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A Kummer function based alternative Zeta function theory
to solve the Riemann Hypothesis and the Goldbach conjecture

1. The tool set

In order to prove the Riemann Hypothesis (RH) the Polya criterion can not be applied in
combination with the Mintz formula ((TiE) 2.11). The Mintz formula is divergent in the
critical stripe due to the asymptotics behavior of the exponential function. The conceptual
challenge is about the not vanishing constant Fourier term of the Gaussian function and
its related impact on the Poisson summation formula resp. on the corresponding Riemann
duality equation ((EdH) 1.7). The proposed alternative "baseline" function is the Hilbert
transform of the Gaussian function, which is the Dawson function ((Grl) 3.896, (OIF) p.
44)

In the context of the Li(x) function RH approximation criterion we note that the Dawson
function F(v/x) enjoys an only polynomial asymptotics in the form 0(x~%/2). This, as well

as the asymptotics 2dF(x)~”;—x = dlogx, is a consequence of the identity F'(x) + 2xF(x) = 1
((LeN) (9.13.3)).
The Mill’s ration function of the standard normal law, given by

M(x): = e*’ fxwe‘tzdt
is strictly log-convex ((BaA), (RuM)). It is related to the Dawson function by the solutions
of the self-adjoint Whittaker operator (playing a key role in spectral and scattering

theory, e.g. for the 3-D spherical, harmonic quantum oscillator, e.g. (DeJ)) by the
formula (BuH) p. 209)
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We note that the term r(1+2) was the originally introduced notation by Gauss for the

Gamma function, appearing ,to me much more natural and Riemann’s use of it gives me
a welcome opportunity to introduce it" (quote, H. M. Edwards in (EdH), footnote, p. 8).
The Riemann (exact) ,approximation® function is calculated out of the ¢(s) —termr(1+%)

given by ((EdH) 1.16)
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The reIationship between r(1+§) and the Mellin transform of the considered Kummer

dx
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We note that the Mellin transform

fooo x5, Gz _xz)g _ ) _ r(1+2) 0 <Re(s) < 1.

x 1-s s(1-s)

is mirrowing the only formally valid representation of the entire Zeta given by ((EdH)
10.3)
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In ((BuH) p.184) the product representation of the Kummer functions

_ 1 e 2 pz/an
iFi(a, ¢, z) = r(c)ec l_[(l an)e

are provided, where a, denotes the infinite set of zeros of *F,(a,c,z), i.e. the Kummer
functions are elements of the Laguerre-Polya class LP (CaD), which is related to the topic
»~Zeros of certain trigonometric integrals in the context of entire transcendental higher
genus 1 functions® (PoG2).

The fractional part function related Zeta function theory is provided in ((TiE) II). The
Hilbert transform of the fractional part function is given by the log(sinx) —function. A
log(sinx) —function based Zeta function theory deals with a ,Zeta™ function ¢*(s) the form

_ cot(Zs) fan(G(1-5)

¢*(s)

{(s) = (s -

1-s 1-s

The correspondingly defined distributional ("periodical) Hilbert space framework deals
with the Hilbert spaces H#(0,1) Hfl/Z(O,l), H*,(0,1), with its relationship to the Bagchi
reformulation of the Nyman-Beurling RH criterion. This criterion basically becomes a
~dense embedding" argument of Hfl/z(o,l) into H#,(0,1), as the cot and the Zeta function on
the critical line are € #*,(0,1).

The considered Hilbert space in [BaB] is about of all sequences a = {a,|n € N} of complex
numbers such that
Z::l wnlanlz < o0 with % <w, < %

which is isomorph to the Hilbert space H_; = ;1. Let y:={11,1,1,...... }, then it holds

2 _yeol _ 7
yliZ, =¥7 5 =%

i.e. yely', resp. the Zeta function on the critical line £ € H_;(—, ).

Theorem (Bagchi-Nyman criterion, (BaB)): Let

ve={p@®[n=123..} for k=123,..

and I, be the closed linear span of y;. Then the Nyman criterion states that the
following statements are equivalent:

i) The Riemann Hypothesis is true

ii) yel,.

As 1;'/*is dense in I,* with respect to the ;' —norm, then y belongs to the closed linear

span of a double infinite matrix {yf}cen, i.€.
—===llell-1

yelzt =1

if yi e



The zeros of the considered Kummer functions (and therefore also the zeros of the
solution of the corresponding Whittaker eigenvalue equations) enjoy appropriate
behaviors, e.g. for the real part values w, of 5F,(3,%;2riz) it holds (SeA)

i) n—%<wn<n,%<w1<a:=sn:=%—>1nEN
i) 2n—1<2w, <2n < Wy + Wppq <2n+ 1< 2wp41 <2(n+1)
iii) the sequences 2w, and w, + w,, fulfill the Hadamard gap condition
1
Wniy M 1 Wny1+Wnyp (2042 1
Wn s n _1+2n>q>1 resp. W tWnst >2n+1_ 2n+1>q>1
V) fi=oclmn_ O l_q1_9g,
4 2 2 4
For the related sequences a, = %—i , b, = —“’"*;I‘”’ui it therefore follows
i) 0<ay=w, —-<a,—>, =—eb,<b =21
2 2 2 2
i) by —an € (0,3) , bpl—ay€G,1).

The sequence s, = % fulfills the Hardy-Littlewood condition [s,.; — sl <§, i.e. it has a
defined Abel average ((EdH) 12.7)

S1T+S1 T2 +53T 340
10 THrZ4rd4e.

=1L

and (with respect to the Goldbach conjecture below) the following inequalities are valid

The identities n? =1+ 3+ -+ (2n—1) and n(n + 1) = 2+ 4 + - 2n in combination with the
imaginary parts of the zeros of the considered special Kummer function lead to the
inequality

n—é<%22=1wk <n+§

enabling an alternative Rogers-Ramanujan Continued Fraction with corresponding
identities. We note that the integer "2" is not an element of the set 4 := {[2w,],n € N}, i.e.
the Snirelmann density of 4 is <:.

The Kummer function zeros related sequence w, enables the following replacements

eim@nx eim@on)x S(x) = Znezmnx N 5(1) ) =3, ol (2wnyx

2n - 2w,

i — 2 i -
N Wy + Wptq N el”(‘l’n+‘l’n+1 1)x - S()(x) = Zn elm(@Wntwn41—1)x

The number N(T) of zeros of the Zeta function with the ordinate axis values 0 <y, <y, < -
within 0 <t < T in the critical stripe fulfills N(T) = A-TlogT + 0(T), from which it follows the

Theorem 468 ((LaE4) p. 139): the series  S(o) = Z;‘;’zlwe%” is absolutely

. . S
convergent with hmi)1 = ay35.
g-0 log;

With respect to the zeros of the Kummer function above this gives, that the series

Zg3gps'"i“;p”)e‘“’v‘f is absolutely convergent, as well. From (BeB) 5, Corollary 4, we recall

that the representation ((Re(s) > 1)

> (—1)k . ) sin(%s) .,
k=0(2k+1)s‘n( T s )

implies the convergence of the series ¥,p™ sin(%p).



Let H and M denote the Hilbert and the Mellin transform operators. For the Gaussian
function f(x) it holds

MIfI(s) =52 Q) , M[=xf'(®0)](s) = Sn~5/2r Q) = sn~5201()
The corresponding entire Zeta function is given by ([EdH] 1.8)
£(s):= 2T C)(s = Dr~24(s) = (1 = 5) - {()M[=xf'(0)](s) = £(1 — 5).

Replacing the Gaussian function by the Dawson function (which is the Hilbert transform of
the Gaussian function) leads to an alternative entire Zeta function &*(s) in the form

g (s)=2(s— D2 IO tan(Es) - 4(s) = () M [ L [~x - £y 1| ()
with same zeros as &(S), as it holds s(1 - s)&*(s)é* (1 —s) = wé(s)E(1 —s) .

Replacing the Mellin transform of the Gaussian function in the definition of the
&(s) —function goes along with a replacement of the Gauss ,Gamma" function definition

1"(1+§) by

N r* (i) =T (%) tan (% s) _r (E)r(%d) _ r(+H)r(i-2) yo ﬂ

2 r(1-3) e I - O

It results into a correspondingly modified Riemann approximation error function with now
newly three summation terms governed by product fomula

rate=Ja+oeasd
with improved (|li(x) — n(x)| approximation behavior. We mention the product

representation ((AbM) 6.1.3)

a-G?
(1_((21:—1))2 .

rx G) = tan (gs)l'(%) = ge‘ys [T+ %)5/2"

As the Hilbert transform defines a convolution operator, the Dawson function approach
enables the ,zeros of entire functions" analysis techniques in the context of the Hilbert-
Polya conjecture (e.g. (CaD)).

The Dawson function approach also enables an , analysis of zeros of certain trigonometric
integrals and entire higher genus-1 functions® (PoG2), based on the identity ((GrI)
3.896) F(x) = e H(x) With H(x) = x{F (£,;2?).

2

The proposed alternative entire Zeta function E*(l—is) is also suggested to verify the
corresponding Li criteron (LiX). This criterion results from a necessary and sufficient
condition, that the logarithmic of the function E(l—is) be analytic in the unit disk resp. that

the sequence of real constants g, = %;—;[sn_llogﬁ(s)]szl are not-negative (CoM). The proof

of the Li criterion is built on the two representations of the Zeta function, its (product)
representation over all its nontrivial zeros ((HdE) 1.10) and Riemann's integral
representation derived from the Riemann duality equation, based on the Jacobi theta
function ((EdH) 1.8). In (CoF), (Kel) corresponding Li/Keiper constants are considered.



With respect to the binary Goldbach conjecture the above enables a new circle method
on the unit circle, going along with corresponding additive number theory problem
adequate arithmetic functions.

The Landau theorem to build appropriate arithmetic functions, is a special case of the
(PoG1):

Generalized Landau Theorem: Let w(x) a positive, non decreasing function with lim —— wBx) —

n-oo w(ax)
1 with «, g positive numbers. Then
lim "% fC) = [ fOdL .

n-

Applying this theorem in the context of the concpetual approach of this paper leads to
the definitions (see also e.g. (BrK4) Notes 027/37)

05 (x) = %[0(1) @) + 0P @)
with
(1)()() = h-(l)( )Zn<x h(l)( B ) (2)(x) = h(z)( )Zn<x h® (m)
an
hD(x) = —(mx)cot VO (mx) , hP(x) = —(mx)cot@ (mx).

This paper is concerned with completely different topics, but all of those are concerned
with the very ,big" and the very ,small*, what ever it means; the harmonic nhumbers H,
k=17 L might give a frist impression from a number theory point of view: the H, are always

fractions (except for H, =1, H, = 1.5, H, = 2.45), the series is divergent, but the number n
that the sum H,, past 100 is in the size of 10%3, i.e. a computer which takes 107° seconds
to add each new term to the sum will have been completed in not less than 10’
(American) billion years (Hal). The Fourier theory of cardinal functions enables a

correspondingly absolute convergent cardinal series in the form c(x):= S‘“("X)zn__m( 1)n”2” ol
alternatively to =2 (WhJ2). What we propose in this paper is an aIternatlve
approximation term in the form H;;: ——H +— with lim [H —logvVe n| =

For the harmonic numbers 2i, = $3_, -2 = 2Hy, — Hy , Hy = Sty FESP. ¢ =22 2”” it holds the
Fourier series representation (EIL)

glog (tan (gx)) == %sin(Znnx) = —Y ¢, sin(2mnx) € L4(0,1)
Y c2 < o,

The following two a priori estimates ((Hal) p. 47, resp. (Goldbach conjecture) section 1g
below)
1wy

1 1 1 1 1
Z<E(Hn—logn)<5 ’ E—E<an~—5n—z—7—z<

N =

leads to an alternative approximation term in the form

1 1 ) 1 Q)
E<H,*l—log\/e-n=EHn+7n—log\/e-n=E(Hn—logn—1)+7n<1

with

y+1

hm[ (Hy —logn—1)+w"]— -D+1=—F.



