56)

Here the quantities H;(§) and G (£) are still difined by (8.3.31).

All of the integrals in (8.3.56) can be asymptotically evaluated by the method
of this section. The leading term arises from the first integral in the first sum on
the right side of (8.3.56). Indeed it dominates the contribution from the first
integral in the second sum by the factor 11/2.

In order to obtain an explicit representation of the leading term we must
use the following lemma whose proof is left to the exercises.

LEMMA 8.3.3. Let =0 lie on a smooth portion of the boundary of D.
Thenas A— o

5 A 1{2m\"2
Ri)=[ ex {—— - }d ~-<—> : 83.57
W= exp -3¢ ae~3(7 (83.57)
From this result we find that in the present case
exp{A¢(x 2m\"?
I(2) ~ __M FolXo) (7":) . (8.3.58)
2 {/|det(d,, (xo))]

To conclude this section we return to the case where V¢ # 0 in 2. We have
from (8.3.10) that now

‘N
I(2) ~% fr do (_|VV%|T) exp{i¢} dZ. (8.3.59)

In terms of the parametrization of the boundary (8.3.2), (8.3.59) becomes
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1 WV¢-N

10~3 [, g0 o

Ale |vo|

To define W, we first introduce the n x (n—1)Jacobian matrix of the transforma-
tion from x to &,

exp{Ay} do. (8.3.60)

ox;
={z— 8.3.61

7-(5) (8361

and then set
W =|det £#|'1%. (8.3.62)
We have agreed to assume that the maximum of ¢ in 9 occurs, in t.his case,
only at the boundary point x = X, and that x(g,) = X, With 6, an interior point
of 2. If we assume further that the maximum of i at ¢ = o, is simple, then we

can apply the results obtained above for an interior maximum. Indeed, it
follows from (8.3.52) that, to leading order,

Qm)" 72 go(xe) W exp{Ad(xo)} 8.3.63
AT D2 | det(y,, (60))]"2 [Vé(Xo)] 6269

We remark that this result can be expressed in terms of the original variables.
The result is

I(A) ~

27)n~ 1)/2 y
1)~ Mni(i(;‘zofﬁ% $(xo)} (8.3.64)
Here
J= ¢x, d)x, COf[¢xpx, - khx,,x,]-3 (8365)

In this equation subscripts denote differentiation with respect to the x;s
and we must sum from 1 to n over repeated subscripts. We use h(x) =0 to
represent the (n — 1)-dimensional boundary “surface” in the neighborhood
of x, and the factor k is determined by

V¢ = kVh (8.3.66)

This result is derived by Jones. The derivation is outlined in the
exercises.

8.4. Multiple Integrals of Fourier Type

Throughout this section we shall consider multiple integrals of
the form

I0) = {, go(x) exp{iAd(x)} dx, X =(x1, X2, ..., Xu)- (8.4.1)

3 We use the symbol cof [4,,] to denote the cofactor of the element A, in the matrix [4,.]-
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Here ¢ is real and 2 is a bounded connected domain in Euclidean n space. We
wish to study I(A) as 21— . From our experience with one-dimensional
integrals of Fourier type, we should expect that the analysis here will be more
complicated than that of the previous section where multidimensional integrals
of Laplace type were considered. Nevertheless, we shall find that much of the
discussion of the last section will be useful here.

The treatment of Laplace-type integrals was simplified by the fact that only
those points in 2 at which ¢ achieved its absolute maximum were critical. In
analogy with one-dimensional integrals of Fourier type, we might anticipate
that now the set of possible critical points will be more extensive. Indeed we
claim that this set consists of

(1) points in 2 at which V¢ =0;

(2) all points on T, the boundary of 2 ;

(3) points in 2 where either ¢ or g, fails to be infinitely differentiable
with respect to any of their arguments. These are clearly analogs of the
critical points found for the one-dimensional case.

Indeed, points at which V¢ vanishes are stationary points of ¢ and points
on I correspond to the endpoints of integration in one dimension. The critical
nature of these points can, of course, only be established by determining the
associated contributions to the asymptotic expansion of I(4).

To facilitate our discussion, we shall assume below that both ¢ and g, are
infinitely differentiable in &. This will enable us, in many cases, to derive
infinite expansions. However, if there are critical points of type (3) present, then
only a finite expansion can be obtained by the method of this section.

Let us first suppose that V¢ # 0 in 2. Then there are no stationary points
and, as in the derivation of (8.3.10), we can repeatedly apply the divergence
theorem to obtain

1) = — MZ_X (—ia~u*D f (H;*N) Wexp{idy} d o
j=o ?

(—
(id

1M .
+ P L, gu(x) exp{idd(x)} dx; 6=(0,,6,,...,0,_1). (842)

Here

x = x(0), oceP (8.4.3)

is a parametric representation of the boundary I', W is defined by (8.3.61) and
(8.3.62), and

¥(0) = $(x(0)). (84.4)

The quantities g; and H; are defined recursively by
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Vo
H.=g4——
J ’|V¢|2
s j=0,1,2,.... (8.4.5)
gj+1=V‘Hj

Thus, in this case, our problem has been reduced to the study of a sequence
of (n— 1)-dimensional integrals of the form (8.4.1). Because ¢ must achieve
maximum and minimum values on T, the function y must have stationary
points in the domain 2. For this reason we shall now consider (8.4.1) in the
case where V¢ vanishes at one or more interior points of 2. We shall return to
the present case below, where boundary critical points are studied in detail.

Just as in the treatment of one-dimensional Fourier-type integrals, we shall
find here that the isolation of critical points via the process of neutralization
is extremely useful. Thus, let us pause to introduce the concept of
multidimensional neutralizers. Let x, be an arbitrary but fixed point in x
space. Then a function ¥(x;X,) is said to be a neutralizer about x =x, if it
satisfies the following conditions:

(1) There exists a neighborhood N, of x, throughout which v(x, x¢) = 1.
(2) There exists a neighborhood N, of x,, which contains Ny, and outside
of which v(x;x,)=0.

(3) In all of x space, v is infinitely differentiable with respect to each of its
arguments,and 0 <v<1.

The actual construction of a multidimensional neutralizer is unimportant
because, in our analysis, we shall need only the above defining properties. The
reader, however, must convince himself that such functions exist. This easily
follows from the one-dimensional case for which we have explicit .examples.
Indeed, let %(x) be a neutralizer about x = 0. In particular, let 6, and J, be
constants with 0 <&, <&, and such that v=1 for 0< |x| <4, and v=0
for | x| > 6,. Then clearly

V(X ;X0) = ¥(|x — X0|?) (8.4.6)
is a neutralizer about x = x,. Here N, and N, are respectively the spherical
regions |x — Xo| < d; and |x —x,| < d,. That the properties in (3) above are
satisfied follows from the corresponding properties of ¥(x).

Before proceeding with the asymptotic analysis of I(1), we wish to prove two
lemmas that we shall use throughout the remainder of this section.
LEMMA 84.1. Consider
J(A) = [, 9(x) exp{idg} dx. 84.7)
Suppose that V¢ #0 in 2 while § belongs to C*(2) and vanishes on I'.*

4 Note that ¢ could be the function g, in (8.4.1) neutralized about any interior point x,.
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Then, as A— o,
J(A)=0(A"F) (8.4.8)
for all R.

PROOF. Because V¢ # 0 in 2, (8.4.2) holds with I(A) = J(4) and g, = . Due
to the stated properties of g, each boundary integral in the sum vanishes, and
hence we find that J(4) = 0(A~*). If we now let M get arbitrarily large, then the
lemma follows.

LEMMA 8.4.2. Suppose that in (8.4.7) V¢ vanishes in 2 only at the interior
point X = X,. Suppose further that g satisfies the hypothesis of Lemma 8.4.1
and, in addition, vanishes C* smoothly at x = x,,. Then, as A — o,

J(A)=o(A"®) (8.4.9)
for all R.

PROOF. [Each step in the proof of Lemma 8.4.1 remains valid and hence so
does the conclusion. The only possible source of difficulty is the vanishing of
V¢ at x = X, because each integration by parts introduces the factorV¢/|Ve|?.
However, the fact that § belongs to C*(2) and vanishes at x = X, implies that
the singularities introduced are all removable.

The two preceding lemmas show that, in (8.4.1), whenever the function g,
vanishes infinitely smoothly at each critical point, I(4) goes to zero faster than
any power of 27! as A— oo. This is actually a principle that we have alluded
to in the past and that will be of future use, especially in Chapter 9.

Let us now suppose that ¢ has one or more stationary points in the interior
of 2. We wish to determine the contribution to the asymptotic expansion of I
corresponding to one such point. If V¢ vanishes at x = x, ¢ 2, then the desired
contribution is given by the asymptotic expansion of

Io(A) = {, go(x) ¥(x;x,) exp{idp(x)} dx. (8.4.10)

Here, in the definition of the neutralizer v(x;x,), the neighborhood N, of x,
should be small enough so that it contains no stationary points of ¢ other
than x = X, and is itself contained in 2.

We shall assume that the stationary point x=x, is simple so
that is

A = ((bx‘x, (x()))s i’j = i5 2’ ey Ry (8'4'11)
then
det 4 £0. (8.4.12)

Let us denote the positive eigenvalues of 4 by 4,, 4, ..., 4,, r<n, and the
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negative eigenvalues of 4 by 4, y, 4,42, ..., 4, The signature of 4, which we
shall denote by sig 4, and which is the number of positive eigenvalues minus
the number of negative eigenvalues, is clearly given by

sig A =2r—n. (8.4.13)

We know that there exists an orthogonal matrix Q that diagonalizes 4.
Furthermore, Q can be chosen so that when we set

Y 0
',1-1/2
x-xr=ore",  R=| P . (84.14)
0 "/{n|‘l/2
then
1 r n
f(z)=¢(x(z))—¢(xo)~5( Ta- % z?), (8.4.15)
i=1 i=r+1
as |z|-0.

To make this approximate behavior hold throughout the effective domain
of integration in (8.4.10), we introduce the second change of variables
defined by

E=hiz), i=1,..,n (8.4.16)
Here
h=z,+of|z|) (8.4.17)
as |z| -0, and
i K2 — Z h?=2f. (8.4.18)
i=1 i=r+1

In N,, because V¢ vanishes only at x = X,, we have that the functions h;
can be chosen so that the Jacobian

0x;
det| -
%)
is finite and nonzero throughout N 1, the image of N  under (8.4.14) and (8.4.16).
Also, it readily follows from (8.4.14) and (8.4.17) that
J(0) = |det AT, (8.4.20)

In terms of &, (8.4.10) becomes

J@)= s &= 6 (8.4.19)

1) = explitiso)} [, Go@E:0expl5 p¢)de. 42D
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Here

p=(él""scrs _€r+17"" _én) (8.4.22)
and
Go(8) = go(x($)) J(&). (8.4.23)

With regard to v(¢;0), we need only know that it is a neutralizer about § =0
whose support is the region N, .

If we set
Go(8) = Go(0) + p-Ho, (8.4.24)
with H, chosen so that it is well behaved throughout N 1, then we can write
Io(4) = exp{idp(xo)} [15"(4) + IF(A)]. (8.4.25)
Here
Ay . il
190)= o) | we0)exp(5 p-¢) e (8.4.26)
and
@y id
190)= [, (0o ve:0) expl 2 p-¢) de. 8427

Let us first consider I§'(4). Upon applying the divergence theorem, we
obtain

1 il
IO = — 7 f,:, [W:Hy +Hy Vv] exp{% p-C} dé. (8.4.28)
Because Vv is infinitely differentiable, vanishes on the boundary of N ; and
at the stationary point & =0, it follows from Lemma 8.4.2 that
ayn 1 . il _Rr
1) = — 7 4 UE;0) Gi(§) expi p-§( dE+0(A7%)  (34.29)
for all R. Here
G(§) =V, H,. (8.4.30)

Upon applying the above procedure M times we obtain the finite
expansion

M-1

Ly~ expliz ot} [T (5] a0 [ 0o o) de

m=0
* (‘ %)M L Gu(®) v&;0) exp{%p'é} dﬁ]- (8.4.31)

The functions G,,(&) are defined recursively by
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Gn(®) = G,(0) + p-H,(8)

, m=0,1,2,.., (8432
Gr+1(§) = Ve Hy(d)

with the vectors H,, well behaved throughout N, .
In order to obtain a more useful expansion, we consider the following.

LEMMA 84.3. Let
K@) = fp WE;0) exp{%p-é }de:, (8:4.33)

where p is defined by (8.4.22) and v(¢;0) is any neutralizer about § = 0. If the
support of v is contained in D, then, as A —» oo,

n/2 :
K(3) = <27"> exp{%’ @r— n)} +o(A™R) (8.4.34)
for all R.
PROOF. The proof, which consists of reducing (8.4.33) to a product of one-
dimensional integrals and then applying to each the ordinary method of

stationary phase, is left to the exercises.

Upon using (8.4.34) in (8.4.31) we obtain

Io(2) ~ 2m)"? exp %(2r—n)+ iAd(Xo) 20 (" A=) G(0). (8.4.35)

Here we have let M go to infinity in (8.4.31) and have made the obvious estimate
of the “error” integral in that equation.
We can further simplify our results by proving the following.

LEMMA 8.4.4. Let the functions G,(§) be defined by (8.4.32). Then

G,0) = 2—"'1m_' A™ G(0). (8.4.36)

Here the operator A is defined by
02 02 0? 0*

B T R . A T 8.4.37
@t tee T a, T T @437

5:

PROOF. The proof follows step-by-step that of Lemma 8.3.2. Indeed, we have
for any n vector F(§)

A(p*F) = p-AF + 2V-F. (8.4.38)
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From this it follows that

A™p-F)|c g =2mA™ " Y(V-F)|,_, . (8.4.39)
We thus find that for any ¢
A" G (0)=A"(p-H,)|¢mo =2mA™ '(V-H,) ;o . (8.4.40)
Finally, (8.4.32) yields

A™ Go(0) = 2m A"~ 1 G,(0)
= 2m(m — 1) A"~2 G,(0)

=2"m! G,(0) (8.4.41)

and the lemma is proved.

It follows from (8.4.35) and (8.4.36) that

Io(A) ~ 2m)"2 exp {% 2r—n)+ iAd)(xo)}

QO (l)m _ _
A (m+ni2) Am ) 8.4.42
X Y T A" Go(0) (84.42)
It now remains to express the quantities A™ G(0) in terms of the original
functions g, and ¢. We shall do this for m =0 and m=1 only because, as
in the previous section, the expressions are exceedingly complicated for higher
values of m. From (8.4.20) and (8.4.23) we have

Gol0) = golXo) _ golXo) . (8.4.43)
Jldet(4)]  /]det(9,., (xo))]
Hence, to leading order, the expansion of I is given by
(a0 expi20(x0) + 5 sl (o)
I~ (£ , 8.4.44
o <i> J1det(@r, (o)) G449

where we have used the relation (8.4.13).

After a great deal of computation we find that — AG, is given by the right-
hand side of (8.3.53)° with the quantities that appear there defined by (8.3.54)
and (8.3.55). When this result is inserted into (8.4.42) an explicit expansion of
I, to second order is obtained.

This completes our derivation of the contribution to the asymptotic expan-
sion of I corresponding to a simple interior stationary point of ¢. We note

5In deriving (8.3.53), explicit us is made of the fact that all of the eigenvalues of the matrix (¢,,)
are negative. Thus, — AG, = AG,, for that case.
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that the analysis presented here is by no means the only procedure that could
be followed. Indeed, we might argue that the entire integration by parts process
could be eliminated by analyzing (8.4.10) in a manner similar to the treatment
of K(2) in the proof of Lemma 8.4.3 outlined in Exercise 8.18. This is in fact
true. However, had we followed this latter course, it would have been difficult
to arrive at (8.4.42) which is a rather useful representation of the asymptotic
expansion of I.

Let us now return to the consideration of boundary critical points. To
isolate the boundary from the interior critical points we introduce the
neutralizer function v, . The support of vy is to lie in 2 and all of the stationary
points of ¢ in 2 are to lie in the region where v, = 1. Then the contribution
from the boundary is given by the asymptotic expansion of

L(A) =, go(x) (1 — vs) exp{idd} dx. (8.4.45)

If V¢ vanishes on T, that is, if there are one or more stationary points
of ¢ on the boundary, then their contributions to the asymptotic expansion
of I, are readily found, at least to leading order. Indeed, suppose that x, ¢ I’
and V@(x,) = 0. Also suppose that det(¢,, (%)) # 0. Then the contribution
from this point to leading order is given bv

5 exp {i26x0) + 7 sigl0, (xo)) g0(xo) (2"

A
|det(d,, (Xo0))]

This result requires the following lemma whose proof is left to the exercises.

>n/2
Io(h) ~ . (8.446)

LEMMA 84.5. Consider

KA = j'D WE;0) exp{itp-&/2} dé& (8.4.47)

with £€=0 on the boundary of D and p given by (8.4.22). Then,
as A— oo,

K(4) ~ % exp{%i(Zr - n)} (%%)"/2 ' (8.4.48)

Further terms in the expansion of I, are fairly difficult to obtain.