2. An alternative entire Zeta function ¢*(s) based on Kummer / Dawson and

N

tan (7‘[5) = cot (n?) functions

Let H and M denote the Hilbert and the Mellin transform operators. For the Gaussian
function f(x) it holds

MIFI(s) = 5721 (), M[=xf"(0)](s) = 2n~*/2r ) =m0
The corresponding entire Zeta function is given by ([EdH] 1.8)

£(s):= 2T C)(s = Dr~24(s) = (1 = 5) - {()M[=xf'(0)](s) = £(1 — 5).
Putting
G(u): = X2, e ™% = ¥ £(nu)

Riemann’s functional equation implies, that the invariant operator g(x) - fowg(ux)G(u)du is
formally self-adjoint. A valid invariant operator would prove the Hilbert Polya conjecture.
But the operator has no transform at all (due to the not vanishing constant Fourier term
of the Gaussian function); that is the integral fowu‘SG(u)du, which is formally represented
in the form ((EdH) 10.3)

2§(s)
s(s—1)

fmu‘SG (wdu =
0

does not converge for any s. The central idea is to replace M[—xf'(x)](s) » M[—fy(x)](s) with

fu():= HIf1(x) (fu(0) = 0) and

leading to the alternative entire Zeta function &*(s) in the form
£ =3 = Dz T tan(%s) - §(5) = ¢(5) - M [ [ fu )] ).
The link to the Zeta functions &(s) resp. ¢(s) is given by the equation

* * _ — f(s)f(l_s)
£ (1 -s) = niECD,

i.e. &(s) and &*(s) do have the same set of zeros in the critical stripe.
The corresponding invariant operator f(x) » fomf(ux)GH(u)du is built on
Gy(u): = XZ% fu(nuw)
replacing Riemann’s auxiliary function ((EdH) 10.3) H(w) = —[u? <= G(w)].
The Kummer function related Mellin transforms are given by the formula (GrI) 7.612

..... _@

I'(a—s)
=@ r(s) , 0 < Re(s) < Re(a) ,

rg-s)

leading to
[ashR (52 —x) 2 =r1(—fs) = =r(1+3) , 0<Re()<1.
The link of the Hermite polynomials to the corresponding Hilbert transform of the
Gaussian (the Dawson function) is given by (AbM), 7.1.15, resp. (RyG)
2 m) e—(x-n 2
e = 0 = 38 = B
h—-0

where x™ and H™ are the zeros and weight factors of the Hermite polynomials. The
operator theory associated with the Hermite polynomials does not extend to the



generalized Hermite polynomials because the even and odd polynomials satisfy different
equations. Nevertheless, in (KrA) a united spectral expansion is provided. In this context
we note that the two sequences {2w,}, {w, + Wy} (With [2w,] =2n -1, [w, + w,41] = 2n) Of the
zeros of 4k, G,%;Zm’z) alternatively applied to the sequences of e?7# satisfy the same
differential equation.

The link to the normal distribution F(x) = [~ e *du resp. to the topic of ,Convolution
Operators and the Zeros of Entire Functions" (CaD), is given by by the formula

ha(2) = [2 (z = is)"dF(s) = [ (z — is)"e ™ ds = 27"Hy(2).

Riemann inverted the formula ((EdH), 1.13)

J(x) = Y A(M)logn =—faa+ll: logd(s)x®— L= Li(x) - ¥, Li(xP) —log2+ [ AL

x t(t2 1) lugt

by means of the Mébius inversion formula, getting ((EdH), 1.17)

xdt
ZIt

m(x) = Li(x) — Ty, Li(xY™) ,  Li(x) = —Li(2), Li(2)~1.04 ..

He suggested a more natural and better approximation in the form
() ~R(x) = Li(x) = B " Li(xm)

However, he was aware of the defects of this approximation and his analysis of it, which
is basically due to fact, that he has no estimate at all of the size of the ,periodic" terms
Y1 X, LiGx”™) ((EdH), 1.17). The Li(x) function RH approximation criterion is given by

|Li(x) — m(x)| = 0(Vxlogx) = 0 (x%ﬂ) ;e> 0.

The challenge to prove the Li(x) function approximation criterion is about the
(exponential) asymptotics of the Gaussian function (which we propose to be replaced by
the Dawson function). Based on the product representations of the Gamma function

1.
a+)°
a+y

(1+)$

a —f;)

1ys/2
(1+n)S
I+

r+s) =1

Fr-s=1II

cr(1+3)=1
the Riemann approximation error function ((EdH) 1.16)

i s dt atieo g logr(l + )
et n s
J; t(t2 — 1)lagt J; tlogt (Z Jdt = Z J. tlagt 2mi logx f ds s d

X as

is calculated from the terms

i[—’”grg“f)] and H(p): ———f‘”’“[—l"“’f‘?]m , (HO) = LiG) — i) .

ds 2milogx "a—1%0 ds

As the alternative entire £"(s) function is going along with the replacement (*) above, this
results into a correspondingly modified Riemann approximation error function with now
newly three summation terms with improved (|li(x) — =(x)| error) convergence behavior.

We mention the Kummer function based representation of the li(x)-function in the form

li(x) = x5 F;(1,1; —logx) ((LeN) (9.13.7)) with the asymptotics

From (ObF), 2.4, we recall the following inverse Mellin transforms:
a*cot (mz) , —-n < Re(z) <1-n,n=0,41,42,... Principle value - n_l(g)"(l - (E))_1

a’tan (mz) , —-n—1/2 <Re(z) <1/2—n, n=0,+1,+2,... Principle value - —n‘l(g)"“/z(l - (g))‘l



3. An alternative Zeta function ¢*(s) based on the cot(zs) = tan (g (1- 25) function

The fractional part function related Zeta function theory is provided in ((TiE) II). The
Hilbert transform of the fractional part function is given by the log(sinx) —function. The
correspondingly defined distributional ("periodical") Hilbert space framework enables the
Bagchi reformulation of the Nyman-Beurling RH criterion, which then becomes basically a
~being dense embedded" argument of H¥, ,(0,1) into H%,(0,1). The H#,(0,1) related
counterpart of the log(sinx) —function is given by the Clausen integral (ChJ) define by

Cl(x) =Y, sin(nx) - —fox log [Zsin%] dy ,x€R

n2

with the periodic properties Cl,(2nm +9) = CL,(+9) = +CI,(¥) and Cl,(n +9) = —Cl,(r — ).

One proof of the Riemann functional equation is based on the fractional part function
p(x), whereby the zeta function ¢(s) in the critical stripe is given by the Mellin transform

{(1-s)= M[—x-p'(x)](s— 1), (TiE) (2.1.5).
The functional equation is given by ((TiE) (2.1.12)

r

{(s) = x(){(1 — ) = o~ 1/2 ISR

The Hilbert transform of the fractional part function p(x) =x - [x] = 2 + iz f”“jﬂe L5(0,1)
is given by p,(x) = z;‘;l% = —2log (2sin(mx)) € L§(0,1), resulting into o', (x) = - cot(mx) =

—2¥%  sin(2mnx) € H*,(0,1). We note that the cot(nx) series representation is Cesaro summable
(mean of order 1) (Brk4) Note 025, (ZyA) VI-3, VII-1).

The corresponding alternative {*(s) function is given by ((Brk4) lemma 1.4, lemma 3.1
(Grl) 1.441, 3.761, 8.334, 8.335)

F-9 =80 15y resp. ¢ (s) = LG o) = S

resp.
log{*(s) = log (tan (1—-5)) +log ( ) + log{(s).

We note the series representation (TiE) 4.14,

xX+i00
Tsrns = 3 S 275 (= Trcot(rrz)— .

The functions log (2sin(x)), cot(nx), sin"?(nx) are also related to the convolution kernels of
the model adequate Pseudo-Differential operators in the context of the proposed new
ground state energy model of the harmonic quantum oscillator model problem.

We recall the following inverse Mellin transform formulas ((NiN) §91/92):

a+ioo b3 das
log (143 =— xS &
og (1 + ) 2mi fa ico sin(ns) s
log(1+x)+y a+ico 1-s__ T __ds
De AT Sx =
1+x 2mi fa ico ll)( ) sm(ns) s

With )= logTx) =T (x)/Fx) and 0<a<1.

We further mention the harmonic number related , Elementary RH criterion™ (Lal):

The RH holds true  iff foreachn>1 ¥;,d < H, + efirlog (H,) .
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The function m cot(mx) is holomorphic except the pole z =1 and the following series
representation is valid ((Grl) 1.442)

_ @ 2cos (2k-1)mx 0  q4\k-1_2 _T
log(cot(mx)) = Z—(Zk—l) ,0<x<1 , Yo (=D it

Replacing the harmonic numbers H, = ’,}=1% by the ,alternative™ harmonic numbers

n
= o
T L2k —

k=1

1 = 2H2n - Hn
and avering of the the two series

1 dt
01—t

1d o _q xk
~log(1-x) = [} L =52, =, +og(1+x) = = Y (k1

results into the representation (ChH)
(H—x) _Zleﬁxz"‘l resp. i 2(1+_x) v 1hkx2k

Based on this results in (EIL) the following series representation and corresponding

regularity results are derived ( ¢, = Zfl”

T(x) = —%log (tan (n§)> = —%log <cot (nlz;x» = Z%sin (m(2n)x) = Y ¢, sin (2mnx)
with
T(x) € L8(0,1) i.e. ¥¥ 2 <.

While T(x) is of same regularity as the fractional part function, its first derivative

1 X _ #
log (tan (n;)) Sm(ns) € H?,(0,1)

is of same regularity as the cot — and the Zeta function on the critical line.
We note that the analysis in (EIL) is based on the (,,orthogonality") formula

f01 log (tan(% x)) cos(kmx) dx = {_

To take advantage out of the convergent series Y., c2 < », we recall the

Lemma (KaM1): Let {n,} be a sequence of integers satisfying the "Hadamard” gap”
condition, i.e. ”;—Zl >q > 1. Then the trigonometric gap series Yj_, ¢ sin (2rn,x) converges

almost everywhere, if and only if, Y7, c2 <o

from which it follows the

znk th

Corollary: the series Y %sin 2rw,x) and ¥ =%sin (m(wy + wis,)x) CONVerge almost everywhere.

The generalization of H, to the real variable is given by
Yx):i=log'I'(x) =TI"(x)/T(x)
since y(n+1) =H, —y ((AbM) (6.3.2)).

For the alternatively proposed y*(x): = ¥(x) +-

= we note the corresponding fomulas

YA +2) =)+ > YA+ =9@ + -

z sin (nx)

Y1 —2z) =y(z) + cot (nz) = Y*(1—2z) =y —2z) + ncot (nz) +

sin (r[x) '
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For any natural number n > 1 the following inequality is valid (ViM):

i.e. the approximation formula H, = logn +y +i is overestimating, which indicates a

correction term in the form Hj; —

sin (Twy)"

The following two a priori estimates ((Hal) p. 47, resp. (Goldbach conjecture) section 1g
below)

1 1 1 101 1w 11
— < =(H, —logn) <= ———<a, =5, —-=—"2—=<-
2n 2( n gn) 2 ! 2 2n n noo2 n 2 2

leads to an alternative approximation term in the form

1 1 ) 1 )
E<H,*1—log\/e- ZEHn+7n—log\/e- ZE(Hn—logn—1)+7n<1

with

Tim [2(Hy — logn— 1) +22| =2 (- D+ 1=22.
In the context of arithmetical functions, g-series and Ramanujan’s theta function we note
the following (BeB1):

The Rogers-Ramanujan Continued Fraction R(q) ((BeB1) (7.1.6)) is connected with the
Rogers-Ramanujan functions

6(@) = Bimo = b H() = Sy e =
D= dn=0 oy T @ae@a)e | T =0 T T (0205 (@05
by
R(q) = q'/° 72
6@’
whereby

(a; qj)n = Hk:o,...(n—1)(1 - aqjk)-

The Rogers-Ramanujan identities have “beautiful combinatorical interpretations, if in the
definition of G(q) write n* =1+ 3+ -+ (2n—1). Then the first identity is equivalent to the
assertion that the number of partitions of a positive number N into distinct parts with
differences at least 2 equals the number of partitions of N into parts congruent to either
1 or 4 modulo 5. For the second identity write n(n + 1) = 2+ 4 + ---2n. Then this identity is
an analytic statement of the fact that the number of partitions of N into distinct parts
with differences at least 2 and with no 1’s is equal to the number of partitions of N ito
parts congruent to either 2 or 3 modulo 5 ((BeB) 7.6).

The identities n? =1+ 3+ -+ (2n—1) and n(n + 1) = 2+ 4 + - 2n in combination with the
imaginary parts of the zeros of the considered special Kummer function lead to the
inequality

12 1
n—-<=Yl.w,<n+-
2 nzk—1 k *3

enabling an alternative Rogers-Ramanujan Continued Fraction with corresponding
identities.
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4. Alternative arithmetical functions based on the Kummer function zeros

The sequences w, (the imaginary parts of the Kummer function zeros) enjoy the following
properties ((KaM1), (KoA) (ZyA), see also (BrK4) Notes S43-49, 05-7, 024-25, 027/37,
Notes 05-07, 013, 015-017)

i) n—%<wn<n,n+%<wn+1<n+1 ,%<w1<a:=sn:=%—>1n€N
i) 2n—1<2w, <2n < Wy + Wpyq <2n+ 1< 20541 <2(n+1)
iii) the sequences 2w, and w, + w,,, fulfill the Hadamard gap condition

>qg>1

1
) n+> 1 Wpi1tw 2n+2 1
s _2=14+—>¢g>1 resp. s —__-—1
Wy n 2n WptWniq 2n+1 2n+1
1

iv) =il _Onoq_l_q_g,
4 2 2 4
For the related sequences a, ==2—> , b, = 21~ jt therefore follows
iii) 0<a1=w1—%5an—>%, §<—bn<b1=w1+(:2_1<1
iv) U by =y € (0,3) , bpl—ay€G,1).

We note that the integer "2" is not an element of the set 4 = {[2w,],n € N}, i.e. the
Snirelmann density of A is <-.

We further note the Mellin transform of the related Kummer function ((GrI) 7.612)

fow x5 Fy (@, ay + 1; —x)‘i—x = % r'(s) , O0<Re(s)<ay,

[ xR . dx o sj2iig (13, ax _r(3) _r(1+y)
o ¥*1 1(an,an+1,—x)? - [, x 1F1(E’E’_x)7_1—s_s(1—s) , 0<Re(s)<1.

The sequence s, = % fulfills the Hardy-Littlewood condition [s,,; — s,| <§, i.e. ithasa
defined Abel average ((EdH) 12.7)

S1T+S1 T2 45334
10 THrZ4rd4e

=1L

As a consequence, the sequence s, enables a point measure, which is s, at n and zero
elsewhere, i.e.

do(x) = doy(x) =

enjoying the identities

lim fp o _
EJ - A
r11 [ r¥dx A—oo  [Fdx

which is a restated Abel average representation of the sequence s,. With respect to the
relationship of series with Hadamard gaps, launary sequences, Abel summability and
Tauberian theorems for distributional point values to local behavior of distributions we
also refer to ((ViJ1) pp. 98, 119, 123, 125).
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2hg
k

The (almost everywhere) convergence of the series ¥,
indicate the following replacements

sin (2nw,x) and ZzTh"sin (m(wy + Wis1)x)

1. cot(nx) = 2 Y%, sin(2nnx)) € H*,(0,1) Cesaro summable (ZyA) VI-3, VII-1)
- cot®(mx):= ¥ sin(m(Rw,)x) € HE(0,1) Abel summable
N cot@ (mx): = ¥ sin (m(w, + wpeq)x € HE(0,1) Abel summable
2. —glog (tan (gx)) = ZZZ—"sin (2mnx)) € L4(0,1) N
N —glog (tan(l) Gx)) = Zhn—"sin (mQw,)) € HF(0,1)
- —glog (tan(Z) (g")) = Z%"Si" (m(wy, + (wnyq)) € HE(0,1)
3.
- [ A (—meotW(nz)Z resp. [0 7 (—m ot @ (mz) L.

(EdH) 12.7: ,The PNT is about the asymptotics equivalence of y(x)~x, which is equivalent to the
statement that dy(x)~dx as a Cesaro average in the context of Tauberian theorems. Hardy-
Littlewood were able to prove the PNT by showing dy(x)~dx as an Abel average, where a
significant amount of work is done by a Tauberian theorem."

The Mangoldt resp. Landau density functions are given by
P(x) = Tnex A(m)  FESP.  9(x) = T, Am)log ()

We propose an alternative density function (based on the sequence s,) to enable a proof in which
all of the work is done by a Tauberian theorem:

What cannot derived from the PNT is the convergence of the series
P log(D =1 .

~The corresponding theorem goes deeper than the PNT, and from it the PNT can be easily
derived" ((LaE) §160). In order to anticipate this finding we suggest to apply the point
measures do,(x) and
9() = Tacaplog (), 9700 =T Plog () C<=ir<2l
(whereby d9 = d9* = d9*), in combination with the Ikehara theorem ((EdH) 12.7).
The convergence of the series
o Miog(y =1 .

n

is related to the proposed Hilbert space H 1 by the identity
2

1—5:1 l ! —il b, =: =i Ly it ! it ) dt
= 1n,u(n) og(n)— 1 - n—.((u,v))_% = lim u(2+l )v(z 1)
n=

w-0 20 —w

where
u(D):= Tia P € H y v(0):= i A € Ho

s S -
n n 2

1,
s—5+lt.

Property v) in combination with the theorem of E. Landau (LaE3) applied for a,, ¢, =
e?man = emon |eads to the estimate

Ve>0 cot (g@) —&=cot (g) —e<Sp =12 onl = |Zm=1 e”i“’"| < cot (g) = cot (EG) .
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5. New arithmetical functions for additive number theory

From the section above we recall 2n -1 < 2w, w, + wpy —1 < 2n, i.€.

1 1 1 1
= —_— = —c (_ _)
In 20y’ f WpFwns—1 2n’ 2n—1

indicating a replacement of

B(x) = Zanlog(g) - B(x) :=% Z a"lOg(ZXTn)-'- Z a, log (ﬁ)

n<x n<
nodd neven

with dg = == dp* for a proper addtive arithmetic function definition in line with an integer
subset A* = {0} U {1} U {20, 0, + w,,, — 1} with Snirelmann density 2 >

We note the inequality

4n—1=(2n—§)+(2n+%)—1<{2wn}+{wn+wn+1—1}=gi+i<(2n+%)+(2n+%)—1=4n.

n

For the fractional part function p(x) = x - [x] = + X, 2™ € 15(0,1) we recall the (PoG1):

Landau theorem: Let g, denote a divergent sequence of positive numbers 0 < ¢, < g, <
qs < - lim g, = o, t(x) the corresponding counting function of the numbers of g, less

n—-oo

than < x and w(x) a positive, non decreasing function with

Y@Y — 1, and lim S — g,
n-oo W(x) n-oo x
Then
lim == —— Ve P( ) =

We mention that a consequence of the condition 11m W(x) =1is lim W(bf =1 for any
n—oo
positive a,b > 0 and the formulas 22%¥ = 2¢psx resp, LY — 10820
cotx 2 sin“(x)

The Landau theorem above is a special case of the (PoG1):

Generalized Landau Theorem: Let w(x) a positive, non decreasing function with lim —— wibx)

n—oo w(ax)

1 with «, B positive numbers. Then
lim "5, fC) = [, Ot .

n—oo

For h(x) = (nx)cot(mx) it holds h(x) »,.,— 1 and f01 h(;—c)dx =log2 ((Grl) 3.747). Then for w(x) :=
) and f(x) = h() one gets
O rE) =2n(3)r(Z) and [ f(0)dt = log2 = —logé (0).

x x x 2n

Putting AW (x) == —(mx)cot D (nx) , h®(x) = —(mx)cot @ (mx) this enables the following arithmetic
function definitions
010 = 14 (3) Znexh (37) 0 @) = 18O (2) Znech® (555) 1 0200 3= 10 (1) Zneeh® (523)

With respect to the additive number theory (and to be considered prime pairs (p,q)) we
propose to deal with

o%(x) = [0-(1) (x) + 0'(2) (x)]
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The regular varying function concept was introduced by Karamata (SeE).
Lemma ((VIV), 1.3): if v(x) is differentiable for x > x, and there is a limit ;m%ﬁ)—» a, then
u(bx) _

v(x) is automodel (or regular varying) of order «, i.e. lim 255 be.

Therefore, a further candidate for w(x) is given by k(x) = —cot (z%), which is a slow regular
varying (automodel) of order zero ((EsR) 3.9.8). The above criterion is fulfilled, as

xk'((x) _ nx
k(x)  sin(mx)"

Further candidates for f(x) are e.g.

i) f1(x) = —log (sinmx) with fol fi(®)dt = log2 (Grl) 4.384
i) f2(x) = —h (g) = —h(x) = % - (gx) cot (gx) with fol f>(6)dt = log (g) (GrI) 3.788
iii) f3(x) = log (a “tan (ng)) with folfg(t)dt =loga, a>0 (Grl) 4.227.

Typical examples of slow varying functions are positive constants or functions converging
to a positive constant, logarithms and iterated logarithms. Specifically the function —logx
is slowly varying at x = 0* ((SeE) p. 47), which will be applied in the following section.

Every regular varying function f of order a« has a representation f(x) = x*L(x), where L is
some slow varying function (MiT).

A general representation of slow regular varying functions is given by the

Theorem 1.2 (SeE): A positive measurable function L on [x,, o[ is @ slow varying function
if and only if it can be written in the form
LGO = e,,(x)+f;0€(y)ciy_y

where v(*) is @ measurable bounded function, such that lim v(x) = ¢ (J¢| < ) and &(x) - 0

as x —» o ,

Comparison Tauberian theorems are about the asymptotics behavior of the ratio of some
integral transforms of two functions (distributions), if the asymptotic behavior of the ratio
of some other integral transform is given ((EsR), (VIV)). In ((VIV) the Abel and Cesaro
series summation with respect to an automodel weight, as well as asymptotic properties
of solutions of convolution equations are considered.

Karamata’s Tauberian theorem involving regular variations are provided in ((SeE) 2.2)

Theorem 2.3: Let U(x) be a monotone non-decreasing function on [0,o[ such that
w(x) = f:j e *dU(u) is finite for all x > 0. Then, if p =0, and L is a slowly varing function,

L(x)
r'(p+1)
LR
r(p+1)

i) if wx)= x‘pL(i) as x - 0" then U(x)~x? all x - o

i) if wx)=x"L(x)as x - o then U(x)~x” all x - 0t

The corresponding ,density" extension of this theorem is provided in

Theorem 2.4: Let U(x), defined and positive on [4,»[ for some given A sufficiently large,

xu(x)—»p as x — oo,

U(x)

xPL(x) then

Another such theorem, using both parts i) and ii) of theorem 2.3 above is provided in

theorem 2.5, which is about the asymptotics [ (‘:ff)l ~xPL(x).
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6. Dirichlet series and the (distributional) Hilbert space H*, , = I,"/*

In this section we are concerned with Hilbert scales H? = ¢ , a € R, which is built on
the 2 —periodic Hilbert space Lj(r) with I := $1(R?), i.e. I is the boundary of the unit
circle sphere. Then for u € L%(r) and for real g e R, n € Z the Fourier coefficients

Uy = %fu(x)einwx
enable the definition of the norms ((BrK), (Brk3,6,7))
lullf = X —colnl uy |2
With the notation of [LaE] §227, Satz 40, the for s > 0 convergent Dirichlet series

(in a classical L., resp. C° sense, where H,, is a subset of C° for k 2%+ ge>0)

f(s) = iane‘s"’g "og(s)= i“bne’SIDg n
1 1

are linked to the (distributional) Hilbert space H*,, =I;*’? by ((EdH) 9.8, (NaS))

-1/2 =

1 . . =1, .
(f.9)4, = lma_[}f @/2+ityg/2—it)dt =Zl“ﬁanbn

Let s =0 +it and u, = logd; and the series ¥*_, a,e #* convergent; then if 6 >0
the following definite integral representation is given (HaG)

dx

1 (o)
© —UnS s —A s]
—q1anpe "M = xX° |ape ™
Zn—l n r(s) fO [ n x

leading to the

Perron theorem ((HaG) theorem 13): if the series ¥2_, a,e~** is convergent for s =

1 rctoo ds
i decion [ () € = =Ykor ak,

the path of integration being the line ¢ = c. At a point of discontinuity w = 15 the
integral has a value hlaf-way between ist limits on either side, but in this case the
integral must regarded as being defined by ist principal value.
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For ' := S1(R?), the operators defined by the the single layer potential, the normal
derivative of the double layer potential and the Hilbert transform ((KrR) theorems
8.20, 8.21, (LiI), a = —%) leads to the following representations (a € R) (LiI1):

1 1 . o Cos(2nmx
S_y:Hy - Hypy S_q[ul(x) =2 [ log m‘ u(y)dy , —log2sin(mx) = X, =
e # _101_ u) T 1?_ ge 1
Si:Ha1 = He Silul () = 270 sin2(m(x-y)) dy [sin (‘rtx)] = 2% (x—-n)?
# # 1 1 o 1 1
So:Hav12 = Hav1y2 Solul(x) = fo cot(m(x — y)u(y)dy, mcot(mx) = =T Z;::) T ;]-

For the two self-adjoint operators s_;, 5, it holds (S_4[ul,v)g = (w,v)g-1/2 , (S1lul,v)p =
(u,v)g4+1/2 , fOr the Hilbert transform operator it holds (Solul, v)p = —(u, So[v])g, i.€. the
three convolutions integrals are Pseudo-Differential operators of order -1, 1, 0,
defining corresponding isomorphisms between the corresponding domains and
ranges.