If there are no stationary points of ¢ on I', then V¢ # 0 throughout the
effective domain of integration in (8.4.45). Thus (8.4.2) holds with g, replaced
by go(1 — v5) and I replaced by I,. However, v; =0 on I so that upon letting
M - o0 in (8.4.2), we obtain

0
LA~ = ) (—id)79* [L(H}N) Wexp{iiy} do.  (8.4.49)
i=0
The critical points for the boundary integrals in (8.4.49) are, of course,

determined by the behavior of  and by the configuration of the boundary
itself. The points on I at which

%
H
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8
Voo =0, i=1,2,..,n—1 (8.4.50)

are the stationary points of (o). If these stationary points are simple, then,
for each, we can apply the analysis leading to (8.4.42) to the integrals in (8.4.49).
In this manner we could obtain the complete expansion corresponding to
each of the stationary points of y. The leading terms are readily found and
their derivations are left to the exercises. We do wish to note however that the
contribution corresponding to a simple stationary point of ¥ is O(A""~1/2),
This is to 'be compared with the contribution from a simple stationary point
of ¢ which is 0(A~"/2).

Even if all of the stationary points of ¢ are simple, the same need not be
true of the stationary points of . Indeed consider a point on I' at which ¢
is stationary. From (8.4.50), we see that the level surface of ¢ passing through
this point is tangent to I there. Clearly the order of contact between this level
surface of ¢ and I increases as the order of the stationary point increases and
vice versa. In an extreme case, I is itself a level surface of ¢. Then the order of
contact is infinite all along ' and the entire boundary is critical. Indeed,
in that case

In() ~ 5 exp{ity} [ (HoN) W do, (8.4.51)

where ¢, is the constant value of g on T,

We note that when n is greater than two, the contribution from a stationary
point of § of infinite order dominates the contribution from any simple interior
stationary point of ¢. This may or may not be so for stationary points of ¥
of finite order.

Figure 8.4.
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Another interesting class of boundary critical points consists of those points
at which T fails to have a continuously turning tangent plane (tangent line in
two dimensions). In two dimensions this type of critical point is called a
“corner.” In three dimensions we could have isolated corner points or “edges”
which are curves of critical points. Obviously the possibilities increase as the
dimension increases. We cannot hope to be exhaustive here. Indeed, we shall
be content with deriving the leading term of the contribution corresponding
to a corner point in two dimensions.

Let us suppose that T is as depicted in Figure 8.4. Suppose further that the
directed curves C, and C, have parametric representations given by

x = x,(0) = (x{(0),x$(s)), 0=a=¢ (8.4.52)

and

X = X,(6) = (x¥(0),x(0)), —¢,<0<0, (8.4.53)

respectively. In both cases the parameter o is such that

S d
T=G9.x9),  ()=4 (8.4.54)
is the unit tangent vector to C;.
For continuity, we have
x,(0) = x,(0) = xq, X, (£)=x,(—¢5). (8.4.55)

We shall assume that there is a corner at x, so that
T,(0) # T,(0). (8.4.56)

Although it is not necessary, we shall suppose that Ve #0 in Z. It then
follows from (8.4.2) that

1 i Vo N, .
100~ | [ soxite0) —l—‘%ﬂ—z exp(ii(0)} do

i’

+ jo_ . golx1(0)) %% exp{iiy (o)} da]. (8.4.57)
Here
¥ = ¢(x(0)) (8.4.58)
and N, is the unit outward normal vector to C;, i =1, 2.

Because we are only interested in the contribution from the corner, we can
imagine that the amplitude functions in the two one-dimensional integrals
on the right side of (8.4.57) are both neutralized about ¢ = 0. We shall further
assume that neither ¥, nor Y, is stationary at ¢ = 0. Now if I, represents the
contribution from the corner, then we find upon integrating by
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parts once that

1 golXo) exp{id ¢(Xo)} [V'N,; V¢'N,
1)~ = [ —— — —— ] 4.
A? ]V‘Mxo) | 2 ¥ 123 0=0 (8.4.59)
We have, fori=1, 2,
yi=ve-T, (8.4.60)
and
N; =9, — ). (8.4.61)
Also, if § denotes the angle between T (0) and T ,(0), then
sin 8 = x{2(0) x{M(0) — %1(0) x$2(0). (8.4.62)
Upon using (8.4.60) to (8.4.62) in (8.4.59) we finally obtain
L)~ i 9olXo) exp{idd(xo) } sin 6 (8.4.63)

A% (V$-T(0)) (V$-T,(0))

Thus, to leading order, the contribution from a corner point is proportional
to the sine of the opening angle of the corner itself. Furthermore, I, = (1 ?)
and hence is less dominant than the contributions corresponding to either
stationary points of ¢ or stationary points of .

To conclude this section we wish to consider the contribution from a
nonsimple interior stationary point of ¢. We shall do this for the case n=2
only and remark that the extension to higher dimensions will be apparent. Thus
let us suppose that in (8.4.1) n =2 and

Vo(x,) =0, X0t D, (8.4.64)
det A = det(¢.,, (x0))=0; V(det A)| =, #O. (8.4.65)

The results obtained above for a simple interior stationary point
are clearly invalid in this case. Our objective is to obtain the correct contribu-

tion from x,. This contribution is given by the asymptotic expansion
of

Io(2) = [, v(x;xo) exp{iZd(x)} go(x) dX, (8.4.66)

where v is an appropriately constructed neutralizer about x = x,.
It follows from (8.4.65) that the two eigenvalues of A are given by

Al = ¢x.x, (X0)+ ¢x,x, (XO)’ ;»2 =0. (8.4.67)
We shall assume that 4, # 0 and set
p=5gn(dyr, (Xo)+ Dy, (Xo))- (8.4.68)

We can readily show that there exists a nonsingular linear transformation
defined by
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(x—x)T=Bz", B=(B), ij=1,2, (8.4.69)
which is such that, as |z| -0,

f@) = ¢(x@)) — $p(x0) =5 uzi + 323 +0([21 + 23] [z, + 2,]). (8.4.70)

The constants B;; involve second- and third-order derivatives of ¢ at x =x,.
(See Exercise 8.21.)

The approximation (8.4.70) can be made to hold exactly throughout the
support of v, which presumably has been chosen sufficiently small. This is
accomplished by setting

& = hyz), i=1,2. (8.4.71)
Here
Eni+ h—f /@ 84.72)
and
hy=z;+ o|z) (8.4.73)
as |z| > 0. Furthermore, the Jacobian
J©) = % (84.74)
is such that
J(0) = det B. (8.4.75)
In terms of the variables &, and &,, (8.4.66) becomes

2
I4(4) = exp{itd(xo)} j W& ;0) Gy(€) exp {l/ (;_1_25__ + éz)}d{ (8.4.76)

Ny

Here v(&;0) is a neutralizer about § = 0 with support N, and

Go(&) = go(x(£)) J(£). (8.4.77)
We now write
0G,(0)
Go(&) = Go(0) + &, ag(z ) + p+Ho, (8.4.78)
where
p=w,, &) (8.4.79)

We note that p is the gradient of the phase function (u¢3/2 + £3/3). The reason
for this expansion is that when (8.4.78) is inserted into (8.4.76), the last term
can be integrated by parts. The presence of the second term in the expansion
is necessary if Hy is to be well behaved in N1
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Upon inserting (8.4.78) into (8.4.76) and integrating the last term by parts,
we obtain

i)~ [ e Go0+ & 58 - 7 6o

x exp :M(‘z—‘ &4y éi) }dé. (8.4.80)
Here
G,(§)=V'H,. (8.4.81)
In deriving (8.4.80) we have used Lemma 8.4.2 to eliminate the term involving
(Vv-Ho).

Arguments similar to those used in the proof of Lemma 8.4.3 (see Exercise
8.18) show that, for all R,

L‘v, exp =1,1<“T¢2+ 52> }v(g 0) d&

TG\ N
87T<§> r<§) COS(€> e"’"/4 1_5/6 + O(X_R)’ (8482)

fﬁ‘ exp{u(“c‘ +3 52) } w§:0) ¢, dg

NN
=i/8n <§> r<§) sm<§> eHmil4 1716 4 o1 ), (8.4.83)

Also, by repeating the process to the integral involving G, in (8.4.80)
we find

-1 v(f 0) G,(&) exp {ll( &+ % 5%): dé=0(A""%). (8.4.84)

Finally by combining (8.4.81) to (8.4.84) we obtain the following two-term
expansion of I;:

1\ 1 T\ i
Io(A) ~ go(xo) exp{idg(xo)} det B \/8n (5) F<§> cos<g> grini4 5 =516
aGO( )\/@ exp{ild(xo)} ( )1/3 I‘@) pinj4 sm<3>) 716
(8.4.85)

Upon comparing (8.4.44) (with n = 2) and (8.4.85), we see that the contribu-
tion from a nonsimple stationary point is more dominant than that from a
simple stationary point. Moreover, we can show that as the order of the
stationary point increases, that is, the order of vanishing of det(¢, , (x)) as
X — X, increases, this dominance becomes more pronounced. !
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8.5. Parametric Expansions

In the asymptotic analysis of multidimensional integrals of form (8.4.1),
the major step is most often the determination of the stationary points of ¢.
This requires finding those points in & at which V ¢(x) = 0. In general, because
this condition involves simultaneous transcendental equations, an explicit
determination of the stationary points is difficult if not impossible. To avoid
this complication we often take a parametric point of view. We shall discuss
this point of view in the context of two examples; wave propagation in dis-
persive media and acoustic scattering by convex bodies.

As we have indicated in Section 2.6, the solution to the initial-value problem
for any energy-conserving dispersive hyperbolic equation of second order,
can be represented as a sum of integrals of the form

u(x,t) = (2—7:)3,—2 j: AK) expli[k-x —w(K)]} dk, k= (k;, ks, k3). (8.5.1)

This integral is in dimensional form so that x = (x,, X,, X3) represents a point
in physical space and ¢ > 0 represents time. In the specific example of Section
2.6, namely the Klein-Gordon equation, w(k)= + T b%. In general,
the dispersion relation w = w(k), which relates the frequency w to the wave
vector k, is determined by the particular differential equation under
consideration.

In Section 2.6 we found that when dimensionless variables were introduced,
a large parameter A appeared which had the interpretation of “large time”
compared to some fundamental time unit of the problem. Here, however, we
shall leave the integral in dimensional form but in our subsequent analysis
we shall interpret our asymptotic result as a large time expansion.

Let us now formally® apply the results of the previous section to (8.5.1).
Because there are no boundaries, the stationary points are the dominant
critical points. Hence if we set 1 = 1, (8.4.44) yields

A(k) exp {i[k'x ~ofi] -G S*g(gkwgif)}

u(x, t) ~ e CETINEE , 8.5.2)
N\ ok, ok,
x =V, (k); vV k) =V,w. (8.5.3)
Here (8.5.3) is simply the condition that the phase function
¢ =kx — k) (8.5.4)

be stationary.

6The results of the previous section remain valid for integrals over infinite domains under
quite reasonable conditions on the integrand, but we have not shown this. In this sense, our results
here are formal.
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To obtain an explicit asymptotic expansion of u(x, t) it is necessary to invert
(8.5.3). If this inversion could be accomplished, then we would obtain stationary
points of the form k = x(x, t). Upon setting k = x in (8.5.2) the desired expansion
would be obtained. Because this procedure cannot be carried out in most
cases, we content ourselves here with an implicit or parametric representation
of the expansion. In this, we look upon the stationary condition (8.5.3) as
defining for each fixed k, a ray in space time. In turn, this ray defines a point
moving in space with the group velocity V (k). Along any ray the asymptotic
expansion of u(x, t) has the form (8.5.2) which is a plane wave with constant
wave vector k and frequency w(k). Furthermore, the amplitude of the plane
wave decays as time progresses like t 732, We note that this decay is the only
variation of the amplitude along a ray.

As k ranges over all possible values, the corresponding rays fill out a certain
region in space time. This region of course is determined solely by the group
velocity vector V (k). To obtain the asymptotic expansion of u(x, t} to leading
order at any fixed space time point (x, t) we need only sum (8.5.2) over all
values of k corresponding to the rays passing through that point. In general,
only one ray passes through a given point. An interesting situation arises when
more than one ray passes through (x, t). Indeed, we can show that then there
exist curves in space time called caustics along which det(8%w/0k 0k ) evaluated
at the stationary point k = k(x, t) vanishes. These caustic curves, moreover,
can be shown to be envelopes of the ray system itself. (See Figure 8.5.) Clearly
(8.5.2) is invalid along a caustic. The analysis required to obtain a valid expan-
sion is equivalent to studying (8.5.1) in the case where ¢ has stationary points
of higher order and will not be discussed here.

Caustic

Figure 8.5. Caustic Curve of a Two-Dimensional Ray Field.
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A further interpretation of our parametric result is perhaps in order. We
define the energy associated with u(x, t) to be

E= % r |u(x, 1)]? dx. 8.5.5)
From (8.5.1) we find that we also have
E =H | A(k)| 2 dk

so long as w(k) is real for real k. (We remark that this is indeed the case when
u represents the solution to an energy-conserving equation.)

Let us now consider the amount of energy in a volume element Ak centered
around a given wave vector k. This energy is constant in time and is given
approximately by 4|A(k)|? Ak. As (8.5.3) indicates, the signal u eventually
decomposes in such a manner that each wave vector k, and hence any function
of k, propagates at its own velocity V,(k). In particular, the energy packet
1| A|?* Ak travels at the group velocity V (k).

Let us now suppose that at a given time ¢, the wave vector k is located at
the point x and that the packet of wave vectors in the volume Ak around k
is located in a volume Ax about x. Then we must have

1ul? Ax=1%|4|* Ak
so that
oAl
(AX/AKk)'2

We fix the volume element Ak. Then as time increases, the element Ax,
containing this packet of wave vectors, varies in size. This follows from (3.5.3),
which shows that nearby wave vectors propagate at slightly different speeds.
In any case, for time large, the ratio (Ax/Ak)'/? is simply the Jacobian of the
transformation from k space to x space defined by (8.5.3). This yields

A Ax\'/? 0x; d*w
|u| = :}-, J= (ﬂ) = \det(BTJ) det<—6k,6k,)
which agrees with (8.5.2).

In summary, (8.5.2) and (8.5.3) is a parametric representation of a wave
train which is locally planar but which actually has slowly varying wave
vector and frequency. The energy of the prescribed initial state associated with
a given wave vector k ultimately propagates with the group velocity V(K)
defined by (8.5.3). Thus we find that, in addition to computational advantages,
the parametric representation affords certain physical insights not immediately
apparent from an explicit representation.

As a second example let us consider the problem considered in Section 2.7,
namely that of acoustic scattering by convex bodies. There we found that when

(8.5.6)

1/2
— 32

1/2

(8.5.7)

P
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the incident field is a plane wave, the Kirchhoff approximation for the scattered
field is given by

u(x ;k) ~_—ﬁ(~%[ﬂ(ﬂl; r=(x3+ x2 +x2)2, (8.5.8)
I={, @) p.)exp{iklp, —p_]-&} do. (8.5.9)

Here L is the “lit” region on the scattering body, #, and u_ are unit vectors
in the direction of incidence and observation respectively, € is the position
vector of a point on L, and do is the differential element of surface area on
L. Also, nis the unit outward normal to L and the + sign refers to the particular
boundary condition assumed in deriving (8.5.9). That u_ is independent of
& is a result of the assumption that the point of observation is “far” from the
scattering body.

We shall seek an asymptotic expansion of I for “large” k. Because k is a
dimensional quantity, we remark that we must interpret our results as being
correct for wavelengths small compared to the fundamental body dimensions.
Here, as in the previous problem, the major contribution to the asymptotic
expansion of I comes from the interior stationary points. This contribution
represents the far reflected field.

If we introduce ¢, and o, as coordinates on L, then the conditions for
stationarity of the phase ¢ = (g, — p_)-& are

(B =B )&, =0,  (ay —p-)E, =0. (8:5.10)

These conditions imply that, at the stationary points, (g, — ) is parallel to
the normal n. It is easy to see then that due to the convexity of L, there can be
only one stationary point for a given g _. It also follows from (8.5.10) that u
and p_ make the same angle with n at the stationary point. In other words,
we have Snell’s law which states that the angle of incidence equals the angle
of reflection.

To first order the asymptotic expansion of I is given parametrically by
(8.5.10) and

. (n'ﬂi)DeXP{ik(m —u-)'é‘+%i}

Tk (s — )& (e —p)Eo., — s — u_)'ﬁ.,,,,z]zl]”z'7
(8.5.11)

Here D? is the discriminant of the first fundamental form of differential
geometry, that is,

I

D*=[(¢,&,) (€. °80) — (€0, °&0)"] (8.5.12)
The above parametric representation is to be understood as follows. Because

7 That the signature of the matrix (¢5,5) at the stationary point is 2 follows from the convexity
of L.
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of the convexity of L there is a one-to-one correspondence between stationary
points on L and directions of reflection g_ . Thus for each point on L we first
determine the direction g_ so that the stationary conditions (8.5.10) hold.
With u_ so determined (8.5.11) and (8.5.8) then represent the far reflected field
in that direction from the scattering body.