As the function log% is slowly varying at x = 0* ((SeE) p. 47), the kernel function of s_;[u]
is slowly varying at

_{zﬂ_1éﬁﬁié+u eEN

2u ii—peN

With respect to the kernel functions of s;[u], S,[u] we note the relationships

d3 . d? d 1
1 [log (sinx)] = 5 [—cotx] = 7 [

1

sin?x

= (— a_ 14 2
= (—cotx) dx[ cotx] = = [cot?x]

] = (—cotx)

with its relationship to the Claussen function ((AbM) 27.8, (BrK4) Notes 027,28).

For the (transformed) Zeta function on the critical line = it holds Z € H?, , i.e. there
exists a convolution integral representation of the Zeta function by an unique w €
HE with s;[w](x) = Z(x) (CaD). It leads to the corresponding variational
representation in the form

Silwlv)-1 = (@) 172 = (E,v) -y, Vv € HYy

The distributional H_,, Hilbert space framework enables the Bagchi RH criterion,
which is a reformulation of the Nyman-Beurling RH criterion (BaB). It is basically a
standard density argument of the Hilbert sub-space Hfl/z, which is densely
embedded into H*, with respect to the H*, — norm ((BrK4) remark 3.5, notes S21 &
24, see also ,Riesz theory" ((KrR) chapter 3). The corresponding approximating
sequence =,* of the Zeta function = is defined by

(@nv)o1y2 = (En" v)o1 , VO EHLy 5
From (LiI) 1.2.34, we mention
Silay, cos(2nnx) + by, sin(2nnx)](x) = —2n[a, cos(2mnx) + b, sin(2nnx)]

With its relationship to the concept of logarithmic capacity of sets and convergence
of Fourier series of functions fulfilling Y.¥ n[a2 + bZ] and harmonic analysis ((ZyA) V-11,
(BrK4) remarks 4.1, 4.2, Notes S37/38).
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From the representation (EIL)
glog (tan (ng)) = glog (cot (n 1_Tx)) = —Z—sm (r(2n)x) € H¥(0,1)

with the harmonic numbers 2x,:= =2H,, - H, and H, = Q=1% it follows

K= 12k 1
glog' (tan (7‘[2)) = —2m Y, 2h, cos (m(2n)x) € H*,(0,1).

From the equations log’ (tan (E)) =, log’ (2sin(x)) = cotx, —— 1cosx

sinx

= tan (—x) one gets

2%109’ (tan (%x)) =—nlog’ (cot (gx)) = Smnm , —logv(sin(nx)) = —mcot (mx)

and
1—cos(mx)
sin(mx)

mtan (%x) =2 glog’ (tan (2 )) —log’ (sm(n’x)) =5 (nx) —mcot(mx) =m
With
—log'(sin(nx)) = ¥ sin (w(2n)x) € H*;(0,1)

one gets the following Fourier series representation
tan (gx) = — ¥ {8h, cos(2mnx) — sin ((2mnx)}) € H#,(0,1) .

With respect to the Bagchi criterion and its related Hilbert space H#, we further
mention the relationship to the Brownian motion B(t) = fotdB(r), which is obtained as
the integral of the white noise signal dB(t), which is distribution. Its spectral density
Ey = |Fourier[B](w)|* = constant is flat. Therefore the energy spectrum of the Brownian
motion is given by E(w) = |Fourier[B](w)|? = £2.

The Wiener-Ikehara theorem was devised to obtain a simple proof of the PNT. In this
theorem the boundary behavior of a Laplace transform in the complex plane plays a
crucial role. The distributional version of this theorem shows that local pseudofunction
boundary behavior, which allows mild singularities, is necessary and sufficient for the
desired asymptotic relation. It follows that the twin-prime conjecture is equivalent to a
pseudofunction boundary behavior of a certain analytic function (KoJ).

In (Vil), (Vil1) a proof of the PNT is provided, based on the Dirac function § e H_,/,_, in
combination with the concept of quasi-asymptotically bounded distributions defined by

E& () =0(1) for 9 > .

The density of the Mangoldt function y(x) = ¥,..A®) is then given by ((Brk4) Note S17)

W00 = z AmSG-m € H 1,

n<x

We propose an alternative quasi-asymptotically bounded H_;,, distributions concept
defined by

1;1*00 (9(19) ()) 12 =0(1), VoEH 1 >

leading to a replacement in the form ((BrK4) Note S19)

YEH., - SipleH
defined by
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The approximation by polynomials in a complex domain leads to several notions and
theorems of convergence related to Newton-Gaussian and cardinal series. The latter one
are closely connected with certain aspects of the theory of Fourier series and integrals.
Under sufficiently strong conditions the cardinal function can be resolved by Fourier's
integral. Those conditions can be considerably relaxed by introducing Stieltjes integrals
resulting in (C,1) summable series ((Wh]1) theorems 16 & 17, (BrK4) Remarks 3.6/3.7).
With respect to interpolations theory with points of sequences ¢, (with respect to the
Newton-Gauss and cardinal series), the corresponding cardinal series theory with certain
aspects of the theory of Fourier series and integrals, especially Fourier-Stieltjes series
and related convergent series in the form

o 1
D~ llan] +laa) < o
n=1

we refer to ((WhJ1), (Wh]2), (BrK4) Remarks 3.6 & 3.7, pp 105ff).

We recall the very ,slow"™ divergence of the monoton increasing (harmonic numbers)
sequence H, = }(1:1% ,e.g. [H,] =1forn=1,2, [H,] =2for n=6, [H,] =5 for n~102, [H,] =
14 for n~10%, [H,] = 100 for n~43 (Hal).

Putting a, = h,:= Stoi 2= = Hza — 3 H, , a_n = —h, the theorem 2 in (WhJ2), then leads to the
Lemma: the cardinal series
Cyi= Ty (-1
is absolutely convergent, and its sum is of the form
J, {cos(mxt) dg(¢) + sin(mxt) dw(t)}, @, continuous functions.

Given any function f(x) of this form the series

sinT(Zrtx) ] [@"'i(_l)"{f(n) +f(—n)}

X X—n xX+n

is (€,1) — summable to f(x).

We propose to apply c(x):= =5z . (-1)"= alternatively to =2 . In the context of the
Zeta function related Ramanuja formulawe refer to (EdH) 10.10.

In the context of representations of coefficient sums by integrals we recall from (LaE2),
§86 the

Lemma: Let D(s) = 2;‘;1% denote an absolute convergent Dirichlet series (a := Re(s)) and

X

i inot integer
i integer

Then

— lim L [+ sds L fatieD(s) 545 _ g x
f(x)—rllm [ D(s)x —  resp. sza—ioo —x*— =Tl bylog ©)

Soo 2mi Ya—it
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With respect to the physical aspects we refer to (NaS), where the H_;,, dual space of
H_;,, on the circle (with its inner product defined by a Stieltjes integral) is considered in
the context of Teichmiiller theory and the universal period mapping via quantum
calculus. For the corresponding Fourier series analysis we refer to ((ZyA) XIII, 11).

The common denominator of the alternatively proposed Hilbert space framework H_;/,

goes along with the definition of a correspondingly defined "momentum" operator (of
order 1) P: H,,, » H_,/, defined in a variational form.

In the one-dimensional case the Hilbert transform H (in the n>1 case the Riesz operators
R) is linked to such an operator given by (Pu,v)_, ;) = (Hu,v). With respect to quantum
theory this indicates an alternative Schrodinger momentum operator (where the gradient
operator "grad" is basically replaced by the Hilbert transformed gradient, i.e. P:=-
i*R(grad) and a corresponding alternative commutator representation QP-PQ in a weak
H_;/, form.

We note that the Riesz operators R commute with translations and homothesis and enjoy
nice properties relative to rotations.

The theory of spectral expansions of non-bounded self-adjoint operator is connected with
the notions "Lebesgue-Stieltjes integral" and "functional Hilbert equation for resolvents
((LuL) (7.8). The corresponding Hilbert scale framework plays also a key role on the
inverse problem for the double layer potential. The corresponding model problem (w/o
any compact disturbance operator) with the Newton kernel enjoys a double layer
potential integral operator with the eigenvalue 1/2 (EbP).

The incomplete Gamma function play a key role to compute the action of the Leray
projection operator on the Gaussian functions (LeN1). Those action formulas can be
applied to derive in the context of the well-posedness topic of the NSE and related (based
on tempered distribution and a Carleson measure characterization of the BMO space)
estimates ((LeN1), (KoH), theorems 1 and 2, see also (Brk4) pp. 26, 58, 64, 99, 121).

For the related equations with respect to the incomplete Gamma function we refer to
(OIF1) 7.2.2, 8.4.15, (AbM) 6.5.12, 13.6.10).

The RH is connected to the quantum theory via the Hilbert-Polya conjecture resp. the
Berry-Keating conjecture. It is about the hypothesis, that the imaginary parts t of the
zeros 1/2 + it of the Zeta function Z(t) corresponds to eigenvalues of an unbounded self-
adjoint operator, which is an appropriate Hermitian operator basically defined by QP +
PQ, whereby Q denotes the location, and P denotes the (Schrédinger) momentum
operator. In (BrK3) the corresponding model (convolution integral) operator S; (of order
1 with "density" dcot for the one-dimensional harmonic quantum oscillator model is
provided.

In the context of the Berry-Keating conjecture the Gaussian function f(x) can be
characterized as "minimal function" for the Heissenberg uncertainty inequality. Applying
the same solution concept as above then leads to an alternative Hilbert operator based
representation in H_, ,, resp. to a H_, based definition of the commutator operator with
extended domain.
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7. AH!,, = l;l/z based alternative circle method on the unit circle and a

Kummer function zero based approach to prove the binary Goldbach
conjecture

The current tool trying to prove the tertiary and binary Goldbach conjecture is about the
(Hardy/Littlewood) circle method. Vinogradov’s ,basic intervals®™ correspond in principle
to Hardy and Littlewood’s ,major arcs"™ ((Vil) p.61). Hardy and Littlewood dissected the
circle x = e?™@, or rather a smaller concentric circle, into ,Farey arcs". The major acrs, or
basic intervals, provide the main term in the asymptotic formula for the number of
representations. Their treatment does not give rise to any very serious difficulties
compared to the problems presented by the ,minor arcs", or ,supplementary intervals®.
The latter ones are analyzed by the Weyl (trigonometrical) sums

S(X) — Znezmnx.

On the one hand side, the probability that the binary Goldbach conjecture is true, is
100%, while on the other side the current (circle method) tool failed, because of not
sufficient (already optimal) Weyl estimates. As those Weyl estimates are w/o any
information (i.e. relevance) regarding the underlying (Goldbach) problem, the
probability, that the circle method is not adequate is also 100%.