We can express our result more compactly without altering its parametric
nature. Indeed we note that, at the stationary point,

(s _”_)=(_€a.><¢_,b)2g<§_€’ (8.5.13)

where @ is the angle of incidence (reflection). The Gaussian curvature k of the
surface L is given by

d2
=
Here d? is the discriminant of the second fundamental form of differential
geometry, that is,

K (8.5.14)

1
d2 =B§ [{ﬂ.ax '(:ﬂl X gdz) Cazd; '(ga, X Ca,) - (ga,uz '(co‘ X éa,))z]' (84515)
Upon using (8.5.13) to (8.5.15) we find that (8.5.11) becomes
exp kT (u, — )€1+ 5
N3
Finally, it follows from (8.5.8) and (8.5.16) that the scattered field is given
approximately by

I~ % (8.5.16)

= a

exp{ik[r+(u+ -4l
2rﬁ

It will be recalled that in Section 2.7 we pointed out that the Kirchhoff
approximation involved certain inaccuracies near the boundary of L. Thus,
when the stationary point lies on or near that boundary, we must expect that
(8.5.17) is a poor representation of the scattered field. We also know from the
previous section that, for the stationary point on the boundary, (8.5.16) is in
error by a factor of 3. An interesting mathematical question is, can an asymptotic
expansion of I be obtained which remains uniformly valid as the stationary
point approaches the boundary of L? In Section 9.6 we shall derive such an
expansion.

(8.5.17)

u~ +
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8.6. Exercises

8.1. Consider
2 2
=, (e f)owppon s Aja e
4) . X +2 expi|y sin 22 dx dy (8.6.1)

Calculate the leading term of the asymptotic expansion of I(4), as A — oo, for
each of the domains defined below:

@ |x+y|<2, |x-—y|=<2.
(b) X2+ y* < 4.
(© x2+y?<2.

8.2. Consider
I(A;0) = {, exp{A [sin x cos y sin a + cos x cos ] } dx dy  (8.6.2)

with 2 defined by 0 < x <r/4, 0 <y <2r. Calculate the leading term of the
asymptotic expansion, as A — oo, for each of the following integrals:

(@) K(4;0).
T
(b) I<,I,§).
© 1(1;3‘-).
3n
(d) I(A,?).

(e) I( - 2;0).

8.3. (a) Explain why, in the derivation of (8.3.57), D is confined to one side
of a hyperplane through & = 0.
(b) Use part (a) and the result (8.3.39) to show that

k=1 (27”)"/2 [1+0(~1%)]. (863)

Here K(4) is defined by (8.3.57).

(¢} Choose a number r such that a hypersphere of radius r tangent to D
at § =0 is totally contained in D. (The number r is less than the minimal
principal radius of the boundary surface of D at £ =0.) Show that

J) =2 p"" 1 F(p) e ™1 dp < K(). (8.6.4)
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Here

Fp) =,y [o" 7 (sin¢)"2 do (8.6.5)
with w,_, the area of the surface of a unit sphere in n — 1 dimensions. [w, is
given by (8.3.38).]

(d) Use Laplace’s method to show that
1 27 _In i 866
JA=3F0) |~ Tl |1 +0o@)l, A=, (8.6.6)
and calculate F,(0).

(e) Verify (8.3.57).

8.4. Explain why the results of Sections 8.2 and 8.3 are valid for
|arg(4)| < =/2.

8.5. (a) Show that whenn=2, ¢, , (Xo)=¢,,, (Xo)=1,and ¢, (X0)=0.
(8.3.53) reduces to

. Go|_, =B 0050) = 2050 (B 09+ B, 30

£=0

_ ago(xo) {d)x,xlxz (XO) + ¢x;xz"2 (XQ) }

0x,
S 5
+00050) [T Bnr 600+ 3 P, (0

3 suxixs (X0) Puyerx, (Xo)
30 0+ B, (04 s B0 B

¢x,x1x, (XO) d)x‘x‘xz (XO) _ l
+ 2 4¢x,x,x,x, (XO)

1 1
- Z ¢x,x;x1x1 (XO) - i ¢x,x,x1x, (XO)] ' (867)

(b) Calculate the result in (a) directly from the definition of G,, (8.3.45),
and the definition of the change of variables (8.3.19) to (8.3.22).

8.6. In (8.3.60), choose the parameters g;, j=1, e }, so that =0
at X = X, and the ¢;’s are arc-lengths in the principal directions of curvature
of the boundary at X,. Then show that

1 (21"~ 72 gofxo) exp{Ad(xo)}. 868
’WE(T) Vo[~ J1'” He

SECTION 8.6  Exercises | 361
Here

- %y

J

[Exercises 8.7 to 8.10 establish the validity of (8.3.64) in the text.]

=0

8.7. Consider the quadratic form

fx)=®_ x, x

pg'p Mg’
Here ® =(®,,) is a real symmetric matrix and repeated indices are to be
summed from 1 to n.

(a) Show that the values of x for which f(x) attains an extremal value subject
to the constraints

X, x,=1, x, N,=0
are found by solving the equations
O, x,=ox,+BN,, p=1,2,...,n (8.6.10)

subject to the two constraints. Also show that there are n — 1 extrema and that
to each extremal point, say x =x", the corresponding value of a, say a, is
such that a, = f(x").

{(b) Let ¥ be an orthogonal matrix whose last column is comprised of the
elements of the vector N =(N,, ..., N,) in part (a). Define y by

x'=¥y" (8.6.11)
and set
Fny, ..con) =@, ¥, ¥, 1. (8.6.12)

Then show that the problem corresponding to that of part (a) is to find those
n which extremize F(z,, ..., #,) subject to the constraints

ni’?i=1’ ’1n=0

(c) Show that in (b) we can as well delete the last component of n and the
last column of W. If we call the resulting n x(n —1)dimensional matrix ¢ ,
then show that the problem now is to extremize

Fny, M2y o ey 0)=(qu fpi qu nin;

= Lij nin;
subject to the constraint

=1 (8.6.13)

Here i and j are to be summed from 1 ton— 1.
(d) Finally show that the problem in part (c) is equivalent to solving

Lijn;=om;, i=1,2,...,n—1
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subject to (8.6.13) and hence the «;’s are the eigenvalues of the matrix L = (L;)).
n—1

[Note that det(L;;) = _l;I1 ;]
8.8. Let the n X (n — 1) matrix # of Exercise 8.7(c) be given by

ax;
s (sa‘,-)

with the parameters 6,65, ..., Op-1 chosen as in Exercise 8.6. Let the surface
2 in (8.3.60) also be denoted by h(x) = 0. Show that if

26 oh )
Dy = (ax,, ox, K ox, ox,

5

V¢|x=,o=thlx=xo, (8.6.14)
then the matrix L of Exercise 8.7(c) is defined by
_ *Y(o) _
L=t |,y V) =00,
Hence,
n-1
J=1I w, (8.6.15)

i=1

where J is defined by (8.6.9) and the «;’s are as introduced in Exercise 8.7(d).

89. In Exercise 8.7 denote by ® the matrix with elements @,
(a) From (8.6.10) show that the numbers «;, ..., &,_, are the roots of the

polynomial equation
N@—al)y!NT=0, N=@,..,N,). (8.6.16)
(b) Show that the product of the roots in (8.6.16) is given by

n—1
I a,=N® ' N7det ® =N cof (D) N".
=1
Here cof(A) denotes the matrix whose elements are the cofactors of the elements
of the matrix 4.

8.10. With ® defined as in Exercise 8.8 use the results of Exercises 8.6 to 8.9
to show that

_3 % - ] -2 8.6.17)
J= 'a;‘ ax [COf((bx,x, khx,x,) IV¢| (

(4 q

and thus verify (8.3.64).
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8.11. Specialize the result (8.6.17) to two dimensions and show that the result
agrees with (8.2.21).

8.12. In two dimensions let p be the radius of curvature of the curve
d(x) = d(x,) at x =x, and let p’ be the radius of curvature of the boundary
curve h(x) =0 at X = x,,. Show that in (8.6.17)

1L

I
p P

Vol, n=2. (8.6.18)

8.13. Let b{} be the elements of the second fundamental form of differential
geometry at X = X, for the surface ¢(x) = ¢(x,). Similarly, let b% be the elements
of this same form at x = x,, for the surface h(x) = 0. Then show that in (8.6.17)

J=|Vo|" ! |det(b®) — b%)]. (8.6.19)

8.14. Consider

2 2
- 2 y . XY
1% L GC 2 )exp {M [y Sin3 2 ]

as A— oo . Here 9 is the domain x* + y? < 4.

(a) Identify the critical points for this integral.

(b} Let v(x;Xx,), x =(x, y), be the neutralizer defined by (8.4.6)in two dimen-
sions with é, =4, J,=%. Employ this neutralizer to write I(1) as a sum of
integrals thereby isolating the boundary of & from the interior critical point.

dx dy (8.6.20)

8.15. Let I() be given by (8.6.20). For each of the domains listed below,
calculate the asymptotic expansion of I to order 1™ 2,

(@) |x+y|<1,
() x* +yr<4.
() x* +y*<2.

|x—y|<1.

8.16. Let
I(A;0) =, exp{ii[sin x, cos X, sin « + cos x, cos «]} dx; dx,.  (8.6.21)

Here 2 is the domain 0<x, <m/4, 0 <x, <2n. Calculate the asymptotic
expansion to order 2~ *2 of each of the following integrals:

(@) I(1;0).
.n .

(b) I(}_,g)

(©) I(/l;g)-
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0 %)
(e) I( — 4£;0).

8.17. Suppose that the function ¢(x) has a simple stationary point at x = X,
and is C* in a neighborhood of x = x,. Consider the transformation (8.4.16)—
(8.4.18) from z to &€. Use the Taylor series expansion for f(z) to write down the
Taylor series for each ¢2, i=1,2, ..., n. Explain, in terms of these Taylor
series, the nonuniqueness of the transformation from z to &.

8.18. Consider the integral K(A) defined by (8.4.33). Introduce the domain
S,, which is a hypercube centered at & =0, and completely contained in D.
Introduce a second hypercube S, completely contained in S, and centered
at ¢£=0.

(a) Construct an n-dimensional neutralizer v(&;0) having the properties
that (i) it is the product of one-dimensional neutralizers and (ii) it is identically
one inside S, and identically zero outside S, .

(b) Show that we can replace D by S, in (8.4.33) with an error o(A™F)
for any R.

(c) Write the integral over the new domain S, as a product of one-dimensional
integrals and verify (8.4.34).

8.19. Prove Lemma 8.4.5.

8.20. Suppose that

N
I(A) = j9g(iv¢lvz¢ W v(s;0) exp{ily} do. (8.6.22)

Here 2,  and W are defined in the discussion below (8.4.2). The neutralizer
v(o';0) isolates a simple stationary point of {/(s) at 6 = 0.
(a) Assume the results of Exercises 8.7 to 8.10 and show that

. iun

+ —
=4 ()7 - vkt el it + 47} 8623

A i Vel 172 o
Here x = x,, for ¢ =0, J is given by (8.6.17), and
e Y
(b) Show that
. 0x, 0x,

p= mg{(qﬁpq kh,,) a); ai } (8.6.25)
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(c) Show that
= sig[b¥ — b%] (8.6.26)

with the relevant quantities defined in Exercise 8.13.
8.21. (a) Suppose ¢ satisfies (8.4.64) and (8.4.65). Show that
1 uo 1
&(x) — P(xo) =3H [|¢11 [Y2n, + 61, |112/z '12] ; [bimmmmd + -

Here, we sum over repeated indices from 1 to 2 and

bl . .
N =X;— X0, ¢, = af i=1,2, pu=signg,,.

(b) Thus show that to obtain (8.4.70), we first set

X
Z = |¢ull/2 LR +_"1—12/7’72
|61
and determine the remaining constants of the matrix B by requiring that
¢ijk B;, sz By, =0
and
¢ijk Biz sz Bk2 =2.

Here again we sum over repeated indices from 1 to 2.
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Uniform Asymptotic
Eixpansions

9.1. Introduction

As we have seen in earlier chapters, it often occurs that an asymptotic
expansion obtained with respect to a parameter i depends on a second
parameter, say §. Furthermore, it can occur that when this second parameter
takes on a critical value 6, the asymptotic expansion becomes invalid. In that
event we say that the asymptotic expansion is nonuniform with respect to 6.

The Hankel functions HY) (kr), considered in Examples 7.2.2 to 7.2.4 serve
to illustrate what can happen. Here A = kr isa large parameter and 6 = § = a/r
is the second parameter. The expansions (7.2.35) and (7.2.45), valid for <1
and f>1, respectively, are seen to fail when B=pf,=1. For f=1, the
correct expansion is given by (7.2.42). As we observed in Section 7.2, this latter
result is not the limit of either of the former results as f— 1.

Returning to the general situation, it is often possible and very desirable to
obtain an asymptotic expansion which remains valid as 6 varies over a domain
containing a critical value 6, Indeed, this entire chapter shall be devoted to
the development of techniques for the determination of such uniform asymptotic
expansions.

It seems reasonable to expect that, in order to develop a technique for
obtaining a given uniform expansion, we must first ascertain just what is
causing the nonuniformity or anomaly. Thus let us again consider the Hankel
functions and, in particular, the integral representation (7.2.22)<(7.2.23). We

367
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know that for 8 # 1 the exponent w(z; ) has two simple saddle points z =z,
defined by (7.2.26). As B —1, these saddle points approach each other and,
in the limit § = 1, coalesce, producing a single saddle point of order 2 located
at z=n/2. Thus, in the case of the Hankel functions we find that the observed
nonuniformities in the expansions (7.2.35) and (7.2.45) are due to the coalescence
of two simple saddle points.

Of course, there are many other anomalies that can arise. The coalescence
of a saddle point on an endpoint of integration and of a saddle point on a
singularity of the integrand are two further examples.

We might anticipate that the techniques for obtaining the various uniform
expansions will be widely diverse. Fortunately, this is not the case. Indeed, for
the class of problems to be considered in this chapter, namely uniform asymp-
totic expansions of integrals of the form

I(2;0)= j.c g(z;0) exp{iw(z;0)} dz, (9.1.1)

we shall find that there are certain fundamental underlying principles that can
be universally applied.

In the following section, we shall motivate these principles by considering
in detail the problem of two coalescing simple saddle points. We then formulate
and discuss the principles in Section 9.3. Finally in Sections 9.4 to 9.6 we apply
them in the analyses of other important and interesting anomalies.

To conclude this section, we wish to introduce the concept of a useful uniform
asymptotic expansion. Technically, the only criterion for the validity of a
uniform expansion is that the error estimate be independent of the second parame-
ter as that parameter varies throughout some fixed domain. This criterion is trivi-
ally satisfied, however, by the original integral representation itself. Clearly, such a
result is useless.

In general, an integral representation of a function can be viewed as a simply
derived uniform asymptotic expansion with respect to a very complicated
asymptotic sequence. When we seek an asymptotic expansion, the major
purpose is to represent the given function, in terms of functions much simpler
than the original integral representation. It is when we endeavor to employ
too simple an asymptotic sequence, however, that nonuniformities arise.

Thus when dealing with uniform expansions, we must continuously trade off
gains in uniformity against increases in the complexity of the underlying
asymptotic sequence. In practice, we seek a compromise appropriate for the
particular problem at hand. The one qualitative criterion that should always
be kept in mind is that for the final asymptotic expansion to be useful, the
terms in the underlying asymptotic sequence must be significantly simpler than
the original integral representation, at least in the limit of interest.

R T
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9.2. Asymptotic Expansions of Integrals with Two Nearby
Saddle Points

Let us consider the integral
I(A;a) = [c g(z) exp{A w(z;2)} dz, a=(ay,a_). (9.2.1)

Here g(z) and w(z;a) are analytic functions of z in some simply connected
domain containing the contour C and the points z=a .

The exponent w(z;a) is assumed to have simple saddle points at z=a,
and z=o_ when a, # a_. Thus,

w,(ay ;) =w(a_;a)=0; (92.2)
woles ;@) #0, w0 ;@)#0; o, Fa_. 9:23)

We shall assume that these saddle points are free to move in some simply
connected domain which we denote by D,. In particular, therefore, they are
permitted to coalesce in D,. When this occurs we suppose that a single saddle
point of order 2 is produced. This implies that

Weoldy ;) £ 05 ay=a_. (924)

We further suppose that, for each choice of &, in D,, there exists a domain
D, containing D,, outside of which all other saddle points of w lie. Finally,
we assume that z=o, are the dominant critical points for (9.2.1). In other
words, alt other saddle points of w are assumed to lie in the valleys of w with
respect toboth z=«,.

We seek an asymptotic expansion of I(4;a), as A — oo, that remains valid
for a, nearby a_ and, in particular, for a, = a_. Before proceeding, we wish
to point out that, for this problem, we can consider the distance between the

saddle points z=ua, as the second parameter # introduced in Section 9.1.
Thus,

wz(a+ ,1) = sz(a+ ;a) = 0;

O=loy —a_| (9.2.5)

and the critical value 6. is zero. We shall not need to make explicit use of
(9.2.5) however.

As in our discussion of the ordinary method of steepest descent, we anticipate
introducing in (9.2.6) a new variable of integration, say t, which in some sense
will simplify our analysis. To help us arrive at the desired change of variable
z = z(t), let us list some reasonable criteria :

(1) z=z(r) should yield a conformal map of some disc D,=D,, containing
z=0o,, onto a domain D, in the complex t plane. .

(2) The new exponent ¢(t;a) = w(z(t);a) should have in D, two simple
saddle points when o, # «_ that coalesce to a single saddle point of
order 2 when o, =a_.!

! Criteria (1) and (2) are not independent as we shall see.
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(3) ¢(t;a) should be significantly “simpler” than w(z;a).

The simplest form for ¢ would be a polynomial in t. For (2) to be satisfied,
¢ d¢/dt must be a polynomial of at least degree 2. Let us therefore define
z(t) by the equation

wiz;o) = — (2 - y2t> +p = ¢(t;a). 9.2.6)

Here y = y(a) and p = p(a) are to be determined.
By differentiating (9.2.6) with respect to ¢t we obtain

_dz_y -t

zZ= at _,(Z—d) (927)
To satisfy (1) we must require that z be finite and nonzero for all ¢ in ba
(and all z in D,). From (9.2.7) we see that difficulties can only arise when
z=o, and when ¢t= +9. It should be clear that our change of variable must
be such that these points correspond, that is, we must have

t=+y when z=u0,. 9.2.8)

If we make the correspondence (9.2.8) in (9.2.6), then we obtain the following
expressions for y and p.

7 o) - wiasa), 929)

=3{wla ;o) + wla_ ;0)}. (9.2.10)

We note that y is not uniquely determined by (9.2.9). Indeed, when a, # «_,
(9.2.9) defines three values of y. We shall discuss this ambiguity further below.
For now, we merely assume that y and p satisfy (9.2.8) and (9.2.9) respectively
and wish to consider the behavior of z at the saddle points t = +7.

If a, #a_ so that y+0, then by applying L’Hospital’s rule in (9.2.7) we
obtain
N ©9.2.11)

t=+vy wzz(ai ’1)
z=ay

22

which is finite and nonzero. If, however, a, = a_ so that y =0, then we must
apply L’Hospital’s rule twice. This yields
-2

= < =0_ 9.2.12
0 wzzz(a+ ;a) X+ * ( )

which is also finite and nonzero.

We have seen that for z = z(t) to define a conformal map of D, it is necessary
that y and p be defined by (9.2.9) and (9.2.10). It is by no means clear that
these conditions are sufficient. Indeed, we see that, for each value of z, (9.2.6)

R —
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defines three possible values of ¢, that is, there are three branches of the inverse
transformation.

It turns out that there is one branch of the transformation (9.2.6) that defines
for each «, in D; a conformal map of D, The proof of this assertion is quite
involved and we will merely state the relevant theorem which is due to Chester,
Friedman, and Ursell.

THEOREM 9.2.1. For each a, in D,, the transformation (9.2.6) has _]llSt
one branch which defines a conformal map of some disc D, containing «, .
On this branch the points z=«,, z=0a_ correspond respectxvely to t=y
and t = —v.

Let us now reconsider the ambiguity in the determination of y. We can
show that for each of the three possible choices of y, the corresponding regular
branch of (9.2.6) referred to in Theorem 9.2.1 maps the restriction of C to the
domain D, onto a contour asymptotically equivalent to the restriction of one
of the contours C,, C,, C; of Figure 2.5 to the image domain D,. In what
follows, we shall always select that determination of y which leads to an image
contour asymptotically equivalent to C, N D,.

To help clarify this last point, let us consider the mapping z = z() near the
origin in the t plane. We define z = z,, to be the preimage of r = 0. If Az =z — z,
is an increment directed from z =z, to the contour C, then its image At is
approximately a directed increment from the origin to the contour C,. (See
Figure 9.2.1.) Then we have

2n <arg(Af) < g—n, mod 27. (9.2.13)

3

c t Plane

z Plane

z0

Figure 9.2.1.

2For definiteness we can think of D, as the largest disc for which Theorem 9.2.1 holds.
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We now use the approximation
Az=1z|,_ At 9.2.14)
which, together with (9.2.7) yields

2
_ At
Az = e 9.2.15)
Hence
arg(At) = arg [-W(L"y,@-z—] (9.2.16)
so that it follows from (9.2.13) that
; arg Az += arg(wz(zo J0) — = T < argy
1 1 1
<zarg Az + 3 arg(w,(zq;00)) — L mod 7. 9.2.17)

This restricts 7 to be in one of two supplementary sectors of the complex
plane, each having angle /3. This serves to uniquely determine the cube

root in (9.2.9).
Under the transformation (9.2.6) we can write (9.2.1) as
I3;0) = [c o5, Golt:o) exp{Ag(t;y)} dt + &. (9.2.18)
Here
dz
Go(t;2) = g(z(t)) 77 (9.2.19)

which is regular in D, and & is asymptotically negligible being by assumption
exponentially smaller than I itself.

The next step in our procedure is to expand the amplitude G, in a manner
that will allow for the derivation of the uniform expansion. We have previously
introduced the notion that when the integrand vanishes at a critical point of
an integral, the contribution to the asymptotic expansion corresponding to
that point is diminished. To exploit this we set

Golt:0) = ag + ayt + (£ — y2) Holt;0) (9.2.20)

with ao, a,, and H,, to be determined.

We note that if Hg(¢;) is regular in D,, then the last term in (9.2.20) vanishes
at the two saddle points t = +7. Indeed, this last term is proportional to ¢.
To determine a, and a,, we assume H, regular and set t= ty in (9.2.20).
This yields

a = Goly;a) + Go( — 7;3a)
0= 2 )

Go(y;0) — Gol = y30) (9.221)
2y

a, =
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The regularity of G, assures us that a; has a removable singularity at
y = 0. Indeed, we have
““g ao = Go(0;a),
b

lim a, = Go(0;2). (92.22)
v
With a, and a, so determined, it is easy to see that

Ho = Sl = 2=t 9.223)

is regular in 15, and has removable singularities at ¢t = +7. In fact, we have

lim Ho(t a) M al

Jim % 9.2.24)

Upon inserting (9.2.20) into (9.2.18) we obtain

I(A;a) ~ exp{Ap} J‘C i exp{ —l(t;—— y29 } (ag + a,t) dt + Ry(4;a).

Here (9.2.25)

Ro(A;2) = exp{ip} ."c,nﬁ. (t2 —y))Hq(t;0) exp{ - /1(;_3 - y2t> } dt.  (9.2.26)

In the first integral on the right of (9.2.25) we can replace C; N b, by C, itself,
introducing thereby an asymptotically negligible error. From (2.5.10) we see
that the resulting integral can be expressed in terms of the Airy function Ai(x)
and its derivative.

In R,, we integrate by parts. The boundary terms can be ignored again to
within an asymptotically negligible error. Thus, we have

I(A;0) ~ 2mi exp{lp}[ Ai(A%3 2)+—17-_;Ax VR 2)]

+ expl{llp} j ) Gl(t;a)exp{—l(;——yzt)} dt. (9227)

Here

G, (t;a)= Z—tHo(t;a). (9.2.28)

We note that the last term on the right of (9.2.27) is an integral of the form
(9.2.18) multiplied by A~!. Hence, we can apply the above process repeatedly.
In this manner we obtain after N + 1 applications

2/3 ,,2 2101213 2
1(4;0) ~ 27 exp{Ap} [A’(’1 7§ Z 9o Al (fz,a il ) “2"“]+RNA %),
(9.2.29)

' 3
RN(A;a)=l'(N“’exp{lp}L R GNH(t;a)exp{—A(;—— 2t);dt. (9.2.30)
0 b,
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The coefficients a; are given recursively by

_{Gy;90) + Go(— 70}

a; 2 ’
. 216,30 = G (=750}
2n+1 ™ 2,}) >

G..(t;a) =da), -+ Aap+ 1 t+ ([2 . VZ) H"([;(Z), (9231)

G,i4(t;0) H,(t;a),

_4
T dt

n=0,1,2,....

Our claim is that the above formal procedure yields an asymptotic expansion
of I(4;e) that is uniformly valid for 6 =|a, —a_| small. This, of course,
has to be proven. Before offering a proof, we wish to emphasize that the ex-
pansion we have obtained involves a single special function, namely the Airy
function. Indeed, the Airy function and its derivative effect a smooth transition
in the algebraic order in 4 of I, as y —0. We know that for separated simple
saddle points, this algebraic order is 7*/%, while for a single saddle point
of order 2, the order is A~ !/3. Qur expansion mirrors this because both
2713 Ai(A23 9?) and A% Ai'(A*39y?) have algebraic order A7'2 when
[7]2=|vo| 2> 0 while both Ai(0) and Ai'(0) are (1) in 4.

The asymptotic nature of our result is established in the following.

THEOREM 9.2.2. Under the assumptions leading to (9.2.18), the recursive
system (9.2.29)-(9.2.31) yields an asymptotic expansion of I(A;a) as A— o0
with respect to the auxiliary asymptotic sequence {®,(1;a)}. Here

®,(1;0) = exp{Re(1p)} [17" 3 |AI(A23 y3)| + 27" 2B|AT (A2 yH)|].  (9:232)

Moreover, this expansion remains uniformly valid for all a,,a. in D,.

PROOF.> We first use the fact that (9.2.29) is an exact representation except
for an error which, as 41— o, is exponentially smaller than I itself. Then,
because each term in the sums of that equation has the factor 47" and because
G, n=0,1,2,... is analytic in D,, we need only consider I and show that for
A sufficiently large

|I(1;0)| < exp{Re(4p)} [;%[Ai(}?/3 )|+ {—lz—}ﬂAi’(/{m yz)l] (9.2.33)

for some positive constants d,, d; independent of A.
Let us then consider (9.2.27). Clearly, we have that

3 Some of the details of this proof will be left to the exercises.
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. a i
lexp{ip}| IZ‘%A‘(’IM 72+ a5 AV y2)|

a ) a .,
< exp{Re(}.p)}[Ll—j’a| |Ai(A%73 4?)| +% |A1'(A%3 yz)l] (9.2.34)

so that we need only obtain an analogous estimate for

Ro(h;0) = ﬂ’%"—} j . Gy(t;a) exp{ - (;—3- ﬁ)} dt. (9.2.35)

Cin D,

It is convenient to treat two distinct cases.

Casel. |y|<dAi~' Here & is independent of 4 and will be determined
in Case II below. For 4 sufficiently large, the saddle points in (9.2.35) are
confined to a small circle about the origin. To estimate R, in this case, we
first introduce the variable of integration t/y = 1. This yields

3
Ry = % exp{2p} L exp{ iy (T _;_)} G,(y1;0) dt (9.2.36)

with C the image contour. From this representation it is readily seen that
the estimate

IR, | s]‘)—” exp{K8?} exp{Re(ip)} (9.2.37)

holds, where M and K are independent of both A and 7.

Because the arguments of the Airy functions that appear in (9.2.33) are
bounded in magnitude by 62 and, from the theory of ordinary differential
equations, because Ai(f) and Ai'(z) are never simultaneously zero, we can
find constants b, and b, independent of A such that

by |Ai(222 32)| | b, |AT(2 y?
|R0|Sexp{Re(lp)}[°| 1(1/3 P, bl 1(2,3 ”'] 9.2.38)

for A sufficiently large.

CaseIl. |y|>A"'34. Here we introduce the new variable of integration
7 =1t/8 in (9.2.35) to obtain
2

3
Ry =08 A~ exp{ip} J' G,(67;a) exp{ - 283 (%— - %2 ‘L)} dr.  (9.2.39)
c

To estimate R,, we shall apply the method of steepest descent with 5> consi-
dered the large parameter.
Although we shall leave the details of this analysis to the exercises, we note

“that the exponential factor that results in this estimate is the same as that

which results when we replace each Airy function in (9.2.32) by the leading
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term of its asymptotic expansion for large argument. For this to be a valid
procedure, in this case, 2 must be sufficiently large. More precisely, 6> must
be large enough so that for 1%® y? > §% we can bound the right side of (9.2.33)
by replacing Ai(1%/® %) and Ai'(1%/® §2) by the leading terms of their asymptotic
expansions.

With J so determined we can use the stated result concerning the asymptotic
analysis of (9.2.39) to conclude that the estimate (9.2.38) holds in this case also
with possibly different constants by, b,.

Upon combining the results of the two cases above with the estimate (9.2.34)
and upon recalling that (9.2.27) is exact to within an error exponentially smaller
than I, we find that there exist constants d, and d, such that (9.2.33) holds.
This completes the proof.

EXAMPLE 9.2.1. The Hankel function of nearly equal order and argument.
The Hankel function H{!(kr) has the integral representation

ik[r cosz+a(z——g>]

with the contour C, as depicted in Figure 7.2.1. As in Example 7.2.2 we set
A =kr, § = a/r. Then (9.2.40) becomes

HY (kr) =% f exp dz (9.2.40)

1

H().lp)('{) =% J.C exp{iw(z;p)} dz, (9.2.41)
w(z;f) = i[cos z+ B(z - g)] (9.2.42)

In the fundamental strip —n <Re(z) < =, w has two simple saddle points
z=z, when f#1 and a single saddle point of order 2 located at z =r/2
when f=1. We wish to obtain an asymptotic expansion of H{})(1) as 1—
that remains uniformly valid as §— 1.

We first consider the case > 1, that is, the case where the order is larger
than the argument. The saddle points z =z, are now located as shown in
Figure 7.2.4. We readily find that

Wz ;B) = F[Bcosh™ f— JBZ—1], 9.243)

where the expression in brackets is positive. It thus follows from (9.2.9), (9.2.10),
and (9.2.43) that the constants y and p in the transformation (9.2.6) are given by

gg-i= —[Bcosh™' p—/F*—1]; p=0. 6-244)

From (9.2.44) we see that the three possible choices for arg(y) are +n/3and =.
To determine the correct one we use (9.2.17). Here the preimage of t =0 is
z=1z,=n/2 and we have arg(w,(n/2))=n/2. Furthermore, we can take
arg(Az) =x in (9.2.17) which then yields
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G

D',

D3

Figure 9.2.2. The Contours D,’, D,’, Dy’ Are the Images of
Dy, D,, Dy, Respectively, in Figure 7.2.4.

4

5 <arg(y) < I mod= (9.2.45)

12°
Thus arg(y) must be n/3 and we have
y=e"3 {3[Bcosh™! p— /B> —1]}'3, B>1 (9.2.46)

The local configuration of the image contour and the saddle points in the
t plane is shown in Figure 9.2.2. We remark that, except for the different
orientation of the contours, Figure 9.2.2 looks locally like a rotation of Figure
7.2.4. This is as it must be for a conformal mapping. We should check that
this would not be the case if any of the other determinations of arg(y) is used.
For B <1, we use (7.2.28) in (9.2.9) and (9.2.10) to obtain

3 =i[J1=p*=PBcos'f]; p=0. (9.2.47)

Again the term within brackets is positive. Now arg(y) is either 7/6 + 2n/3 or
7/6. If we again take arg(Az) = = and use the fact that now arg(w_(r/2)) = — /2,
then we find from (9.2.17) that

-5

3 <arg(y) < - mod 7. (9.2.48)

12°
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Hence arg(y) = 5n/6 and we have

Y= 31— B2~ Bcos 1 B]}13,  B<l. (9.2.49)

With Y de.termined as above we are now prepared to calculate the coefficients
a; in the uniform expansion (9.2.29). We shall only determine a, and a, here
however. Because g(z) = 1/n in this case, we have

1 dz

Go(t;) = “rdr

(9.2.50)
The minus sign comes from the fact that the image contour in the ¢ plane is
oppositely directed to the contour C, in Figure 2.5.

To find a, and a; we must determine dz/dt at the saddle points. It follows
from (9.2.11), the above determination of y, and the easily calculated expressions
for w,,(z. ;) that

32

3 _ 2 |V| JETEN

t=ty lﬂ -1

We, of course, must choose the correct square root. To do this we observe that
for y small

9.2.51)

5 I+ 2o, .
~ 2,)) 3 arg(z)

=1y

~arg(z, —z_)—argy). (9.2.52)

t=ty

By reading the angles in (9.2.52) from (9.2.46) and Figure 7.2.4 or from (9.2.49)
and Figure 7.2.2, and by using the explicit expressions for y and z,,
we find that

R em’/6 /2 y
=zv
By taking the limit either as 81 1 or as 8 | 1 we find (see Exercise 9.5)
Zmo=21Re"e,  B=1, 8.2.54)

We now insert (9.2.53) and (9.2.54) into (9.2.21) to obtain

2 ;

Qg =
Q113 gnif6 (9.2.55)
o A=l
al = 0.
The uniform asymptotic expansion is given to leading order by
L 232 gmmif3 14 .
H(R) ~ *—— BTU-T Ai(321 e g). (9.2.56)
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Here
(B [Bcosh™! p—/B7—11)"3;  B=1,
@I -peos g Bt

Finally, we point out that to leading order, the limiting nonuniform expansions,
valid when either f§ is bounded away from 1 or when f is equal to 1, can be
readily recovered from (9.2.56). Indeed, suppose that f is bounded away from 1.
Then we can replace the Airy function in (9.2.56) by the leading term of its
asymptotic expansion for complex argument (7.3.16) to recover (7.2.45).

o 9.2.57)

9.3. Underlying Principles

The procedure developed in Section 9.2 for obtaining a uniform asymptotic
expansion, in the case of two nearby saddle points, can be applied with minor
modifications to obtain a variety of uniform expansions. Indeed, the basic
steps can actually be formulated as underlying principles. In this section we
shall briefly discuss these principles.

The first step in the asymptotic analysis of (9.1.1) is always to introduce a
change of variable z = z(f) that replaces the original exponent w by a new
exponent ¢. This transformation should be one-to-one in some domain
containing the critical points of interest while being as simple as possible.
In most instances ¢ will be a polynomial in ¢ of degree n + 1, where n is the
number of the saddle points of w under consideration.* Because a whole
class of problems can be considered by reducing w to a particular ¢, we
usually call ¢ the canonical exponent for the class. Thus, we found in Section
9.2 that, when considering two nearly simple saddle points, the canonical
exponent is a polynomial of degree three.