The natural Hilbert space framework (related to generalized Fourier analysis techniques
and Dirichlet series, but also related to convergent Weyl sums series) is € H, ,(0,1) (e.g.
Brk9). The Cesaro summable cot(rx) = 232, sin(2mnx)) € H#,(0,1) (ZyA) VI-3, VII-1), is related to
the eigenfunctions e?™"* = i7(2mMx while the proposed alternative Abel summable
functions

> cotM(nx): = ¥ sin(m(2w,)x) € H¥(0,1)

- cot@ (mx): = ¥ sin (m(w, + wpeq — 1))x € HE(0,1)

are related to the eigenfunctions pair e™?nx gnd ei™(@ntent)* resp, to the alternative Weyl
sums
Sl*(x) — Znem(an)x , S{‘(x) — Zn em(wn+wn+1—1)x_

With the notation of (LaE1l) the prime pair (p,q) counting function H(x) with the condition
p+q < x is given by

= x (**dt 1 «x 2
H(x) =;Gn =;H(X—P) ~ @fo Togt Q(m)
The (improved) Stackel formula (based on the Euler ¢(n) —function) shows the
asymptotics in the form

~ 1105:¢(3) n n
Gon~ 5= o oo

1 n n

1
-—— ~0,648 ... - : : .
2 w* logn logn ¢(n) ’ @o(n) logn logn

Therefore, Landau predicted a proof of the binary Goldbach conjecture ,with high
probability™ (LaE1).

Related to the Stackel formula we recall from (ApM) p. 71, the following estimates

<——<Z0 =P n=2

whereby o(n) = 0,(n) denotes the sum of the divisors of n ((ApM) p. 38).
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With respect to the factor ¢(2) we recall the related cot (gx) estimate from the previous
section

FeotGx) 1 s T =c@, st

With respect to the Zeta function itself ¢(s) we recall the related cot(nx) representation
from the previous section (TiE)

_ 1

x+i0 q_ dz _ 1 .
= S i 2 (- cot(nz); , S=<-+4ix

1
Zn>x F 2

and its link to the Zeta function is given by
(L =5)-{"(s) = cot(55) - {(s) = tan(F; (1 = 5)) - {(s)
whereby it holds

m cot(mx) = g [cot (gx) - %cot(g - x))] = g[cot (gx) - %tan(gx)].

and

s

log'(tan (gs) = —log'(cot (gs) =

sin (ms) )

In the following we shall deal with the special Kummer functions

The asymptotics of “K;(a,a + 1;2) is given by ((OIF) 10.3, (AbM) 13.5.1.)

..... z

o _Le
r(a) z

, Z—> o,ph(z) =0, 4K (a,a+1;z) ~ (_%)u , z— —oo,ph(—2z) =0
where ph(z) denotes the phase or the argument of z. For the real case (x € R) we deal
with the function F,(x) := ¢ - %F,(a,a + 1; x) with a given constant c fulfilling the following
properties

i) “F(a,c x)~%xi_a resp. “iF(a,a+ 1;x)~$% , X >
N d

i) aFa(x) = ﬁFcHl(x)

iii) Fa(x)~$ex—x , x> oo ((OIF), 7 §10.1, (AbM) 13.5.1.)

, d x

V) RO = TR Fan () ~ oyng (9P

From (AbM) 13.2.9, we mention the Barnes-type contour integral representation

YFi(a,a+1;2) = —L.fﬁiwi

2miJc—i® a+s

ra- s)(—z)s?, larg (—2)| < g, a+0,-1,-2,..

where the contour must separate the poles of r(-s) from those of r'(a +s).

Zeta function ((TiE) 2.17)

o 1
{(s,a) _anl(n+a)5 ,Re(s)>1,0<a<1

resp. the corresponding generalized Dirchlet series.
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In the following we first shall deal with the choice

2n-1

<a:=da,:=
2n

-1

N

and

2n-1 ~ 1 2n = 1 1

@= T G= o= bn==rz(a>=rz(l—_1)'“=v2/3-

2n

X a £ log 3) d i
H(x) ~ ng Zzlogt ax H G~ _Fan(logx) flogz F“"(t)dt'

fulfilling the

Lemma (,Chebychev" inequality):

= )2<H(X)<( ).

logx logx

Proof: It holds &, :% , e :% , by =2, b, =1 and therefore

Chosing ¢ :=,/2/3 then proves the lemma.

We note that for n > 4 it holds 1 —é <1 —% 1 +% <1- %, with ist relationship to the
Chebychev inequality

n(x)

1-1< <1+= .
8 8

logx

The Kummer function zeros related inequality 2n—1 < 2w, < 2n < w, + w41 < 2n+ 1 indicates
a replacement

_ wptwy 2n

N
IA
xN
IA
—_
l
N =
IA

2n " wptwnper | 2n+1 T

leading to

Hi () = Z F2 (logx)

n<x

With respect to a Hilbert space framework H_,,, (see also below) we note the identities
((dK?,v))q-1/2 = (K?v), for K?,v € H,,.

Concering the below with respect to the hypergeometric (Kummer) functions and their
relationship to the Gamma function and the underlying Euler constant we recall from
(BrR) the formula

r;

fooo xS[e™™ _]O(ZX)]% =TI(s)— I?(I;(—Eg) = %[(1 — ]/S) _ 1= 2-{- 0(52)] -0 S 0+.

14y

Analogue it holds

Iy 2 e ~ @) 5 =) ~ 5 = Ay — 1+ 06| =y L+ 0 -y s> 0"

r(1 s 1+ys 1+Y
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From section 1d. we recall the following properties of the sequences w, (the imaginary
parts of the Kummer function zeros):

V) n—§<wn<n,n+%<wn+1<n+1,%<w1<a:=sn:=%—>1nEN
vi) 2n—1<2w, <2n<wp +wpyq <2n+ 1< 20,44 <2(n+1)

vii) the sequences 2w, and w, + w,, fulfill the Hadamard gap condition

1
Wni1 M 1 Wny1tWnyz (2042 1
Wn > n + 2n >q>1 resp. W+ Onyr 2n+1 2n+1 >q>1
viii) f=lic@mm_Onoq_ l_q1_9g,
4 2 2 4
For the related sequences a, = %—% , by = ‘“"%:“’"—é it therefore follows
V) 0<a1=w1—%5an—>%, %<—bn<b1=w1+(;2_1<1

Vi) apbyi—a,€(03) , bul—ay€(G,1).
We note the Mellin transform of the related Kummer function ((GrI) 7.612)

fow xS5F (ay, an + 1; —x)c;—x = % r'(s) , 0<Re(s)<a,

fow x55F (ap, ay + 1; —x)% - fowxs/Zi:fFl G% —x)% = g = 225:2 , 0<Re(s)<1.
For
9P ) = (a5 1), 98 () = HF (1= ap, by x), 08 (x) = xg8(x) (k = 1,2)
it holds
gflk)(x) - 1F1 G%x) =e* resp. (p,(lk)(—logx) - lofx asn-o o (k=1,22).

From ((LeN) (9.13.7)) we recall the Kummer function based representation of the li(x)-

function in the form li(x) = —x%F,(1,1;—logx) = Ei(logx) = fo"%z f_’jf”—:dt with the asymptotics ii(x) ~

log™'(x), i.e. it holds —x'F, (an + %,bn + %; —logx) - —x%F, (1,1, —logx) = li(x).

The properties of the sequences above are proposed to build two different prime density
functions for a prime pair in combination with the following two Kummer function related
properties:

i) o -[HR@e0] < 5R@-pex) 5h@a+unex) < [GR@cx)] ,a>0,c>azu—1, xR
)R s -0 T = TBI() S, 0 < Re(s) < Re(@) (GrI) 7.612 .

The second inequality of property i) for positiv integer u is provided in (BaR) and for non-
integer positive u, complemented with a reverse inequality, in (KaD) (see also appendix).

Putting e.g. a:=3, u:=3;—a, it holds a —u = a,; a+u=1-a, resulting into the inequalities

From the Kummer function Mellin transform property ii) above we get

i 1(® s/2i . 4x _ T ran=s) 1% /2, —xdx _1n(s

i) zfo x°1%iFy (an, bn; =) x F(an)r(s) Fy-s) 2f0 e T T zr(z) 0 <Re(s)<1
N

o 1o s/ L dx 1 g (1 3. _ )E _ r(1+3)

i) zfo x5/%%F, (ay, b, + 1; —x) —-s) x iF; 22 ) % T s O0<Re(s)<1.
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The circle method (based on the interior of the unit disk) is concerned with complex-valued
functions f(z) = f(r - e(p)) (e(p) = e?™¢ , g € (0,1)) resp. e,(¢) = e(ny) fulfilling

1:
0!

0 and |1 —e(@)|? = 4sin?(wep)

i otherwise

Iy en(p)d = {

It is about Fourier analysis of complex-valued power series functions
fx) =Xroanz™, lz| <1

i.e. defined for the interior unit circle domain. The underlying mathematical tool set is
based on the formula ((ViI1) chapter I, lemma 4, Notes)

ra, = fol f(re?™e=2mintgr 0 <r < 1.
The corresponding (convergence) requirements are ensured by the

Theorem ((OIF) 3.3): let ¥ ,a,z" converge when|z| < r. Then for fixed k
Y axz"=0(zF) in any disk |z| < p such that p <.

In line with the concepts of the previous section we propose a correspondingly modified
circle method, which is about a Fourier analysis of complex-valued (generalized) Fourier
series representations on the unit circle, based on a corresponding mathematical tool set
enabled by the formula

—nfu(0) =3y 9(x = Ofu ()t

with £,(t) = a,, cos(2nnt) + b, sin(2unt) and g(x) = sin"?(nx). In the corresponding Hilbert scale
framework HZ%(0,1) the mapping formula

v = S[u] with v(x):= %folg(x — Hu(t)dt

defines an (Pseudo-Differential) integral convolution operator s: H#(0,1) - H%_,(0,1) of order
1, where the Fourier transform of the kernel function is given by g(w) = —w. It leads to a
variational representation in the form

(S[U]'W)a—uz = (‘U, W)al Vv,w € Hg(orl)

The corresponding convolution kernel of the inverse operator s_;: H_,(0,1) - H(0,1) is given
by k(x) = —log |2sin (mx)| ((BrKk3), (BrK4) remarks 3.6, 3.9, Notes S38, S48, 023-30).

Regarding orthogonal polynomials on the unit circle, built on a non-negative, integrable
(in a Lebesgue-sense) function f(6) of period 2z, we mention the case £(6) = {g(6}~* where
g(6) is a positive trigonometric polynomial of degree m ((SzG) 11.2, (BrK4) Note S49).

For each positive real number x the Snirelmann density is defined for a subset A of the
set of positive integers N by

0<o(d):=inf,®™ <1 with AQG) = Xeea 1.

It holds A(n) = kn for o(A) = k; A(1) = 0 (and therefore o(4) = 0), if 1 is not an element of 4;
and A(n) =n (and therefore ¢(4) =1), if A= N.

The Snirelmann-Goldbach theorem states, that the set 4 := {0,1} U {p + ¢; p, ¢ prim} has
positive Snirelmann density. In case of a Snirelmann density % the binary Goldbach
conjecture would be proven.
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For a subset A of the set of integers N integers, if

i) the integer "1" is not an element of A, the Snirelmann density of 4 is =0
i) if the integer "2" is not an element of 4, the Snirelmann density of 4 is s%
iii) if A= N, the Snirelmann density of 4 is = 1.

For the smallest prime p > n, it holds p < 2n, i.e. 7(2n) — n(n) > 1.

The set {2n — 1 = [2w,]} resp. {2n — 1 = [w, + w4, — 1]} Of 0dd integers has Snirelmann density
< %, while the set {2n = [w, + w,41]} Of even integers has Snirelmann density = 0.

Therefore, the sequences {2w,} and {w, + w,,, — 1} are suggested to build a problem
adequate binary number theoretical function ¢* in sync with a corresponding set with
Snirelmann density ¢*(47) = .

The ,Snirelmann-Stieltjes integral™ density concept is related to another method to
analyze binary additive problems, which is about the ,dispersion method", which is about
a ,correlation theory of binary problems™ (LiJ). Unfortunately, in its current form this
method cannot be applied to the binary Goldbach problem ((LiJ), chapter X, §2).