As a result of the change of variable just discussed a new amplitude function
is obtained. The next step in the analysis is to make a finite expansion of this
amplitude with the following criteria in mind:

(1) The remainder should vanish at all of the critical points that are to
be involved in the uniform expansion. In particular, therefore, the remain-
der should be proportional to ¢.

(2) For all permissible locations of the critical points, the remainder
should have the same smoothness properties as the transformed amplitude.

Upon replacing the transformed amplitude by a finite expansion satisfying
(1) and (2), the integral involving the remainder can be uniformly integrated
by parts. This introduces a remainder integral that is of the same form as
I muitiplied by A~!. The boundary terms are either zero or asymptotically

4 Here a saddle point of order m contributes m to the total n.
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negligible when compared to I. Thus, the leading term of the uniform expansion
involves a finite sum of canonical integrals.

In many instances each canonical integral is asymptotically equivalent to
a well-studied special function. In very complicated problems this need not
be so. Nevertheless, the canonical integrals still define the special function
appropriate for the particular anomaly being studied.

If smoothness permits, then further terms in the uniform expansion can be
obtained by applying the above process to the remainder integral. Indeed,
as in Section 9.2, in most cases an infinite expansion can be obtained by apply-
ing the process repeatedly.

To conclude, we wish to discuss a technical point. In transforming w into
a polynomial of degree n+ 1, there are n.+ 2 constants to be determined.
One of these is simply a scaling factor. If we map the n saddle points of w into
the n saddle points of ¢, then there remains one free constant. In general, we
try to select this free constant so as to facilitate the identification of the canonical
integrals with known special functions. Thus, in Section 9.2, we arbitrarily
selected the coefficient of ¢ in the cubic transformation (9.2.6) to be zero.
This enabled us to directly express the canonical integrals in (9.2.25) in terms
of the Airy function and its derivatives.

9.4. Saddle Point near an Amplitude Critical Point

In this section we shall consider integrals of the form
I(A;0) = [ 2 g(2) exp{d w(z;0)} dz. 9.4.1)

Here g and w are analytic functions in some domain containing the contour
of integration C, the origin, and the point z = ¢. Furthermore, w has a simple
saddle point at z = «, so that

W, (o;) # 0. (9.4.2)

For r not an integer, the factor z" in (9.4.1) introduces a branch point of the
integrand at the origin. For r a negative integer, the origin is a pole, while for
r a positive integer, the origin is a zero.

We assume that the contour C is such that the origin and the saddle point
z=a are the dominant critical points for (9.4.1) as A— c and we seek an
asymptotic expansion of I in this limit which remains valid for « near zero,
that is, for a saddle point near an amplitude critical point. All other saddle
points of w are, of course, bounded away from z=aand z=0.

1f we formally differentiate (9.4.1) with respect to r, then we obtain

J(A;a) = d_dr I(A;0)= L (log z) 2" g(z) exp{Aw(z;a)} dz. 9.4.3)

w,(o;0) =0,

Thus, the case where a saddle point is near a logarithmic branch point can be
recovered from our asymptotic analysis of I.

=
4
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Before proceeding with the analysis, let us make some remarks concerning
the contour C. There are several possibilities that can arise. Indeed, C might
be a contour with endpoints that lie in different valleys of w with respect to
z=o. Alternatively, C may loop around the origin and have both endpoints
in the same valley. Also, for r > — 1, one endpoint of C can be the origin. We
shall not exclude any of these possibilities in our analysis.

Following the discussion of Section 9.3, we first introduce in 9.4.1) the
variable of integration ¢ defined by

2
wz;a) = — 52— —yt+p=lt;0). 9.4.4)

Here we wish to choose y and p so that t = — y is the image of the saddle point
z =a, and the origin is preserved. These conditions yield the relations

P2 =2 {wlo;0) -~ w0;0)},  p=w(0;0). (9.4.5)

As in the problem considered in Section 9.2, we find that for each of the two
possible choices of y, one branch of the inverse transformation t = t(z;0)
remains conformal in some domain containing the critical points even as
a— 0. The point is more readily established here than in Section 9.2. Indeed,
upon solving (9.4.4) for ¢, we obtain

t+y=y*+2[p-wiz;a)] = V2 [wle;e) — wiz;o)]. (9.4.6)
Because t =0 corresponds to z =0 we have that the branch of ¢ = #(z ;%) must

be chosen to that
y=7. (9.4.7)

Then, for the two choices of y, the images differ only by a rotation through 7. Also,
for z near o, we have from (9.4.6)

t+ya/—w,(a;0) (z—a) [1+0z—a)]. (9.4.8)

Hence #(z ;a) is analytic near z = o even when ¢ = 0.
When we use (9.4.4) in (9.4.1) we obtain

I(A;0) ~ IE 1" Golt ;o) exp{Ad(t;2)} dt, 9.4.9)
Golt;2) = (%) 9(2) % (9.4.10)

Here C is a truncation of the image of C under (9.4.4). It is such that G, and ¢
are analytic functions of ¢ in some domain containing C, t=0,and t = — y.
It is readily seen that the error caused by this truncation is asymptotically
negligible.

The function

dz _ _ (t+7y)
- 9.4.11)
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is finite and nonzero near the critical points. Indeed we have
dz)? — 1
dt

me | Wo030) 9.4.12)
Also (z/ty has a removable singularity at the origin even when a=0. We
find that

t=—y

lim lim ( ) (—w,,(0:0))~"2. 9.4.13)

a=0 t—0

Our next step is to expand G, in the appropriate manner. Thus,
we set

Golt;00) = ag + ayt + t(t +y) Holt;0) 9.4.14)
and observe that the last term vanishes at both of the critical points for (9.4.9).
To determine aq and a, we evaluate (9.4.14) at t =0 and ¢t = — y. In this manner
we obtain
Go(0;0) — Go(— 75
4o = Go0:a), = o0 ) o Z 7). (9.4.15)
Hence
v Goltse)—ag—ayt
Hy(t;a) = ) (9.4.16)
has removable singularities at t=0and t = —y.

Upon inserting (9.4.14) into (9.4.9) we obtain

a a
1000~ exp{2p} [ 5555 WAVID + g WiV | + Rold).
(9.4.17)

Here

2

with C one of the contours depicted in Figure 9.4. Just which contour appears
in (9.4.18) depends on the form of the original contour C. Thus if C is a loop
around the origin, then so is C, and so on. The error made in replacing CbyC
is again asymptotically negligible. We remark that W, is related to a solution
of Weber’s differential equation which we briefly dlscussed in Section 2.5.
We shall say more on this below.

The remainder integral

Ro(A;0) = _[5 £+ (¢ + ) Holt ;o) exp{Ag(t;a)} dt (9.4.19)

becomes after an integration by parts,

W (2) = jé £ exp {— L zt} dt (9.4.18)
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Ry(A;0)~ A1 IE  Gy(t;0) exp{Ag(t;a)} dt. 9.4.20)
Here

dH

=-{(r+1) Ho(t; t——°}

{( ) Holt;0) + 1= (9.421)

and we have neglected the boundary contributions because they too are
asymptotically negligible.

Because the integral in (9.4.20) is of the same form as (9.4.9) multiplied by

A;‘ we can apply the above process repeatedly. Indeed after N + 1 steps we

obtain

Y( ) 2n r n
1065 a)~exp{zp}[ (,fmy Y Gt t:% s 3= ] + Ry(h;9).
9.4.22)
The coeflicients a; are defined recursively by

azn= G"(Oa) Ap+1 = Gn(o’“) — G"( —Y ;a)’

Y

Gt = [+ 1) H_ygeso) + ¢ HezpC2), 0.42)

G, 1(£;0) —A—1)— B2p_1 ¢
tt+y) ’

The remainder Ry(4;a) is given asymptotically by
Ry(A;0) ~ A~ ®+D J.E F Gy +4(t;0) exp{Ag} dt. (9.4.24)

The proof of the asymptotic nature of (9.4.22), (9.4.23) follows the same lines
as the corresponding proof in Section 9.2 and will be left to the exercises.

H,_ (t;0)= n=1,2,....

Let us now consider the function W (z) in more detail. We can readily show
that

Y(z)=e 4 W,2) (9.4.25)
is a solution to Weber’s differential equation of order —r —1:
1
y - (r +3+ 4> ¥ =0 (9.4.26)

_ Two linearly independent solutions to this equation often referred to in the
literature are D_,_ ,(z) and D,( — iz). These functions are defined by

2
W(z) = 2i exp [ifcr + % ] sinwr I(r+1)D_,_,(2) (9.4.27)
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G //f--\\cl
N

Figure 9.4. Two Choices of the Contour ¢in (9.4.18).

and
inr 22\
W$2)(z) =./2n exp {"2_ + Z ‘ Dr(lZ). (9.428)
Here
2
W9 = [t exp |-y -a) e 9429)
<

with the contours C,, C, as shown in Figure 9.4.. . .
There are certain special cases that are of particular interest. First, suppose

that r > — 1. Then
o (2 t?
Wz = [2isinmr 7] | ¢ exp { -5 Zt} dt (9:4.30)
0o

which is the appropriate special function for the case where the origin is not
only a branch point but an endpoint of integration as well.
When r is a nonnegative integer

| d " z? =
wiz)=0, WP()=.2n <—£) e, n=0,1,2,...

2 i i
_ /3R 2" exp {%Jr_"z"_'}yf L;} 9.4.31)

R A

SECTION 9.4 Saddle Point near an Amplitude Critical Point | 385

Here 5(t) is the Hermite polynomial of degree n. A solution, linearly
independent of W)(z) in this case is given by

Wz) =2 (~ 1)y (%)” =exp(523) erfc (ﬁ) } (9.4.32)

Here
erfo(x) = | exp( — &) d¢ (9.4.33)

is the complementary error function. We see then that the complimentary

error function is the canonical function for the problem with a fixed saddle

point at the origin and a variable endpoint x that approaches the origin.
Finally, when r is a negative integer

2 oo . z
WO =Gopi2 T (=D f(ﬁ)
W‘_ZZ.(2)=((_T"_)_%T7E ] “ E+izy e 24 n=1,2,... (9.4.34)

We note that the second of these is simply an (n — 1)-fold iterated integral
of erfo(— iz/V2).

EXAMPLE 9.4.1. In Section 7.5 we considered a source problem for the
Klein-Gordon equation. In dimensionless variables, the solution to that
problem is given by (7.5.8)

1 Ay(v;6
Us6) = L . j"gj)g?_ ?)m . (9.435)

Here
Y(v;0)= i{(v2 -1)t2 9 - v}, (9.4.36)

6 =|x|/ct, A= bt,and I" is the contour as depicted in Figure 7.5.1. The constant
b is some characteristic frequency of the problem, x is a spatial coordinate,
and ¢ is time.

As our analysis in Section 7.5 showed, the dominant critical points for
(9.4.35) as - oo are the two saddle points v = + w(6) defined by (7.5.13) and
the pole v = v,. Our objective here is to obtain an asymptotic expansion of
U(Z;0) as - o that remains valid for the saddle point v = ¥(§) near and at
the fixed pole v = v,. In terms of 8, we wish our expansion to remain valid for
0 near and at

_63=1

Vo

0, (9.4.37)

To begin, we suppose that 8 > 6, and use the integral representation (7.5.18)
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for U(4;8). The descent contours D,, D,, D3, D, along with the relative posi-
tions of the saddle points and the pole are shown in Figure 7.5.3. Because the
saddle point at — %(6) is not near the pole, the integral over the contour D3, D,
can be asymptotically evaluated by the method of steepest descent. Indeed
(7.5.21) is uniformly valid in 6 for 8 near 6,.

Thus, we shall focus our attention here on

__exp{y(v;0)} - (9.4.38)

I@;0) = jn‘-n, = vg) V2 = 1)I72

The first step in our analysis should be a translation of coordinates to make
v, the new origin. Then I(4;6) will be of the form (9.4.1). Clearly, such a transla-
tion can be incorporated into the general transformation (9.4.6). We shall
therefore think of the variable v in (9.4.38) and z in (9.4.1) as being the same,
except for a translation, and shall treat them interchangeably for the remainder
of this example. .

The contour D, — D, passes from one valley of the saddle point v(6) to the
other. Thus we should anticipate that the final contour in the ¢ plane will be
the contour C, of Figure 9.4.

Let us now think of 8 near 6, and consider a small neighborhood of v,
and ¥(6) containing a segment of D; — D, near ¥6). We note that in the ¢ plane
all steepest descent paths are horizontal through the saddle points. If we
examine Figure 7.5.3, we see that the transformation from v to ¢ must be such
that the mapping is locally a rotation through angle /4.

For this choice of mapping, we find that in (9.4.6)

y= =267 [ = J1—07 =0V —1+v,]"? (9.4.39)

and

p =yY(vy;0). 9.4.40)
We can check that the bracketed expression in (9.4.39) is positiyz?. Th; saddle
point at ¢t = —y will now be located on the ray through the origin with angle
/4.

To determine the coefficients a, and a, that appear in the uniform expansion
(9.4.17) we first note that

Gol) = 5 L 62— 1) D=, (9.4.41)
(V)
Furthermore, we find that
a,=Go0)=(3—1)""? (9.4.42)

and
— ety 0 [0~ 1],
(W6) — vo) (1 — 6%)%1%

Gol—7) = (9.443)

i

R e
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Hence,

_ 03172 6(0) = vo) (L= 62+ e~y O [32(0) — 1] 12
“= 73(0) — vo) (1 — 677

The uniform expansion is now given by

(9.4.44)

1(2;6) ~ exp{A(vo;0)} |ao W2, (i) + L WP (JIy)|.  (9.445)
7

Here the special functions W'} and W§ are defined by (9.4.29).

To extend the result to the range 6 < 6,, we remark that it is only necessary
to define y so that the saddle point is on the ray through the origin with angle
Sn/4. We find that this can be achieved by simply taking y to be the negative
of (9.4.39). Thus, in (9.4.45), we have

y=F 2™ {— JT=02 =0 V21 +vo'2, £(0-6)20. (9446)

We leave showing that the nonuniform results (7.5.22)—(7.5.24) can be
recovered from the uniform expansion (9.4.45) to the exercises.

9.5. A Class of Integrals That Arise in the Analysis of Precursors

When we studied the Klein-Gordon equation in Section 7.5, we obtained
an asymptotic expansion, for A =bt— oo, of that portion of the solution
called the precursor wave. Indeed, that expansion is given by (7.5.22) and is
valid for (v —1)'/?/vo, <8 =|x|/ct <1. Here v, is a dimensionless source
frequency.

An examination of (7.5.22) shows that the leading term in the expansion
goes to zero as 0 goes to 1, that is, as the front of propagation is approached.
If we examine subsequent terms, however, then we find that they all become
infinite as 6 — 1. Indeed, the second term is proportional to (1 —§%)~1/4
Thus, (7.5.22) must be suspect for 8 near and at 1.

Let us attempt to describe the nature of the anomaly that arises in the expan-
sion (7.5.22) in the limit § = 1. We have that, for 0 < 8 < 1, there are two simple
saddle points of

¥=il(*~1)"26-v]

located at v = + v(6) = + (1 — 0%~ /2, As @ — 1 —, these saddle points coalesce
at infinity producing a saddle point of infinite order. This then is the
mathematical nature of the anomaly, while the underlying physical problem,
we repeat, is to study a signal near its front of propagation.

To motivate further the general problem to be treated below, let us consider
a typical integral representation of a wave or signal traveling in a one-dimen-
sional dispersive medium. As we have seen in Section 2.6, such a representation
has the form
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Ix,) == L g(k) exp{i[kx — w(kyr]} dk. 9.5.1)

Here x is a spatial coordinate, ¢ is time, and w = w(k) is called the dispersion
relation for the problem.

In most physical problems, the group speed (see Section 8.5) C(k) = |dw/dk|
is bounded above by a characteristic speed ¢ and lim . C(k)=c. This
behavior is obtained when the dispersion relation is such that

w=w(k)-—-c[k +E°k£2+o(k"‘)], |k|— . 9.5.2)

Indeed, (9.5.2) will serve to motivate the form of the general problem to be
considered in this section.
Let us now consider the integral

I(2;6) = -21; jr g(k) exp{iA®(k;0)} dk, 0<6<1. (9.5.3)
Here g and ® are analytic functions of k in some neighborhood of the contour
T. T itself is a contour that typically arises in the Fourier transform analysis
of a partial differential equation. In particular, we shall take I to be infinite in
extent and along which Re(k) varies from — oo to + co and |exp{i®} | remains
bounded. Furthermore, we shall assume that I passes above all singularities
of the functions ® and g whose branch cuts are drawn vertically downward in
the k plane.

We further suppose that there exist constants R; and 6, such that, for
|k| = R, and all § in the interval [6;,1], @ has a convergent Laurent expansion

®k;0) = — {k(l -0+ io 2,(0) k"‘}. (9.54)

Here a,(0), n=1,2, 3, ... are known bounded functions of 6 with «,(8) > 0.
[The form of (9.5.4) has, of course, been motivated by (9.5.2).]

We readily find that, for § near 1, ® has two simple saddle points
located at

ay(6)
1-6

k=k,(0)=+ +0(1). (9.5.5)

Moreover, because
; (m) :0) = =
131.1.11 ._(D (k 1(6) ’9) 0, n=1 ’ 2,... (956)

we have that, in this limit, these saddle points coalesce at infinity producing
a saddle point of infinite order.

Let us assume that R, and @, have been chosen so that, for 8¢[6,,1],
k. (6) lie in the region |k| > R,. We shall aliow @ to have a finite number of
additional saddle points but shall insist that they be confined for all 8 in [6,,1]

SECTION 9.5 A Class of Integrals That Arise in the Analysis of Precursors | 389

to some bounded region k| < R, <R,.

tthinally, to be assured that limg,,_I(A;6) exists, we further assume
a

g=k=0*g  r>0. 9.5.7)

Here g has a convergent Laurent expansion for |k| =R, and
lim,. ,, § # 0. l

Under the above assumptions, we can deform I" upward in the k plane onto
a new contour I'"" along which the Laurent expansions of @ and § about infinity
are convergent. Indeed, we may take I" to consist of the real k axis for | k|> R>R
and the upper half of the circle |k| = R, as shown in Figure 9.5. '

Our obgective is to obtain an asymptotic expansion of I(1;0), as A— o
that remains uniformly valid for 6 ¢ [6;,1]. We have been quite detailed in’
our fqrmula_ltion of the problem. We shall be somewhat brief, however, in
our 'dlSCuSSlO.n of the solution because the analysis follows closely thosé of
previous sections.

As usual, the first step is to make a change of variable that reduces the
exponent to a canonical form. With this in mind we set

. 1
O(k:6) = — [yl(o) t+g+ p(0)] = ¢(t:0). 9.5.8)
Because
3 1
dk_ _ (V - 272)
P XU 9.5.9)
F,
r
k_(6) —R, Ry Ry k(8
Figure 9.5.
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we must require that the points k = k ,(6) correspond to the points t = +(2y)~ 1
respectively. This serves to determine y and p with the result

%0) = — {(D(k+(0);0) ; ‘D(k_(e);ﬂ)>’
o= (20010 0)0) 0510

By using (9.5.4) and (9.5.5), we find that,as0—>1—,

78) =2 /(1 = 0) 2,() +O((1 — 6)*%),
p(6) = ag(6) +O(1 — 6). 9.5.11)

The value of dk/dt at the saddle points is obtained by applying L’ Hospital’s
rule in (9.5.9).

(ﬂi) - {_:_F_“ﬂ’)_}m
dt] {i= x2n @, (k. (0);0)

— 40,0 [1 +0JT=0)], 6-1-. (9512
If we use (9.5.8) in (9.5.3), then we obtain
10.;0) =% L 1=4+0 G (£:0) exp{idd(t;0)} dt. (9.5.13)
Here
040 Gyf136) = glkiz:0) L0 9.5.14)

and we note that G,(t;6) has a Laurent expansion that converges all along T
which is the image of I" under the change of variable to t. Furthermore, because
the transformation (9.5.8) is essentially linear for |k| large, the value of r in
(9.5.14) is the same as in (9.5.7), limy,_ o, Go #0 and T is deformable onto a
contour which is of the same form as I"". We shall assume that this deformation
has been accomplished but shall continue to denote the contour by T.

We now expand G, with the usual criteria in mind. Indeed, we set

Golt:0) = ao(0) + a,(6) = + [y* — (46) '] Ho(2;6). (9.5.15)

Here
1 1
aol0) =) —2 5 LAVAS (9.5.16)
1 1
(1:0) -0 (4
2 2
al(e)z{ v 4? y ’
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and we observe that

Go(t;0)—ag—a, t™?
yz _ (4[2)_ 1

is regular at infinity and has removable singularities at t = + (2y)~ !. Moreover,

the functions a, and a, are both 0(1) for 8 in [6,;1].
We now have

Hyt;0) =

9.5.17)

1(2;0) = ao(8) Io(4;60) + a1(6) 1,(4;60) + Ry(4;6). (9.5.18)
Here
v L[ -G+ ;
I{A;6) —EJ‘F t~Utr*Dexplidpl dt, j=0,1 (9.5.19)
and, after an integration by parts,
PN o .
Roldi6) = — 51 L 170+ G,(1,0) exp{ilg} d. 9.5.20)
Here
. —_ r d —(r
Gy(t;0) =1t ¥ [+ D Hy(e;0)] (9.5.21)

which has the same domain of regularit i i
iy g y as G, and is O(1) in ¢

The functif)ns I, and I, are ‘readily expressible in terms of Bessel functions
of the first l'cmd. Indeed, by using a standard integral representation for such
Bessel functions, we obtain

1f4;6)= —exp{ — idp} i(2y e~ 2y *i J, (3y). (9.5.22)

By applying the above process repeatedly we obtain the following
asymptotic expansion :

N
I(2;0)= —exp{ —idp}i > (2ye ™2y*"(i})~"
n=0
X [@2n Jranldy) = 20y 3piy Sy (A9)] + Ry(4360).  (9.5.23)

Here, the coefficients a; are defined recursively by

1 1
Gn(——;9> +G, <—-; )
a4 (6) = ) —2 , %9 ’
to.3) ~. (-39
@i = 2 2y

4y J’

=0,1,2,..,
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G,(t;0) =t Zdi {t7C* H, _(t;0)},

Gn—l(t;e) — Q-2 " Gap-1 et

H,_,(t;0)= T . on=1,2,.... (9524
We find that all of the a;’s are 0(1) for 8 in [6;,1].
The remainder Ry is given by
V- (N+1) .
Ry(2;0) = (—I%F—— J‘F g @M G (¢;6) exp{ile} dt. (9.5.25)

The asymptotic nature of our result can be rigorously established. Indeed,
we have the following theorem which we state without proof.

THEOREM 9.5. The formal series (9.5.23) yields an asymptotic expansion
of I(1;8), as A— oo, with respect to the asymptotic sequence {\¥ (1;6)}. Here

¥,(4;0) = @)ﬂ @Y [ n@D)] + [Frss 0] (9:5.26)

Moreover, this expansion is uniformly valid for ail 8 in [6,,1]. .

We wish to point out that not only is {'¥,(4 ;8)} an asymptotic sequence for
J— co and all 8 in [6,,1], but it is also such a sequence for fixed 4 and y near
zero. Thus, when considering the underlying physical problem, the result
(9.5.23) is useful in describing the precursor region for finite time near the
front of propagation.

EXAMPLE 9.5. We wish here to reconsider the problem treated in Section
7.5. In particular let us investigate the integral

| exp{il®@} dv 9.527)
U0 = 4rpe L (v —vo) 2 = DI’

O=(-1"20-v~—{ul —-0)+%+0(v")}, [v|—> 0, (9.5.28)

in the limit A — oo . We desire an expansion valid for 6 near 1.

We first note that all of the conditions imposed on the general problem
treated in this section are satisfied here. Upon proceeding as in the general
case with k replaced by v, we find thatin 9.5.7)r=1 and

W) =1-6%  p(6)=0. (9.5.29)
We have
t2 dv
Golt;0) = dt (9.5.30)

(v — vo) (v — 1)'/2 2bc
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from which it is a simple matter to calculate a, and a,. Indeed, we
find that

1-— 2 1_92 -1
ao(9)=[ % ibc N (9.5.31)

vl -v3(-69)]""
- 8bc

Thus to leading order with respect to the sequence {¥,} defined by (9.5.26)
we have

a(6)

U(A;0)~ —[2bc] ' [1=v2(1—6%)]"' J1- 62
X [J A JT=0)—i JT=@y0J,(AJT-09)]. (9.532)

We note that here we must choose 0, > 8, = (v2 — 1)"/?/v,.

9.6. Double Integrals of Fourier Type

The principles of Section 9.3 can also be applied to multiple integrals. To
illustrate this, let us consider the double integral

I(A;x0) = [, gx) exp{id $(x;Xo)} dx,  x=(x;,x,).  (96.1)

Here xo =(x,¢, X30) represents the position of the only stationary point of ¢
in a domain 2* containing the bounded simply connected domain of integra-
tion 2. Moreover, we assume that this stationary point is simple, that is,

Vh(x0;x0) =0,  det (B, (Xo3Xo)) # 0. (9.62)

Finally, we assume that both g and ¢ are infinitely differentiable with respect
to x; and x, in 2.

We have seen in Section 8.4 that the nature of the asymptotic expansion of
I(A;xo), as A— oo, is different depending on whether x = x, is interior to 2,
lies on T, the boundary of 2, or is exterior to 9. We seek here an asymptotic
expansion that remains uniformly valid as x, varies throughout the as yet
undefined domain 2*. We shall define 2* more precisely below. We remark
now, however, that the assumption 2* > 9 allows the stationary point to
‘“pass through” the boundary I'.

We begin by applying the transformations used in Section 8.4 to reduce ¢
to either a sum or difference of squares. For convenience we repeat the relevant
equations here but refer the reader to Section 8.4 for a more detailed discussion.
We denote by r the number of positive eigenvalues of the matrix (¢, ,, (Xo;Xo)).
If r=0or r =2, then x =X, is called a center of ¢ while if r = 1, then x = x,
is called a saddle of ¢.
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We set

|4y~ VRY
(x —Xo)" =QR(z—x,)", R= , 9.6.3)
-1/2
0 |4y

(@) = ¢(x(2) ;%) — P(x0;Xo)

r 1 2
~12(zi_xi0)2__ Z (z; — xi0)%3 lz_xol—’O,
2 i=1 2 i=r+1
9.6.4)

(& = Xi0) = hz) = (z; — X;0) + (|2 —Xol),
lz—xo| 0, i=1,2, (965)

2
D E—x0)=2f (9.6.6)

i=r+1l

r 2 r
Z hi — Z hiz'_‘z (& — x0)* —
i=1 i=r+1 i=1

Under the above transformations the domain £ is mapped on to some
domain D(x,) in the & plane. We require that this mapping be one-to-one and
remark that this will be the case whenever the level curves of ¢ along with their
orthogonal trajectories form a simple covering of 2 — x,. We now define Q*
to be the largest domain containing 2 for which the covering property remains
true for all x, in 2*. We denote the image of 2* in the ¢ plane by D*.

If we introduce &,, ¢, as new variables of integration in (9.6.1), then we
obtain

I(05%0) = expfidg(xo; Xo)} | Gal€ix) exp{%w(:—xo) de. (067)
Here
— (&1 —x10, §2 — X20), r=0,
p =& —x10, X20 — £2), r=1,
(€1 — X105 §2 — X20)5 r=2,
=(sgn A, (&, — x;0), 580 A5 (&2 — X20))s (9.6.8)
and
0(x, X;)
Gol&5x0) = g(x(£)) J(E),  J()= L5 (9.6.9)
We now set
Go(&) = Go(xo) + p-Ho.® (9.6.10)

5 Here Q is the orthogonal matrix that diagonalizes (:t,',J (X ;Xo)) such that (9.6.4) holds.
S For ease of notation we suppress the explicit dependence of G, on x,.
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Although H, is not uniquely determined by (9.6.10) we may choose for
its components

Hoo — .‘_1'_1{60(61’62) = Go(x10:82) + Go(&1,X30) — Go(xw,xzo)}
01 — 5

2 {1 — X0
Hy, = %{GO(CI’EZ) - Go(énxz%)zti(;(oxmsfz) - Go(xw,xzo); C96.11)
Here

pi=py=—1, r=0; p=1, pp=-~1, r=1;

W=u,=1, r=2. (9.6.12)

The assumed smoothness properties of ¢ and g imply that the functions Hy;,
i =1, 2 are infinitely differentiable in D.
Upon inserting (9.6.10) into (9.6.7) we obtain

I(4;x4) = CXP{M‘NXO §x0)} {Go(xo 3X0) F(A3X0) + Io(4 §Xo)}s 9.6.13)

where
F(Aixg) = L exp{% pe(E— xo)} de (9.6.14)
and
lo(hixo)= [ (o Ho) exp[ 2 — )} as. ©:6.15)
We now integrate by parts in (9.6.15). This yields

La(ixo) = (=) [, HoN)exp[ ¢ ~xp) | do

+, 6uesx0) exp s ¢~ x0)

ag } (5.6.16)

Here I is the boundary of D, ¢ is arc-length along r , N is the unit outward
normal to I', and

G1(85%0) = Ve H,. (9.6.17)

We observe that the last integral on the right side of (9.6.16) is of the same
form as I(Z;x,). The multiplicative factor (i2)"! then suggests that

101:%) ~ exp{iAd(xo o)} | Golroi¥o) #(hixo
—(—id)! fﬁ H,'N) exp{% pe(& ~ xo)} da] (9.6.18)

represents, to leading order, a uniformly valid asymptotic expansion of I
as A— oo, Moreover,
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. . il
R\(A5x0) = (—iA)™" exp{iAd(Xo;3%o)} f G\(&:%0) CXP{EP'(C_XO)} a (9619
D
is the remainder or error integral.
The above process can be applied to (9.6.19). Indeed, it can be repeatedly
applied yielding after p steps

p=1
k530 = exp{iAdtxo x0)) [ Flhixo) . Gfrosno) (~iB)”
S _ i
=" (i [N e € x| o]

+ (= i2)77 Ry(A:Xo). (9.6.20)

The functions G; and H; are defined recursively by

g =M [G,-(fl,fz) — G(%10,£2) + G 1,X20) — G;(xm,xzo)]
nT2 §1— %10 ’
g.=t [G;(fl’éz) G&1,%20) + GX10,82) — G (xlo,xzo)]
22 $2 — X209
j=0,1,2, ... 9.6.21)
G{o)=VeH,,  j=1,2,.... (9.622)

In (9.6.21) the quantities u, and p, are defined by (9.6.12). The error integral
R, is given by

RiAixg) = expl(idd(xoixa) | GuExd expl 2 p-G— %)t d&  (9.623)
D 2

An examination of (9.6.20) shows that the uniform asymptotic expansion
involves only one double integral #(4;x,), which can be considered the canoni-
cal special function for the problem, and a sequence of one-dimensional
integrals of Fourier type.

The uniform expansion we have derived suffers from some defects. Indeed,
although (9.6.20) appears to involve functions simpler than [ itself, these func-
tions are by no means simple. The canonical function & (4;x,) is not a well-
studied special function and, in particular, it has not been tabulated. To com-
plicate matters, the domain of integration in (9.6.14) depends not only on the
original domain 2 but onthe location of the stationary point x, as well.

We must therefore conclude that the uniform expansion is of limited utility.
We might obtain a more useful result, however, if we give up total uniformity.
We wish now to investigate certain aspects of this idea.

Let us suppose that the statlonary point & = x,, approaches a smooth convex
segment of the boundary curve I'.” We shall denote this segment by I". Let us

7By a smooth segment we mean one with a continuously turning tangent and a well-
defined curvature.
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further suppose that x = x,, is a center of ¢ so that either r =0 or r = 2.

Our objective here is to obtain what we might term a semiuniform asymptotic
expansion of I(4;x,), as A— co. It is to remain valid for all locations of the
stationary point & = X, in a sufficiently small neighborhood of I'.

We start with the uniform expansion (9.6.18). The boundary integral in that
expansion is a one-dimensional integral of Fourier type. If xo is sufficiently
close to I" and, in parncular bounded away from the evolute® of I, then no
special uniform method is needed for the asymptotic analysis of this integral.
In fact, its asymptotic expansion can be obtained via the method described in
Chapter 6. Therefore, in the present discussion we shall not consider the
boundary integral further.

Our main concern will be with the asymptotic expansion of the canonical
function #(4;x,). It is, of course, defined by (9.6.14). We first isolate the segment
I" and the stationary point &=x, by introducing the two-dimensional
neutralizer v(&,, £,). We require that

Il, onD,,

v=l0, on D5}

where the domains D, and D, are as depicted in Figure 9.6. On D, — D,
the value of v varies from O to 1 and v is infinitely differentiable everywhere.
Finally, we require that the evolute of I lies in D.

r}}

&

Figure 9.6.

8 The evolute of I" is the envelope of the normals to I all drawn in the £y, &, plane.
9 D denotes the complement of the domain D,.
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We now write
Fhixo) = [D (&) exp:% P&~ xo)} 4

+ ], =@y ewlS prc—x0)| de

= F(h;x0) + Fli5xy). (9.6.24)

We shall insist that the stationary point & = X, remain in the domain_D, and
hence bounded away from the effective domain of integration in £(4;x,).
As a result, the asymptotic expansion of & can be obtained by the method of
Section 8.4 and it too need not be discussed further.

What we have found therefore is that only %#(4;x,) requires any special
uniform analysis. We first introduce in F (4;x0) new variables of integration
consisting of o, arc-length along I" and 4, arc-length along the normal to I".
We assume that o increases as I is traversed in a counterclockwise manner
and ¢ increases in the direction of the inward normal to I". We also assume
that I' is convex. X

If £€=¢&0) is the equation of I', then the change of variables is
defined by

& =¢&(0) — 6 N(o), (9.6.25)

where N(c) is the unit outward normal to I". We have
1 e—xa=t — & N(g) - x. |2
2”(5 xo)—2|§(‘7) a N(o) xol
=s(c;0); pu=(—-1y?"1'=+1. {9.6.26)

Here p is positive when ¢ has a minimum at x, and g is negative when ¢ has
a maximum at x,. Now we write

F (Aixg) = ] jé v(&(o, ) [1 — k(0)5] exp{iAs(c;8)} do d&. (9.6.27)

Here k(o) = |d*&(0)/do?| is the curvature of the boundary I, D is the image of
D N D, under the transformation (9.6.25), and 1 — k(a) ¢ is the Jacobian of
this transformation. We note that under the assumptions made, in particular
the one concerning the location of the evolute of I', this Jacobian is positive
in D.