We claim, that the proposed circle method on the unit circle with its underlying related
distributional Hilbert space framework #*(0,1) (going along with the Stieltjes/Plemelj

Ldifferential® potential density concept) provides the appropriate framework for a
correspondingly adapted ,truly" ,dispersion / variance method", to solve the binary
Goldbach conjecture. This is about the independence of the (number theoretical)
~events" related to the (positive integer resp. real number) sets

A={01}u{p+qpqprim} , A ={01}UQ2w,}U{(w,+ wp, —1)}.
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8. The H_,/; Hilbert space and corresponding arithmetic functions

In (Vil) the Prime Number Theorem (PNT) is proven on a distributional way, applying the Dirac
function to derive the first derivative of the Chebyshev function. In line with the proposal of
section 4.d) below we propose to replace the Dirac distributions space by the H_,,, Hilbert space,
resulting in corresponding representation of concerned arithmetic functions.

This section is about the building of a distributional density function 6(x) with

0'(x) = S[0](x) = Tnera(n) € H1 in @ weak H, —sense,
alternatively to the Mangoldt resp. Landau distribution functions

$(X) = Tpex Am)  TESP.  9(x) = Tyly A(W)log ()
with
PY'(x) = Tnex AM)E(x —n) € H.i resp. 9'(x) = %an/l(n)-

The Delta function representation of y'(x is applied in (Vil) for ,a quick distributional way to
(prove) the prime number theorem" (see also (BrK4) Note S19).

For
0(x):= Z A(n) - log (sin (n—)) € H, ),

n<x

one gets

A
0'(x) = Zn<xﬂcot ( )EH 12

wWn
For the convergence lim 6'(x) we refer to the previous sections.
n—-—-oo

The baseline formulas for the following are the representations

) p@ = ExcorEa) = 14+ 30, [+ X

xX+n X-n

i) w(x) = @ = (E)cot(zx) —+ g [—+—

x+n xX—n.

iii) W(x) = ”."”[ {(s)]xs——znqll(n) and —i(s) = [P xSdy =32, A=, (Re(s) > 1), (EdH) 3.2

Zm c—io

2mi Jc—ioo

iv) 90) = 5 [ —s{( )] L = [Fp@)dlog(t) = T, Am)log &) and — (s) = [ x75d, (Re(s)>0)

The Euler conjecture, i.e. the convergence of the series

can be derived from the PNT ((LaE) §159). This series is linked to the zeta function by the
identities
1 _yoo pm

() T 4n=1" s y _Zn 1nn5

—%:[ f:lﬂ:sl)] [Zn 1nn5 ) ('(S) [Zn 1”(77') ] [Zn 110g(n) ]

What cannot derived from the PNT is the convergence of the series
() i fPlog(p) =1

»~The corresponding theorem goes deeper than the PNT, and from it the PNT can be easily
derived" ((LaE) §160).
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The Landau statement above corresponds to the proposed replacement of the Dirac distribution
by appropriate distributions of the Hilbert space H i1, going along with the following identities
2

((ApT), (BrkK4), (LaE) §227), while at the same time enabling the Bagchi RH criterion (BaB),
N 1 1 - 1 1 (@ 1 1
1= ;E#(n) log(3) =Z;anbn =: ((u,v))_% = lim _wu(§+ it)v(z— it) dt

with (s =2+it) and

u(t):= Y2 "(")EH1 , v(t):i=X2 “’“"flﬂeH_l
2

ns s

Let
20 =¢(t+it)i=Tind e, , w(t)=Ti,log(3)
oo (P(n) 1 oo Am) 1
r(®) = “nons ! s(®) = =1 hiognns *
It holds |iz1I2,,, = m&”f |Z(0)|2dt = =¢(1)=o00 and ((H,w)) =1and therefore wen s,

Because of y;_, 27 Ze H_;_g |t follows that w € H_1+S. Because of
2 2

((..‘,T')) 1= 00— 20 <o ((W 5)) w Am)@ <

n=1 n2 n

It follows r € H 1, , w € Hy, s€ H_:_,. For
2 2

0(x) = Ticy“log ()
it holds

o) +1=0@) +0() , 0()=1Tnex"

n

and the inverse mapping is given by

The asymtotics of a related arithmetical function is given by ((ApT) 3.12)

Zn< 1(,0(11)_|_2OO 1/,t(n)logn (lng+]/)++0(logx)

n n n

For the relationship to the alternative Zeta function theory below we note that the
function 7 cot(mx) is holomorphic except the pole z =1 and it holds

—Cot( ) = —ln(25m( ) =- f_% Y% sin(nx) € H*,(0,2m)
11
Snx s = o [ 245 (~m cot (mz) Z =: g(s)

The arithmetical functions u(n), ¢(n) are multiplicative, but not completely multiplicative (u(4) =0 # 1 = u(Qu2), p(4) =2+ 1=
»(2)p(2)), ((ApT) pp. 36, 88). We note that the product ¢(n) =n[]ii , (1 —%’) is empty for n = 1 since there are no primes which

divide 1; Some values of arithmetical functions:

pin

pm: 1 1 2 2 4 2 e @(12) =4, @(60) =16, ¢(81) = 54
¢(n) is even for n =3 and ¢(p) =p —
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9. Appendix: Formulas and properties
The proposed alternative "baseline" function is the Hilbert transform of the Gaussian
function, which is the Dawson function ((OIF) p. 44)
F(x) = e foxe‘tzdt

Its relationship to the ,analysis of zeros of certain trigonometric integrals and entire
higher genus-1 functions® (PoG2), is given by the identities ((GrI) 3.896)

""" i%xz) We note that the Hilbert transform of the sin(ax) —function is

given by —cos(ax) —function and [ e~ cos (2xt)dt =‘/2—Ee—x2 ((GrI) 3.896). From (Grl) 7.612)
we mention the reciprocal formula

xz ..... Xz .....

The Kummer function related Mellin transforms can be derived from the following
formulas ((GrI) 7.612):

i) fom xS5F (a, ¢, —x)% = %% 0 < Re(s) < Re(a)

i) fooo x55F (a,a + 1,—x) i—x = (ais)l"(s) 0 < Re(s) < Re(a)

iii) foooxs‘l/zg:fFl (a,a +%,—x)%=%l"(s—%) %< Re(s) < Re(a+%)
iv) Jy xiii?ﬁjpl(%,z Y = :(_i) 0 < Re(s) < Re(1)

V) h(x) + 2xh'(x) = e™* with h(x) = 5:fFl(%,z,—x)

vi)  mM[—xn] () =2mn] () = % 0 < Re(s) < Re(1)

Vi) Mu() =z 250, ¢ LD, e FR (E2) = 2 iMi() = () M sa(-2)
for the Whittaker functions M.:(z) ((GrI) 9.220, 9.231)

viii) For —1/4 <Re(®) <1/4 , 0<1/2—-29<1, 1/2<1+29<3/2 it holds ((GrI) 7.612):

resp.

iX) The asymptotics of the Kummer functions are given by ((OIF), 7 §10.1, (AbM)

13.5.1.)
SE (a0 0)~ —— res YR (aa+ Lx)~—E - o
iF(a, c;x @ xea p. iFi(a,a ;X @ ! x
X) The simple zeros of F, (1,%;z) lie in the half-plane Re(z) < —1/2. The simple zeros

of 1F1( ,%;z) lie in the half-plane Re(z) > 1/2. All zeros z, of the Kummer function

K.(2) ="K (a,a+ 1;2) (0 < a < 1) are simple and satisfy the asymptotic formula
(SeA)

. 1-a)® logr(a) 3a+1 log|n|
zn=2mn+[(1—a)+%]-[log(2n|n|)+%+(—5)]_“_+0(09"), n— +oo,

- 2 2min n?
The zeros all lie in the horizontal stripe
@2n—Dr < [Im(zp)| = 12nw,| < 2nm .
((SeA), see also ((Brk4) lemma A3, Notes 05-17, 022, 023, (BrK7) Note 11)).
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For the Fourier inverse of the Zeta function on the critical line (in a distributional sense)
we refer to (BrkK4) Notes S21, S24. The related (classical) Zeta approximation series
reprensentation is provided in (TiE) 4.14 resp. (Brk4) Notes S51, 09, 027. In (OIF1)
25.6.6, an integral value representation for {(2n + 1) is provided with cot (mx) "density"
function.

We note the corresponding Gamma function equivalent in the form

logT(1—x) —logT(x) = m cot(mx) :%[1—22,;1052,():2"] (NiN) 8§14 (5), §19 (16).

The alternative ,Gamma" function r* G) fulfills the following properities

D) re (g) re (12;5) =r (f) r (12;5) r'a)=-y, r'() =z (tan(x) = 0 and tan'(x) = 1)

2

(e - Q)= N e

iiii) logT*(s) = logT(s) + log'tan( ) logT(s) + - (ﬂs)

iv) log'T* ( ) log 1"( ) My = log F( ) += F(S)F(l —s),log'r (%) —log'T G) =7
1"(1+5) T 4% oo 1

V) —[‘ ( ) Zk 1% (because of tan;x —7Zk=1m).

The alternative ,Gamma" function properties and some related lemmata in section 2
below in combination with the ,value®™ property of Kummer resp. hypergeometric
functions ((Bel), (Wol)), might also enable a new tool to prove the irrationality or even
the transcendence of e.g. the Euler constant y. The approaches in ((Bel), (WoJ)) are
both based on classical E-function theory, whereby the considered Kummer functions in
(Bel) are explicitly excluding the considered Kummer function of this paper. The concept
in (PoG4) (in combination with the conjecture in (PoG3) about power series with rational
or integer coefficients in the context of a convergence radius one) might provide an
alternative E-or G-function approach.

With respect to the alternative {*(s) function

F-9 =80 15y resp. ¢ (s) = LG o) = LD

resp.
1
logq*(s) =log (tan (1-5))+log (1 ) + log{Q(s)

We onte the following properties

) el s e
i) Ztan(Zs) ==+ 0(|1-x) in the neightborhood of x = 1
III) log (tan (gs)) =—4%h, sin ::ns)

iv) log'T ((1 -0) = z) —log'l (9 = i) =

V) log'(tan (Es) = —log (cot (g ) Sm(ﬂs) == [+2 Y00 x2] = B(x) + (1 —x)

With p() = Zio(-1* 5 = Zizo(-19)0es, x* (NIN) §14 (6), §19 (17).
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Applying Riemann's building concept for the auxiliary function, defining a self-adjoint
operator with Mellin tranform &(s) ((EdH) 10.3), results into a replacement of
1 1

log (sinx) =1 L2 + s log (¢t ( x) =1 bax? b Lt 2 ey 12T
—logx— sz e Y e - T s %
0g (sinx) =logx = ex” = 755X — 553X og (tan (5 x)) = logx +3x* + gox* + ooux® + 12000

x84 -t

The density of prime numbers appears to be the Gaussian density dg = log( )dt defining

the corresponding prime number counting integral function ((EdH) 1.1 (3)). The Clausen
density dw, based on the Clausen integral ((AbM) 27.8)

w(t) = foflog(zmg) dt, 0<t<m
is related to the Hilbert transform of the fractional part function ((Brk4) Note 028).
For T(x) :=log (tan(gx)), we summaries a few properties
i) “T(x) = —z—sm (2nnx) € L4(0,1) (EIL)

With 24, = $fo 72 = 2H,, — H, and H, = $}_, > (harmonic numbers) and

fol T(x) cos(kmx) dx = {_})/k ll::vdei
i) the log (tan x) —integral evaluated by series involving ¢(2n + 1) is provided
(EIL1)
iii) for the Hilbert transform evaluation of T(x) we refer to (MaJ)

iv) from (Grl), 1.421,1.518, we recall the series representations

1 (22k—1—1)22k32kx2k
k(2Kk)!
62

_ 1. 2,7 4 6 127
T(x)—logx+3x oo X+ 553:%°  Tae00

log (sinx) =logx ——x? — Lx4 —Lx6 -
6 180 2835

T(x) = logx + Y=, (- 1)k X2 < ()P

x8 =+ ...