To asymptotically evaluate & (4;xo) we seek stationary points of s with
respect to o for fixed 6. From (9.6.26) we obtain

s=p[E-aN][E-aN-x], ()= 9.628)

Because both &(¢) and N(o-) are tangent to f, it follows that § = 0 at that point
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o = g, for which

&oo)[B—x0]=0, B =2Eo0). (9.6.29)

Moreover, we have
8o =, =1~ K(00)F1 [1 = n(50) | B — xo|]- (9.6.30)
Here n = 1 when x, lies in D and 7 = — 1 when x,, is exterior to D. In obtaining

{9.6.30) we have used the Frénet formulas!'® of differential geometry. We leave
the details of its derivation to the exercises.
We now apply the stationary phase formula (6.1.5) to obtain

F(lox ) 2_7‘>”2 e [ 1 — k(0o) & v p
Fasxg~ () e [T [ Lo 2] e, )

xexp{ l[a—r][ﬂ—xoﬂz do. (9.6.31)

Thus, we have reduced our problem to the analysis of a one-
dimensional integral.

As x,, approaches the boundary F |B — x| approaches zero. But for =1,
that is, for x, in D, the stationary point of the exponent in (9.6.31) is located at
G=|B—xo|. Therefore, our problem is to obtain a uniform expansion of the
integral (9.6.31) as the stationary point approaches the endpoint of integration
&=0. This is a special case of the general anomaly treated in Section 9.4.
We find that

» 1/2 e i
fu;xo)~(27"> ef"""[j exp{—“f[&—nlﬂ—xol]z}da
0

+

iphip 42
exp{z |8 xol} [1—(1—nx(ao)|ﬂ~XoI)”2]] 9.6.32)

iuin |B—xo| (1 —nxc(oo) |B—xo )2 )

which holds uniformly for all x4 in D,.

We remark that the first term on the right side of (9.6.32) is a multiple of the
special function known as the Fresnel integral. We readily find by using standard
asymptotic techniques that F (A;xo) =0(A~ ') when x, lies in D,ND and

F(A;x0)=0(1"*2) when x, lies in D, n D¢ and is bounded away from I .
The uniform expansion (9.6.32) effects a smooth transition as x, passes through
the boundary segment I".

To obtain the semiuniform expansion of I to leading order we must obtain
an asymptotic expansion of #(4;x,) correct to O(1~¥2) and an asymptotic
expansion of the boundary integral in (9.6.18) correct to 0(A~'/?). These results

1% For plane curves these formulas are = ~xNand N = x¢ with N the outward normal and
I' convex.
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when combined with (9.6.32) will then yield the desired expansion. We emphasize
that the result is indeed semiuniform in that the stationary point § =X, is
confined to the domain D, .

We wish to comment briefly on one further semiuniform expansion. Let
us again assume that x = x,, is a center of ¢. We can write the exponent of the
boundary integral in (9.6.18) as

s() =’§‘ |&(0) — xo|2. (9.6.33)

Here, as above, & = (o) is the equation of the boundary I and u is defined in
(9.6.26).
Upon differentiating (9.6.33) we obtain

§(0) = 1 T(0) [&(0) ~ o], (9.6.34)
§(0) = — ux(0) N(o)-[&(6) — xo] + 1, 9.6.35)

where T is the unit tangent vector to I" and we have again used the Frenet
formulas.

It follows from (9.6.34) that ¢ =g, is a stationary point of s if §(go) — xo
is normal to I at £ = &(g,). Moreover,

§(00) = u[1 — nx(ao) | &) — Xo|]- (9.6.36)

If |&0,) — xo| = k™ !(0o) and n = 1, that is, if x, lies on the evolute of T,
then 5(g,) =0 and ¢ = 0, is not a simple stationary point. Indeed, for x, near
the evolute, s(o) must have at least two nearby stationary points. In particular,
if §(gp) # 0, then s(o) has two stationary points that coalesce as the stationary
point x, of the original integral I approaches the evolute of the boundary. Let us
suppose that, in fact, x, is confined to a neighborhood of the evolute and that this
neighborhood is small enough that x, is bounded away from I". Then we can
rewrite #(4;X,) as a term arising from an interior stationary point plus a boundary
integral plus lower order terms. We leave the details to the exercises and simply
state the result here:

1)~ expliidinos o) | 22 it

+ 1 j {uGo(xo;xo)(é(a)—xo)
id Jr 16(0) — %o

The error in this result is an integral of the form of I(4) itself multiplied by
(i4)~'. The line integral here has two stationary points which coalesce at o,
when x, approaches the evolute and it has other simple stationary points as
well. These latter may be treated by the method of stationary phase as developed
in Section 6.1. The former may be treated by the method of Section 9.2. This
leads to an asymptotic expansion involving an Airy function and its derivative.
See Exercise 9.18.

+ Ho(f(a))} *N exp[ils(0)} da]. (9.6.37)
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9.7. Exercises

9.1. Consider

1 n/2 N
1) = o L . 9(z) exp{iiw(z;0)} dz. (9.7.1)

Here
w(z;0) = (z tan 2)!/2 — 9z. 9.7.2)

(a) Show that for 0 ~ 1, w has two simple stationary points

z, = + J2AT=0)[1 +00 - 1)], (9.7.3)

which, as 6 — 1, coalesce to a stationary point of order 2.
(b) Assume that z, are the dominant critical points for (9.7.1) and show
formally that

1) = 4712 272R Ai323 21P (9 — 1) [ Yg(+ V2T 0) |
ES

x [1 +O(1P(1 - 6)) +OG> ]— i AT232723 AP(R2P 2130 -1))

g(+/20T=0) sy (1)
x[gi TN Hl+0(/1 (1-6)+0(} ] 9.7.4)

Here it is helpful to use the integral representation
Ay =L [ [2 d 9.7.5
—Zj_wexp‘l -3—+xt t 9.7.5)

for the Airy function of real argument.

9.2. (a) For the integrals of Exercise 7.21, verify that the asymptotic expansions
listed below are valid for ¢ near 1. The functions appearing in these expansions
are defined at the end of the exercise.

u, ~ 2ngA~ '’ exp <_ ’_675) Ai[A23 £(1) e~ 2713]
—aexp {'{4’2 - '(g + 9) } ; (9.7.6)

Uy ~ —2mgi”~ 3 exp (—- %—) Ai(A%3 f2(t) e~ 2m13) 9.7.7)

+a cxp{).d>3 - z(%[ — 6) }
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u, ~ 2migh~ 13 Ai(A?2 f2(£)) + 2i Im <exp [— Iy + 1(% - )D 9.7.8)

~ —anll 1/3 exp( )Al(izufz(t —2ui/3)

—aexp {—/l¢z+i(g—9>},

Ug ~ 21{g,{~1/3 exp< )Al(izufz(t) e2m/3)
_.aexp‘ A¢3+1( +6)}

(% 4)1)1/3’ 0<t$la
f(t)={

Here

i1, 1<y,
(1 =132 2/3 173
¢(t)= e (3067 + 24t + 16),

$2(t) = ¢, (te*™),
d3(1) = ¢, (te*™),

— /T -13,213 | 173 -1/8
a \/;: P+ + 1) s

4 2
AU 12
o=|gm - o]
(b) Show that
lim g(t) =3 ~*2.

t—1

9.3. Consider

I(A) = j'C G(d7) exp{ — 16> Y(x)} d.
Here

2
ll’(") = ? 52 T.

1/3
0=larctan <f\%—> 0<0<§,

9.7.9)

9.7.10)

9.7.11)
(9.7.12)

9.7.13)
(9.7.14)

(9.7.15)

9.7.16)

9.7.17)

9.7.18)

9.7.19)

Suppose that C, is such that the dominant critical point for (9.7.19) is the
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saddle point at 7 = /5.
(a) Show that

3 a2 Y = e o2 e ' y
5 [.p(r) “’(a) ]_ ¢ gy [1 +55 a] (9.7.20)
when we set
A3 Ay '
1/3 6 ll/ 6
o= |y|= 0 =arg(y),
y=A3 6(;..%). (9.7.21)
(b) Introduce a new variable of integration { by the equation
o =15 [dz(z) - .//(%)] (9.7.22)

and then show that

oo 214y, (g)] 9.7.23)

Also show that, in a sufficiently small neighborhood of y =0,
|z—3 <2:5  or ly| <24%13 |y|,

we may invert (9.7.23) to obtain

y=e 02y [1 +f2<§»_)] (9.7.24)

=67 e [1+f3(§>]' 97.29)

Here the power series f; involves nonnegative powers of (/g only.
(c) Show that we may write

G(o7) = [y + f4( )] 9.7.26)
where the power series expansion of G near { = 0 involves nonnegative powers

of y only.
(d) Recast I(4) in the form

) =24"17 L ( )CXp( ol?) d 9.7.27)

and
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and conclude that, in fact, the asymptotic expansion of this integral is an
expansion in inverse powers of ¢. In particular, to leading order,

[I(3)| ~ 4711 67112 |G(y)| exp{3 A Re(y?)}. (9.7.28)

(¢) Use (9.7.28) to estimate the integral (9.2.39) and to obtain analogous
estimates for Ai(A%3 y?) and Ai'(1%3 y?).
(f) Verify the estimate (9.2.33) for the integral (9.2.39).

9.4, Consider
1) = - 902) exp{A w(z)} dz 9.7.29)

and let C be such that a simple saddle point at z =z, is the dominant
critical point.

(a) Follow the lines of Exercise 9.1 to conclude that, in fact, I(A) has
an asymptotic expansion in inverse powers of ¢ = A|w"(z,)| /2.

(b) Suppose that w(z) = w(z;6) has two simple saddle points which coalesce
to yield a saddle point of order 2 when 8 = 0. If z, = z,(0) is one of these saddle
points, then what conjecture can be made about the “nonuniform” asymptotic
expansion of (9.7.29) for 6 *‘small”?

9.5. (a) Set
8 dﬂ'
jl -————\/T:-pﬁ (9.7.30)

and use integration by parts to show that

—cos™! =

_ pnt2 _ pn32 B (1 _ p'2\5/2
—cost p=— U ﬂﬁ) +%(1 1;63) +S ad 154) . (9.731)
1
(b) Use (9.7.31) to show that for y given by (9.2.49)
5m/6 1 2 1/2
v~ ( /f Bl (9.7.32)

{c) Use (9.7.32) to verify (9.2.54).

9.6. (a) In (9.2.56) suppose that § < pf, < 1. Replace the Airy function by
its asymptotic expansion for complex argument (7.3.16) and show that the
resulting nonuniform expansion agrees with (7.2.22), (7.2.34).
(b) Repeat (a) for f = B, > 1 and compare with (7.2.44), (7.2.22).
) Set B =11in(9.2.56) and show that the result agrees with (7.2.42).

9.7. For the integrals of Exercise 7.21 discuss the nature of the uniformly
valid asymptotic expansions for ¢t near zero. In particular discuss

(i) the forms of the canonical exponents,

st R
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(i) the types of special functions that result,
(iii) the general expansion procedure.

98. Let

I(A;x,y)= jl g(&) exp {M[é(é - x)+y\/1 — & é—] } dc. (9.7.33)

(a) Discuss the nature of the asymptotic expansion of I for y >0, x bounded
away from zero, and

x4y =1,

(b) Discuss the nature of the asymptotic expansion of I in the neighborhood
of (x,y)=(0,1).

9.9. Suppose that
I2;0) = g(z) exp{Awl(z;®)} dz,  a=(a1, ..., o%m)-

Let w(z;x) have n saddle points, n = m, one or more of which coalesce for
certain critical values of «. In particular, all of the saddle points coalesce for
« = 0 yielding a single saddle point of order n. Formulate a conjecture about
the nature of an asymptotic expansion of I as 21— co, uniformly valid for a
near zero.

9.10. (a) In (9.4.45), suppose that 6 — 8, =« >0. Use (9.4.31) and (9.4.34)
to obtain asymptotic expansions of W} and W{ and verify that to leading
order, the asymptotic expansion of I(4;6) given by (9.4.45) agrees with (7.5.22).
(b) Repeat for 6 — 0, < —a <0 and (7.5.23).
(c) For 6 = 6, verify that (9.4.45) agrees to leading order with (7.5.24).

9.11. Let
2 _ 1\1/2
1= 8_211_;3/7 explinfz0 - 27+ 1)} dz. 9.7.34)

Here T is a contour which passes above all singularities of the integrand and
along which Re(z) goes from — o0 to «©.
(a) Show that the exponent has two saddle points

0

\/

which coalesce on the branch points at
(b) Show that for 6 near 1/,/2

1) ~2Re {exP [,; - f)_m]

=+ 9.7.35)

—6%
=+41as 9—»1/\/—
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a T :
x LJL W7 ae™) + 7 W ae'"/‘)] } (9.7.36)
Here

=—sgn<6—7>[\/2 0~ /1-6? ]1/2

Wla) = J2m &2+ 2104 D (iz),
=V2(V2- 0+ V1 -

|202 —_ ”1/2(1 — 02)1/4 ]
2(V2 - 0= VI —P)»]

a,=qa le™ir [ao —
(c) Verify that as 8 — 1/v2, ay—> 28 and g, —> — 2" /8¢ix/4
9.12. Use the integral representation
1 [z} J I 22
T =5 (2) e {z - ZE} d (9.7.37)
to verify (9.5.22).
9.13. In (9.5.32) assume that 0 < < 1, replace the Bessel functions by the
leading terms of their asymptotic expansions, and verify that, to leading order,

this result agrees with (7.5.22).

9.14. In his analysis of precursors, Sommerfeld treats the integral

Ulx,t)= — % Jr exp{ikx — wt]} [wz - <2T“)2 ]_ ' do. (9.7.38)

® jo?—of 27
k=2 /wz_wé’ ol =oil+a’), wo>—, (9.7.39)

and I is the usual contour for Fourier integrals passing above all singularities
of the integrand.
(a) Introduce dimensionless variables

Here

_ 2r _ _X .
V= @y’ b= w’o A=wgt, 0= o (9.7.40)

and then show that

U(x,t)=I(A;0) = j e"p{v"lj’g 9} 4y 9.7.41)
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with
2 p)
¢(v;9)=v:9 ”—-—(—”—")—1}- 9.7.42)

vi—1

Also,show that ¢, as a function of v, is of the form (9.5.4) with oy = 0,a; = 0a?/2,
and that (v2 — b?)~ ! is of the form (9.5.7) with r=1 and R, > b.
{(b) Show that, for this example y(6) and p(f) defined by (9.8.11) have the

estimates
7(6) = a 2(1 - ) +O((1 - 6)*?),
p(0)=0(1 — 0),

and that a,(f) and a,(6) defined by (9.5.16) have the estimates

a(6) = — 525 +0(1 = 6),

a,(0) =0(/1 —6).

(c) Show that

10;6) = % JSAT=8) J (ha JHT =)

x [1+0(1 — 6) +0(A(1 — 6))]. (9.7.43)

(d) From the error estimates in (9.7.43) conclude that this result is a good
approximation only for 1 — x/ct and w1 — x/ct) both small.

9.15. Consider

I(A;0)= _f v(x;,%,) exp{iA [sin x, cos x, sin a + cos x; cos o] } dx; dx,.
(9.7.44)

Here D is the domain 0<x, <n/4, —n/4<x,<n/4, and v(x;,X,) is a
neutralizer function equal to 1 inside the circle of radius r < /8 centered at
(m/4,0) and equal to zero outside of the circle of radius n/8.

(a) Show that for a near n/4

I~ —% N, siina exp {i/l cos( - Z)}I:bo Vo(V2 ae™) + Al/z] (9.745)

bO 1 =1 e—iﬂ/4 21/4 1

) a, - v s
: T«
Jsina cos(— _ 7) Jsin a

8
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injdy _ ita® ro —it2/2
\/—ae )= exp{ > 4} ﬁae dt.
(b) Explain why a similar technique cannot be applied as «a — 0.

9.16. (a) Use (9.4.29) to calculate W?,(0). Use this result to calculate I(4;6,)
defined by (9.4.45) to leading order in A. Here 8, is defined by (9.4.37), a, by
(9.4.42), and y by (9.4.46).

(b) With this result and I(4;0) defined by (9.4.38), verify that (9.4.45) agrees
with the nonuniform result (7.5.24).

(c) Use the definitions (9.4.28) for W®), and W and the asymptotic expan-
sions of D (iz) in Exercise 4.6 to recover the nonuniform expansions (7.5.22),
(7.5.23) for + (6 —6,) > 0.

9.17. (a) For s(0;5) defined by (9.6.26) show that
§=p[1 - k5] & [& - Xo] (9.7.46)

and thus verify that the stationary points of the integral (9.6.27) are given by
those g, for which (9.6.29) is true.
(b) Show that

$(0) = u[1 — 5%] €[ ~ %] >
+u[l—ok][—,N-[¢—x0] + 1] 9.7.47)
and verify (9.6.30).

9.18. (a) In (9.6.34) and (9.6.35), show that both $(6)=0 and 5(o) =0 for
6 =0,, if (i) &o,)—x, lies along the normal to the boundary at &o,)
and (ii)

8(00) — Xo| = plo0) (9.7.48)

with p(o,) = k™ (a,) the radius of curvature at o, ; that is, x, lies on the evolute
of the boundary curve I'.
(b) Show that at such a point

§'(00) = — pK(a,o) poo) (9.7.49)

and thus conclude that at such a point, two simple stationary points coalesce
to yield a stationary point of order 2 unless p(c,) = 0 or k(o) = 0.

(c) For s(0,) # 0 discuss the uniform asymptotic expansion of (9.6.37)
for x4 near the evolute under the assumption that the integrand is “neutralized”
away from the two nearby stationary points.

9.19. Suppose in (9.6.13) that X, is an interior center bounded away from f,
the boundary of D.
(a) In (9.6.14) justify the following :
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Flkix) = +2’%‘lﬂ (TS;?,) XO)Tz exp{ + i4u(d(e) = xo)*/2} do (9.7.50)

[1+0(™ ]

Here p = — 1if x, is a maximum of ¢ and u = + 1 if X, is a minimum of ¢.
(b) Explain why (9.6.37) is a two-term approximation in this case when I(4)
is multiplied by exp{—il ¢(xq;x,)}-

9.20. (a) For the integral (9.1.1) under the conditions (9.4.2) suppose
that
w(z;a)=i®(z;a) (9.7.51)

with ® real. Show that in this case
argy=arga — % +0orm, 1= sgn ®"(;a). (9.7.52)

(b) In particular, suppose that the contour C in (9.4.1) is the real axis from
0 to co. In this case, show that the appropriate canonical function is

W(z) = j : £ exp {-% - zz} dt. (9.7.53)
(c) Show that
WP(Le %) = /2 e*1¢'/2 Erfc [Cej_;" /4] (9.7.54)
or
W (Letiv) _eich/thu/4J-+ o ezi:/zd“- (9.7.55)

Here Erfc[x] is the complementary error function defined by (9.4.33) while
the second form is related to the Fresnel integrals

C(x)=(2m)~ 12 j; t~ Y2 cos t dt,
S(x) = (2r)~ 112 j'; t~Y25in t dt. (9.7.56)
(d) Show that
Erfc[(e*™4] - % Jr=— 72—t e [C(L) Fi (LY. (9.7.57)
9.21. Obtain a bound on the error Ry defined by (9.4.24) in terms of the func-

tions W,, W, defined by (9.4.18). Follow the line of proof in Section 9.2 but
replace A 13 in that discussion by 4 ‘2. Use (9.4.25), (9.4.26) to determine a
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second-order ordinary differential equation for W, and verify that W, and
W, cannot simultaneously be zero, thus assuring that Case I follows as in
the proof of Section 9.2. For Case II, follow the line of proof of Exercise 9.3
to establish an expansion for the contribution from the origin in powers of

(A2 w(0;00] 7.

9.22. For the integral S(4;¢) defined by (7.7.31) obtain a uniformly valid
asymptotic expansion for ¢ near /2 in terms of the functions W2, and W§
defined by (9.4.34) and (9.4.31), respectively.

|
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Appendix

In this appendix we list, for convenience, the Mellin transforms of several functions.! In each
case, the original domain of analyticity of the Mellin transform is given. We remark that in deter-
mining many of the Mellin transforms quoted in the text, relationships (2)—(5) below are used.

Function Mellin Transform Strip of Analyticity
1 1 M[f;z] =[5 7 S de @ <Re(z) < B
2 10 M[f;z +v] @ — Re(v) < Re(z) < § — Re(v)
1 z
3 "); 0 ~M|fi=
1@ p> Sulr] ap < Re(z) < fp
4 Sfu); u>0 p*M[f;2] a<Re(z)<f
5 ef’y; pu>0 %;r"“"" M[f;z ‘; ] pa — Re(v) < Re(z) < pf — Re(y)
6 t', O0<t<l1 1
0, 1<t z+v Re(z) > —Relv)
7 0, O0<t«!1 1
r, 1<t T4y Re(z) < —Re(v)
(1=, O0<t<1 T'(v) I'(z)
0, 1<t; Re()>0 By =T 1s) Re(z) > 0
0, O0<t<l1
9 (-1, 1<, B(1 —v—z,v) Re(z) < 1 — Re(v)
Re(v) > 0
10 (148", Re(w)>0 B(z,v ~2) 0 < Re(z) < Re(v)
2 -1, : _
n (P +2tcosy +1)71; _ msin{(z — 1)y} 0<Re(z) <2

—n<yYy<n sin ¢ sin nz

! For a more extensive list, the reader is referred to A. Erdélyi, Ed., Tables of Integral Transforms,
vol. I, McGraw-Hill, New York, 1954. The results of this volume are used here with permission
of the publisher.
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Function

Mellin Transform

Appendix | 415

Strip of Analyticity

X

Me+v+2a]r
2! T+ 1)

F(ﬂ+;+z,“+;—v;u+l;r2)

THv-u+2-2)] ’
0<r<1;

27! Bl -z, {u+ v +12)

25 J I, r>0

Function Mellin Transform Strip of Analyticity
logt, O0<t<1 1
12 ’ -
0, 1<t z? 0 <Re(z)
T
13 log(1+1) — —1<Re(z)<0
14 e”! I'(z) Re(z)>0
15 ettt e*™:2 I(z) O<Re(z)<1
. . (nz
16 sin ¢ I'(z) sm(j) —1<Re(z)<1
17 cos t I'z) cos ("—;) 0<Re(z)<1
2= 1 r (Z ';' II)
18 J.(0 ([tT—%—Z) —Re(u) <Re(z) <3
rie—=
2
yy
»
19 K0 22 r(%) r(”—z—“) Re(z) > |Re()|
Iz +p)
- 24 I T(1 + p)
e " J(0);
20 s Re(z) > — Re(y)
Re() >0 xp@iljijtthu+1;_l)
2 2 r?
(1-p2t r(’—‘;i)
21 HO) —TZ—:—ZT |Re(u)| < Re(z) <4
T &f——r——-=
2
A+t r(’ ’;“)
2 H2() _F(HTz)‘ [Re(u)| < Re(z) <3
2
- g ~2) Tz +p)
23 e 1 (1) — —R < Re(z) <
n 2,\/" T +p-2) e(u) ez) <4
J(tR sin G)e~ R eos 9, _ _
24 . R™T(z + ) P;#/(cos 6) Re(z) > —Re(u)
0<0<§

| x

r(v-g—z+2)r(u—v—z+2\ ’

2 2 /

r=1;
271 i+ v+ 2)]
rYET(v+1)
W+v+zp+z—v
Fi¥————
( 2 2
Tp—v-2z+2)]

B+ 1;-r2)

r>1

—Re(u + v) <Re(z) < 1

26 Ai(r)

32316 (z) (z+1)
= T\3/T\3

Re(z) >0

27 Ai( — 1)

2:z/3-7/6
el (5

7
0 < Re(z) <Z

28 D0

ﬁ I'(z) 201 +py2
z+1- u)
=

z+ll—u.z+1—u._)
"F( 7z 2 !

Re(z) >0
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Index

Abramowitz, M., 68, 178
Airy functions
asymptotic expansion, 166, 268, 285
complex argument, 281ff
first kind, 52
second kind, 52
Airy’s differential equation, 50
Ai(x), Airy function of the first kind,
52

Ascent, direction of, 254
path of, 254
Asymptotic expansion
Poincaré type, 15
in the complex plane, 22
finite expansion, 16
uniqueness, 16
with respect to auxiliary sequence, 19
Asymptotic power series,
definitions, 10, 11
relation to Taylor’s theorem, 12
Asymptotic sequence
in the complex plane, 22
definition and examples, 15
multiplicative, 26
Asymptotically equivalent, 19
Auxiliary sequence, 19

Baker, B. B., 68
Barcilon, V., 319
Berg, L., 417
Bessel functions
H(()l) (1), t— «,98
as kernel of an integral transform,
98
Hg’(kr), H;jl’(kr), asymptotic ex-
pansions, k — o, 268ff
r>a 271
r = a, 273
r < a, 276
H}(“ll)(kr), k = oo, uniform for
r =~ q, 376ff
formula, 378
Jo(x), x> 0,37
1,00,k w
via integration by parts, 97
via stationary phase, 223
via steepest descents, 309, 310
A=, 224
J, (A1), as kernel of Hankel trans-
form, 124
J,(A$(1)), as kernel of Hankel
transform, 242
¢ = O at critical point, 230ff
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Bessel functions (Cont.)
¢ 7 0 at critical point, 243ff
K,(A\),A> =
via Laplace’s method, 193
via Watson’s lemma, 165
K (a),v=> «,213

K, ()
as kernel of an integral transform,
144
with nonmonotonic argument,
193t

Bessel’s differential equation, 64
integral representation of solutions
to, 64
Beyer, W. A., 178
Bi(x), Airy function of the second
kind, 52
Bleistein, N., 251, 319, 411
Boundary
in the context of the generalization
of the method of steepest de-
scents to h-transforms, 280
in the context of the method of steep-
est descents, 254
Bouwkamp, C. J., 178
Bruijn, N. G.de., 319, 417

Carleman, T., 40

Carrier, G. F., 319

Central limit theorem, 298ff

Cesdro sum, 62

Chako, N., 366

Characteristic function, 45

Chester, C., 411

Cirulis, T. T., 417

Coddington, E. A., 68

Compact support, 55

Copson, E. T., 40, 68, 101, 218, 319,
417

Corput, J. G. van der, 86, 101

Critical points, 84

Crook, M., 319

D,()), Weber function, 63, 383

Daniels, H. E., 178

Davis, P., 40

Descent, direction of, 254
path of, 254

Digamma function, 96

Dirichlet kernel, 61

Dispersion relation
form for precursor analysis, 388
for Klein-Gordon equation, 54
for three-dimensional waves, 354

Doetsch, G., 178

E,(x), exponential integral, 2
Elliptic integrals, 172
Erdélyi, A., 40, 68, 90, 101, 218, 251,
411, 417
Euler-Mascheroni constant, 2
Exponential integral
asymptotic expansion for large argu-
ment, 3
asymptotic expansion for small argu-
ment, 2
numerical values, 5

Far-field approximations, 55
Féjer kernel, 62
Feller, W., 68, 178
Felsen, L. B., 411
Feshbach, H., 68
Focke, J., 366
Fourier cosine transform, 77
Fourier integral, asymptotic expansion
formulae, 80, 91, 92
Fourier integral, multidimensional,
340ff
corner contribution, two dimensions,
3491t
correction to stationary phase for-
mula, 347
stationary phase formula, 347
nonsimple stationary point, 351
stationary point of the boundary
integral, 360ff
stationary point of the boundary,
348
two dimensions, center, 360
Fourier sine transform, 77
Fourier transform, 77
Fox, C., 178
Fractional integrals, asymptotic expan-
sion, large argument, 155ff
Friedman, B., 411
Friedrichs, K. O., 319, 417
Fulks, W, 218

Gamma function, 42ff
asymptotic expansion
for complex argument, via inte-
gration by parts, 81ff
for complex argument, via steep-
est descents, 286ff
formulae, 83, 291
via Laplace’s method, 185
incomplete, 43
Granoff, B., 44, 62, 319

Hy) (r), Hankel function, 98
Handelsman, R. A, 178, 218, 251,
319, 411
Hankel transform, 77
asymptotic expansion, 124ff
of nonmonotonic argument, 233
nonzero interior stationary point,
244
Heller, L., 178
Hill, in the context of the generalization
of the method of steepest de-
scents, 280
in the context of the method of
steepest descents, 254
Holomorphic function, 106
h-Transforms of monotonic argument,
A oo, 117ff
formulae, 121, 170
for generalized transforms, 127
h-Transforms of monotonic argument,
x— 0, 130ff
h-Transforms of nonmontonic argu-
ment, A > oo
algebraic kernel, 199ff
nonzero argument at critical point,
200
zero argument at critical point,
201fF
exponential kernel, 187ff
interior critical point, 197
left endpoint critical, 189fF
right endpoint critical, 195ff
oscillatory kernel
left endpoint critical, 230fF
right endpoint critical, 234ff
specialized to J (A$), 233, 242,
244
stationary point of order v, 231

Incomplete gamma function, 43, 62, 135
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Integral transforms, 76ff
Integration by parts, 69ff
for kernel A(1;)), 71
for (1 — 2), 73
for #, 72
for kernel h(\t); h-transforms, 76ff
for h(A¢(2)), ¢'(?) nonzero, 79
for exp(irt), 80
forexp (—At), 81
for kernel (¢t —a)a—1exp(irt), 89fF

J,(¢), Bessel function, 37, 64

Jeffreys, H., 68, 319, 417

Joint probability distribution function,
45

Jones, D. S., 178, 218, 251, 319, 366,
417

K, (t), modified Bessel function, 144,
165

K, transform, 144, 193

Kaplun, S., 40

Kelvin, Lord W. T., 251

Kernel of a transform, 76

Kirchhoff approximation, 55ff, 247, 357

Klein-Gordon equation, 54, 292ff

Kline, M., 366

Lanczos, C., 68
Laplace, P.S., 218
Laplace integral, 181
and integration by parts, 81
multidimensional, 331ff
with simple boundary maximum,
Vé =0, 339
with simple boundary maximum,
Vé =« 0, 340
with simple interior maximum,
337,338,339
in two dimensions, 322ff
with simple boundary maximum,
V¢ = 0, 331
with simple boundary maximum,
V¢ = 0, 325
with simple interior maximum,
329, 360
and Watson’s lemma, 102ff
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Laplace transform, 46, 77
asymptotic expansion, A = o, 122
asymptotic expansion, A = 0, 134
bilateral, 106
generalized, 50ff
inversion formula, 77
Laplace’s formula, 183
Laplace’s method, 180ff
for interior maximum, 183, 196
for interior maximum of order 2n,
197, 210
for the kernel [¢(2)]*
interior maximum, 212
left endpoint maximum, 211
maximum of order B8, 212
right endpoint maximum, 212
for left endpoint maximum, 184
for left endpoint maximum of order

2n, 210
for left endpoint maximum of order
B, 211
for right endpoint critical, 184
Legendre functions

associated, second kind, 63
asymptotic expansions, 213
Levey, L., 411
Lew, J. S., 178, 218, 319
Lewis, R. M., 366, 411
“Locally integrable” defined, 103
Ludwig, D., 411

Marcuvitz, N., 411
Maximum modulus theorem, 257, 302
Mellin transform, 77, 106ff
analytic continuation, 110ff
generalized, 115
Parseval formula, 108
generalized, 126
Millar, R. F., 179
Monkey saddle, 258, 259
Morse, P. M., 68

Neutralized function, 88
Neutralizer, 86fF
Nussenzveig, H. M., 319

Olmstead, W. E., 177

Olver, F. W. ], 179, 218, 319, 417
Order of vanishing, 8
Order relations, 6ff

large “O” defined, 6

small “O” defined, 6

Parseval formula for Mellin transform,
108, 126
Pearson, C. E., 319
Poincaré, H., 40
Poincaré type, see Asymptotic expan-
sion of
Precursor, 294, 297, 387
Primary field, 56
Probability density function, 44
of a quotient of random variables, 46
of a sum of random variables, 44
Probability distribution function, 44
of a product of random variables, 45

Radiation condition, 56
Random variable, 44
Reiss, E. L., 412
Relaxation time, 48
Rice, S. 0., 412
Riekstyn‘s, E. Ja., 417
Riemann, B., 320
Rosser, J. B, 101

Saddle point, 258
Saddle point method, 265
Scattered field, 56
Sirovich, L., 320, 417
Stationary phase, 219ff
formula, 220
with correction terms, 248
left stationary point of order », 222
right stationary point of order p,
222
generalized to h-transforms, see h-
Transforms of nonmonotonic
argument, oscillatory kernels
method of, 222
Stationary phase, multidimensional,
3401t
formula, 347
correction term, 347

two-dimensional center, 360
see also Fourier integral, multidi-
mensional
Stationary point, 220
in n dimensions, 341
of order », 221
simple, 221
Steepest ascent, directions of, paths of,
254
Steepest descent, directions of, paths of,
254
Steepest descents, 262fF
formula, 265
generalized to A-transforms, 280,
316ff
for loop integrals, 305
Stenger, F., 179
Stieltjes transform, 77
asymptotic expansion for large argu-
ment, 123ff
generalized, 140
Stirling’s formula, 83, 186
Stokes, G. G., 40, 251
Stokes line, 23
for the Airy function, 284
Stokes’ phenomenon, 23

Titchmarsh, E. C., 68, 101, 179, 320

Uniformly valid asymptotic expansions,
3676
double integrals with variable posi-
tion stationary point, 393ff
formula, 395
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semiuniform, stationary point near
boundary, 396ff
formula, 399
precursor integral, saddle point at-
taining infinite order, 387ff
formula, 391
saddle point near amplitude critical
point, 380ff
formula, 383ff
two nearby saddle points, 369ff
formula, 373
generalized to n nearby saddle
points, 405
underlying principles, 379ff
Ursell, F., 411, 412

Valley, in the method of steepest de-
scents, 254

Waerden, B. van der, 320
Watson, G. N, 40, 179, 251, 320
Watson’s lemma, 103
for loop integrals, 162, 167ff
Weber function, D,(\), A= 0,167
complex \, 307
Weber’s differential equation, 53
solutions represented as integrals, 63
Whittaker, E. T., 68
Widder, D. V., 68, 101, 179, 218
Woolcock, W. S., 179

Zimmering, S., 179
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