V) For the related Fourier expansion of the logr(x) function we refer to (EsO) with
coefficients a, = 5-, b, =22 and q, = logV2r.

vi) The counterpart of the asymptotics log (tangx) ~ log (sin(x) ~ logx with respect to
the cot —function is given by the estimate

Ecot(% )——| %_5(2) (Ixl = 1),

which is a result of the following inequalities

o) 0 1 T
S 1z <
| COt( ) | |Zk 1x+2nk+x 2mkl = |Z ® m(x— an) - 277.'22 k2" 6 7 x| <m

With respect to the distributional Fourier series representation of the cot (mx) function we
note the product representation ((Grl), 1.392)

(n~ 1)/2 sin?(x)
n-sin(x) - 1_[ —

, k
sin?(w ﬁ) n odd

sin (nx) = n (n-2)/2 sin%(x) neven
7 sin(2x) - H 1- %
k=1 ; LS
sin?(mw n)
x © cos (nx) . x © cos (nx)
~log[zcos(5)] = =R (- —log [2sin (5)] = — X, <
cos (2nx)

—log |2 sin ()Z—C)| —log |2 cos (§)| = —log|2sin(x)| = =27,

n
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In (ChK) VI, §2, two expansions of cot (z) are compared to prove that all coefficients of
one of this expansion @e‘zn are rational. Corresponding formulas for odd inters are
unknown.

In (EsR), 3.8 (example 78), resp. (Brk4) Notes S51, a "finite part"-"principle value"
integral representation of the gcot(gx)— is given (which is zero also for positive or negative

integers)
co t
F.p.(P.v. [, t* P

=/ 0 x \for xe2z
(E) cot (E x) i’i otherwise"

It is used as enabler to obtain the asymptotic expansion of the p.v. integral, defined by
the "restricted" Hilbert transform integral of a function u(x) over the positive x-axis, only.
In case u(x) has a structure u(x) = v(x)vx the representation enjoys a remarkable form,
where the numbers n + 1/2 play a key role.

In the context of Landau’s ,generalized number theoretical function theorem™ we note
the following properties: for

9 = g, P = Go)cot G = 1+ 5, [Zo+ 5| ) h@ =2,
it holds
i) cot(x) = %cot (g) —%cot(?) , % ‘;,(::) P(x) = —m cot(mx) o 1
i) sin(m+2) =0 ,sin(00) =03 cos(0)=01) (OIF) 3.1
i) hedy =, 20 [Fpe)dx = [} R = [Tk ()% = log2 (GrT) 3.747
iv) i hZ+ [P h(2)E = 2l0g2 and h(x) € L;(0,1) (Grl) 3.748
resp. @folx(gx)cot(gx)% = @ (——) (El)ﬂ = , folx [(gx)cot(gx)] dx === 122;5((22:11) .

From (ZyA) V.2, we recall for 0 < g <1 and 0 < x < r the estimates
|) |ZN cos (nx)| <c xB
”) |ZNsln(nx)| <c xB
i) [yt <o g( )+c.

The series Ty <52 ("") is divergent, ist conjugate yg =2 (”") is not a Fourier series, and ((ZyA)
V.1)

. mcos(nx)N 3 -1.14]1 —1,L
I) 2 logn [2 lo‘g (x)] x log (x) x> +0
i) 5T~ 2 log ™' (}) x > +0.

Because of folf(x)sin (mnx)dx - 0, n > o Vf € L,(0,1), the sequence {sin(rnx)}
converges weakly to zero, but not strongly, as ||sin(rnx)|| = \/ii The same is true for

n<x<n+1
otherwise

f@={y
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The specifically considered Kummer functions fulfill the following property

s 2 o s ; 2
o [1F(a )| <4F(a—pex) - iFa+pcx) < [4F(acx)] ,a>0,c>a=p—1,x€R

From (BaR) we recall the inequality

o o : 2
HFi(a—woax) HF(a+ucx) < [’"iFl(a, c x)] .
fora>0,c>a=pu—-1andxeRora=u—-1,c>-1(c+#0), x>0, and positiv integer u.

In (KaD) this result is extended to non-integer positive u and complemented with a reverse
inequality given asymptotically precise lower bound for the quantity

1 1 .3 2 1x2|  4x?|  ox? 16x2
i 2xF(5,1,—;x2)=i'—"—|—x—|—"—|—i|-....

log—~
91~ n 13 5 17
| 1x?| | 4ax?| | ox?| | 16x?|
actanx~ — — - T -
[1 K] Is |7 [9
Xl cxl x| (c+Dx| |, 2x]  (c+2)x| | 3x|
GR(L e~ 40 - Sy (e Lo
|c lc+1 |c+2 |c+3 |c+4 |c+5 |c+6
1 1x cx | 2x | (c+Dx | 3x |
1 -1 _ E_xl + cle+D| _ (c+D(c+2)l + (c+2)(c+3)| _ (c+3)(c+)l + (c+4)(c+5)l
"Fy(1,65x) 1 1 1 1 I1 mn
c—a xl a+1 xl c—a+1 xl a+2 |
_ clet) + (c+D)(c+2)™" _ (c+2)(c+3) + (c+3)(c+4)
|1 |1 11 |1
iFhe+ e+ L) =-— [iFi(a, c;x)]
and therefore
3 5
1x 2% 2x 2% 3x
1 2| 35| 57| 73| 9II 1IIi3
3 22 22 22 22 2 2
TR (12 TEth TR T T T
1 1( E;x
221 22 223 22 22 5 22
-1 froead 4350 = 4797 | ou 4 I |
|1 [1 1 [1 [1 [1
1 3
lxl ixl ixl ixl 221 | 2:2 223 | 2:2
35 57 79 79 . . . ’
35 57 72 77 X —=2x| =5 ——3x|
_ 2 422 22 422 _q_35271457 _ 572 | 79
11 11 11 11 11 11 11 11
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From (ArE) we recall a few properties of log-convex functions:

Theorem 1.1:

The sum of convex functions is again convex. The limit function of a convex sequence of
convex functions is convex. A convergent infinite series whose terms are all convex has a
convex sum.

Theorem 1.3:

A function is convex, if, and only if, it is continuous and weakly convex.

Theorem 1.4: f(x) is an convex function if, and only if, f(x) has monotonically increasing
one-side derivatives.

Theorem 1.5:
A function is convex, if, and only if, it is weakly convex.

Theorem 1.6:

A product of log-convex (weakly log-convex) functions is again log-convex (weakly log-
convex). A convergent sequence of log-convex (weakly log-convex) functions has a log-
convex (weakly log-convex) limit function, provided the limit is positive.

Theorem 1.7:
Suppose f(x) is a twice differentialbe function. If the inequalities

FEOf' @ - |f ] =0

hold, then f(x) is log-convex.

Theorem 1.8:
Suppose f(x) and g(x) are functions, defined on a common interval. If both are weakly
log-convex, then their sum f(x) + g(x) is also weakly log-convex.

Theorem 1.9:
If ¢(x) is a positive continuous function defined on the interior of the integration interval,
then

b
f p(Ot* 1dt
a

is a log-convex function of x for every interval on which the proper or improper integral
exists.

Theorem 1.10:
If f(x) is log-convex on a a certain interval, and if ¢ is any real number # 0, then both
functions f(x + ¢) and f(cx) are log-convex on the corresponding intervals.



35

References

(AbM) Abramowitz M., Stegun A., Handbook of mathematical functions, Dover Publications Inc.,
New York, 1970

(AhJ) Ahner J. F., A scattering trinity: the reproducing kernel, null-field equations and modified
Green'’s functions, Q. J. Mech. Appl. Math. Vol. 39, No. 1, 153-162, 1986

(AIF) Almgren F. J., Plateau’s Problem, An Invitation to Varifold Geometry, American Mathematical
Society, New York, 2001

(AnE) Anderson E., The Problem of Time, Springer, Cambridge, UK, 2017

(AnJ) Annett J. F., Superconductivity, Superfluids and condensates, Oxford University Press,
Oxford, 2004

(AnM) Anderson M. T., Geometrization of 3-manifolds via the Ricci flow, Notices Amer. Math. Sco.
51, (2004) 184-193

(ApT) Apostol T. M., Introduction to Analytic Number Theory, Springer Verlag, 2000
(ArA) Arthurs A. M., Complementary Variational Principles, Clarendon Press, Oxford, 1970

(ArE) Artin E., The Gamma Function, Holt, Rinehart and Winston, New York, Chicago, San
Francisoc, Toronto, London, 1964

(ArN) Arcozzi N., Li X., Riesz transforms on spheres, Mathematical Research Letters, 4, 401-412,
1997

(AzA) Aziz A. K., Kellog R. B., Finite Element Analysis of Scattering Problem, Math. Comp., Vol. 37,
No 156 (1981) 261-272

(AzT) Azizov T. Y., Ginsburg Y. P., Langer H., On Krein's papers in the theory of spaces with an
indefinite metric, Ukrainian Mathematical Journal, Vol. 46, No 1-2, 1994, 3-14

(AzT1) Azizov, T. Y., Iokhvidov, I. S., Dawson, E. R., Linear Operators in Spaces With an Indefinite
Metric, Wiley, Chichester, New York, 1989

(BaB) Bagchi B., On Nyman, Beurling and Baez-Duarte’s Hilbert space reformulation of the
Riemann Hypothesis, Indian Statistical Institute, Bangalore Centre, (2005), www.isibang.ac.in

(BaA) Baricz A., Mills' ratio: Monotonicity patterns and functional inequalities, J. Math. Anal. Appl.
340, 1362-1370, 2008

(BaA) Baricz A., Pogany T. K., Inequalities for the one-dimensional analogous oft he Coloumb
potential, Acta Polytechnica Hungarica, Vol. 10, No. 7, 53-67, 2013

(BaR) Barnard R. W., Gordy M., Richards K. C., A note on Turan type and mean inequalities fort he
Kummer function, J. Math. Anal. Appl. 349 (1), 259-263, 2009

(BeA) Besse A., L., Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg, 1987

(BeB) Berndt B. C., Ramanujan's Notebooks, Part I, Springer Verlag, New York, Berlin, Heidelberg,
Tokyo, 1985

(BeB1) Berndt B. C., Number Theory in the Spirit of Ramanajan, AMS, Providence, Rhode Island,
2006

(BeG) Besson G., The geometrization conjecture after R. Hamilton and G. Perelman, Rend. Sem.
Mat. Pol. Torino, Vol. 65, 4, 2007, pp. 397-411

(Bel) Belogrivov, I. I., On Transcendence and algebraic independence of the values of Kummer's
functions, Translated from Sibirskii Matematicheskii Zhurnal, Vol. 12, No 5, 1971, 961-982


http://www.isibang.ac.in/

36
(Bel) Bel L., Introduction d’un tenseur du quatriéeme ordre, C. R. Acad. Sci. Paris, 247, 1094-1096,
1959

(BID) Bleecker D., Gauge Theory and Variational Principles, Dover Publications, Inc., Mineola, New
York, 1981

(BiN) Bingham N. H., Goldie C. M., Teugels J. L., Regular variation, University Press, Cambridge,
1989

(BiN1) Bingham N. H., Szegd’s theorem and its probabilistic descendants, Probability Surveys, Vol.
9, 287-324 2012

(BiP) Biane P., Pitman J., Yor M., Probability laws related to the Jacobi theta and Riemann Zeta
functions, and Brownian excursion, Amer. Math. soc., Vol 38, No 4, 435-465, 2001

(BoD) Bohm D., Wholeness and the Implicate Order, Routledge & Kegan Paul, London, 1980

(BoJ) Bognar J., Indefinite Inner Product Spaces, Springer-Verlag, Berlin, Heidelberg, New York,
1974

(BoM) Bonnet M., Boundary Integral Equations Methods for Solids and Fluids, John Wiley & Sons
Ltd., Chichester, 1995

(BrH) Bezis H., Asymptotic Behavior of Some Evolution Systems, In: Nonlinear Evolution Equations
(M. C. Crandall ed.). Academic Press, New York, 141-154, 1978

(BrK) Braun K., A new ground state energy model, www.quantum-gravitation.de

(BrK1) Braun K., An alternative Schroedinger (Calderon) momentum operator enabling a quantum
gravity model

(BrkK2) Braun K., Global existence and uniqueness of 3D Navier-Stokes equations

(BrK3) Braun K., Some remarkable Pseudo-Differential Operators of order -1, 0, 1

(Brk4) Braun K., A Kummer function based Zeta function theory to prove the Riemann Hypothesis
and the Goldbach conjecture

(BrK5) An alternative trigonometric integral representation of the Zeta function on the critical line

(BrK6) Braun K., A distributional Hilbert space framework to prove the Landau damping
phenomenon

(Brk7=BrK1) Braun K., An alternative Schroedinger (Calderén) momentum operator enabling a
quantum gravity model

(BrK8) Braun K., Comparison table, math. modelling frameworks for SMEP and GUT

(BrkK9) Braun K., Interior Error Estimates of the Ritz Method for Pseudo-Differential Equations, Jap.
Journal of Applied Mathematics, 3, 1, 59-72, 1986

(BrkK10) Braun K., J. A. Nitsche "s footprints to NSE problems, www.navier-stokes-equations.com
(BrK related papers) www.navier-stokes-equations.com/author-s-papers

(BuH) Buchholtz H., The Confluent Hypergeometric Function, Springer-Verlag, Berlin, Heidelberg,
New York, 1969

(BrR) Brent R. P., An asymptotic expansion inspired by Ramanujan, rpb@cslab.anu.edu.au

(CaD) Cardon D., Convolution operators and zeros of entire functions, Proc. Amer. Math. Soc., 130,
6 (2002) 1725-1734

(CaH) Cao H.-D., Zhu X.-P., Hamilton-Perelman’s Proof of the Poincare Conjecture and the
Geometrization Conjecture, arXivimath/0612069v1, 2006


http://www.quantum-gravitation.de/
http://www.fuchs-braun.com/null
http://www.fuchs-braun.com/null
http://www.fuchs-braun.com/null
http://www.fuchs-braun.com/null
http://www.fuchs-braun.com/null
http://www.fuchs-braun.com/null

37
(CaH1) Cao H. D., Chow B., Chu S. C., Yau S. T., Collected Papers on Ricci Flow, International
Press2003

(Cal) Cao J., DeTurck D., The Ricci Curvature with Rotational Symmetry, American Journal of
Mathematics 116, (1994), 219-241

(CeC) Cercignani C., Theory and application of the Boltzmann equation, Scottish Academic Press,
Edinburgh, Lonson, 1975

(ChD) Christodoulou D., Klainerman, Asymtotic properties of linear field equations in Minkownski
space, Comm. Pure Appl. XLIII, 137-199, 1990

(ChD1) Christodoulou D., Klainerman, The Global Nonlinear Stability of the Minkowski Sapce,
Princeton University Press, New Jersey, 1993

(ChF) Chen F., F., Introdcution to Plasma Physics and Controlled Fusion, Volume I: Plasma Physics,
Plenum Press, New York, 1984

(ChH) Chen H., Evaluations of Some Variant Euler Sums, Journal of Integer Sequences, Vol. 9,
(2006) 1-9

(ChK) Chandrasekharan K., Elliptic Functions, Springer-Verlag, Berlin, Heidelberg, New York,
Tokyo, 1985

(ChK1) Chaudhury K. N., Unser M., On the Hilbert transform of wavelets, arXiv:1107.4619v1

(ChJ) Choi J., Srivastava H. M., The Clauen function and ist related Integrals, Thai J. Math., Vol 12,
No 2, 251-264, 2014

(CiI) Ciufolini I., Wheeler J. A., Gravitation and Inertia, Princeton University Press, Princeton, New
Jersey, 1995

(CoF) Coffey M. W., Polygamme theory, Li/Kneiper constantts, and validity of the Riemann
Hypothesis, http://arxiv.org

(CoP) Constatin P., Lax P. D., Majda A., A simple one-dimensional model fort he three-dimensional
vorticity model, Communications on Pure and Applied Mathematics, Vol. XXXVIII, 715-724, 1985

(CoR) Courant R., Hilbert D., Methods of Mathematical Physics Volume 1I, J. Wiley & Sons, New
York, 1989

(Del) Derezinski J., Richard S., On Radial Schrodinger Operators with a Coulomb Potential, Ann.
Henri Poincaré 19 (2018), 2869-2917

(Del) Derbyshire 1., Prime Obsession, Joseph Henry Press, Washington, D. C., 2003
(DeR) Dendy R. O., Plasma Dynamics, Oxford Science Publications, Oxford, 1990
(DrM) Dritschel M. A., Rovnyak, J., Operators on indefinite inner product spaces

(EbP) Ebenfelt P., Khavinson D., Shapiro H. S., An inverse problem for the double layer potential,
Computational Methods and Function Theory, Vol. 1, No. 2, 387-401, 2001

(EdH) Edwards Riemann's Zeta Function, Dover Publications, Inc., Mineola, New York, 1974

(EhP) Ehrlich P., Contemporary infinitesimalist theories of continua and their late 19th- and early
20th-century forerunners, arXiv.org 180.03345, Dec 2018

(EiA) Einstein A., Grundzlige der Relativitatstheorie, Vieweg & Sohn, Braunschweig, Wiesbaden,
1992

(EiA1) Einstein A., Ather und Relativitatstheorie, Julius Springer, Berlin, 1920


http://arxiv.org/

38

(EiA2) Einstein A., Podolsky B., Rosen N., Can Quantum-Mechanical Description of Physical Reality
Be Considered Complete? Physical Review, Vol. 47, 1935

(EIL) Elaissaoui L., Guennoun Z. El-Abidine, Relating log-tangent integrals with the Riemann zeta
function, arXiv, May 2018

(EIL1) Elaissaoui L., Guennoun Z. El-Abidine, Evaluation of log-tangent integrals by series involving
zeta(2n+1), arXiv, May 2017

(EsG) Eskin G. I., Boundary Value Problems for Elliptic Pseudodifferential Equations, Amer. Math.
Soc., Providence, Rhode Island, 1981

(EsO) Esinosa 0., Moll V., On some definite integrals involving the Hurwitz zeta function, Part 2,
The Ramanujan Journal, 6, p. 449-468, 2002

(EsR) Estrada R., Kanwal R. P., Asymptotic Analysis: A Distributional Approach, Birkhauser, Boston,
Basel, Berlin, 1994

(EyG) Eyink G. L., Stochastic Line-Motion and Stochastic Conservation Laws for Non-Ideal

Hydrodynamic Models. I. Incompressible Fluids and Isotropic Transport Coefficients,
arXiv:0812.0153v1, 30 Nov 2008

(FaK) Fan K., Invariant subspaces of certain linear operators, Bull. Amer. Math. Soc. 69 (1963), no.
6, 773-777

(FaM) Farge M., Schneider K., Wavelets: application to turbulence, University Warnick, lectures,
2005

(FaM1) Farge M., Schneider K., Wavelet transforms and their applications to MHD and plasma
turbulence: a review, arXiv:1508.05650v1, 2015

(FeR) Feynman R. P., Quantum Electrodynamics, Benjamin/Cummings Publishing Company, Menlo
Park, California, 1961

(FID) Fleisch D., A Student’s Guide to Maxwell’s Equations, Cambridge University Press, 2008

(GaA) Ganchev A. H., Greenberg W., van der Mee C. V. M., A class of linear kinetic equations in
Krein space setting, Integral Equations and Operator Theory, Vol. 11, 518-535, 1988

(GaG) Galdi G. P., The Navier-Stokes Equations: A Mathematical analysis, Birkhduser Verlag,
Monographs in Mathematics, ISBN 978-3-0348-0484-4

(GalL) Garding L., Some points of analysis and their history, Amer. Math. Soc., Vol. 11, Providence
Rhode Island, 1919

(GaW) Gautschi W., Waldvogel J., Computing the Hilbert Transform of the Generalized Laguerre
and Hermite Weight Functions, BIT Numerical Mathematics, Vol 41, Issue 3, pp. 490-503, 2001

(GiY) Giga Y., Weak and strong solutions of the Navier-Stokes initial value problem, Publ. RIMS,
Kyoto Univ. 19 (1983) 887-910

(GoK) Godel, K., An Example of a New Type of Cosmological Solutions of Einstein s Field Equations
of Gravitation, Review of Modern Physics, Vol. 21, No. 3, 1949

(Grl) Gradshteyn I. S., Ryzhik I. M., Table of integrals series and products, Academic Press, New
York, San Franscisco, London, 1965

(GrJ) Graves J. C., The conceptual foundations of contemporary relativity theory, MIT Press,
Cambridge, Massachusetts, 1971

(GuR) Gundersen R. M., Linearized Analysis of One-Dimensional Magnetohydrodynamic Flows,
Springer Tracts in Natural Philosophy, Vol 1, Berlin, Gottingen, Heidelberg, New York, 1964

(HaE) Haidemenakis E. D., Physics of Solids in Intense Magnetic Fileds, Plenum Press, New York,
1969



39
(HaG) Hardy G. H., Riesz M., The general theory of Dirichlet's series, Cambridge University Press,
Cambridge, 1915

(Hal) Havil J., Gamma, exploring euler’s constant, Princeton University Press, Princeton and
Oxford, 2003

(Hal1l) Hartle J. B., Hawking S. W., Wave function of the Universe, Physical Review, D, Vol. 28, No.
12,1983

(HaR) Hamilton R. S., Non-singular solutions of the Ricci flow on three-manifolds, Com. Anal. and
Geometry, Vol. 7, No. 4, pp. 695-729, 1999

(HaR1) Hamilton R. S., Three manifolds with postivie Ricci curvature, Lour. Diff. Geom. 17, pp.
255-306, 1982

(HaS) Hawking S. W., Penrose R., The Singularities of Gravitational Collapse and Cosmology, The
Royal Society, Vol. 314, Issue 1519, 1970

(HaS1) Hawking S. W., Particle Creation by Black Holes, Commun. Math. Phys. 43, 199-220, 1975

(Hel) Heywood J. G., Walsh O. D., A counter-example concerning the pressure in the Navier-
Stokes equations, as t — 0%, Pacific Journal of Mathatics, Vol. 164, No. 2, 351-359, 1994

(HeM) Heidegger M., Holzwege, Vittorio Klostermann, Frankfurt a. M., 2003

(HeW) Heisenberg W., Physikalische Prinzipien der Quantentheorie, Wissenschaftsverlag,
Mannhein, Wien, Zlrich, 1991

(HiP) Higgs P. W., Spontaneous Symmetry Breakdown without Massless Bosons, Physical Review,
Vol. 145, No 4, p. 1156-1162, 1966

(HoM) Hohlschneider M., Wavelets, An Analysis Tool, Clarendon Press, Oxford, 1995

(HoA) Horvath A. G., Semi-indefinite-inner-product and generalized Minkowski spaces, arXiv
(HoM) Holschneider M., Wavelets, An Analysis Tool, Clarendon Press, Oxford, 1995

(HuA) Hurwitz A., Uber einen Satz des Herrn Kakeya, Ziirich, 1913

(IvV) Ivakhnenko, V. I., Smirnow Yu. G., Tyrtyshnikov E. E., The electric field integral equation:
theory and algorithms, Inst. Numer. Math. Russian of Academy Sciences, Moscow, Russia

(JoF) John F., Formation of singularities in elestic waves, Lecture Notes in Phys., Springer-Verlag,
190-214, 1984

(KaD) Karp D., Sitnik S. M., Log-convexity and log-concavity of hypergeometric-like functions, J.
Math. Anal. Appl. 364, 384-394, 2010

(KaD1) Kazanas D., Cosmological Inflation: A Personal Perspective, Astrophys. Space Sci. Proc.,
(2009) 485-496

(KaM) Kaku M., Introduction to Superstrings and M-Theory, Springer-Verlag, New York, Inc., 1988

(KaM1) Kac M., Probability methods in some problems of analysis and number theory, Bull. Am.
Math. Soc., 55, 641-655, (1949)

(KelL) Keiper J. B., Power series expansions of Riemann's Zeta function, Math. Comp. Vol 58, No
198, (1992) 765-773

(KiA) Kirsch A., Hettlich F., The mathematical theory of time-harmonic Maxwell "s equations,
expansion-, integral-, and variational methods, Springer-Verlag, Heidelberg, New York, Dordrecht,
London, 2015

(KiA1) Kiselev A. P., Relatively Undistorted Cylindrical Waves Depending on Three Spacial
Variables, Mathematical Notes, Vol. 79, No. 4, 587-588, 2006



40

(KIB) Kleiner B., Lott J., Notes on Perelman s papers, Mathematics ArXiv

(KiH) Kim H., Origin of the Universe: A Hint from Eddington-inspired Born-Infeld gravity, Journal of
the Korean Physical Society, Vol. 65, No. 6, pp. 840-845, 2014

(KIS) Klainermann S., Rodnianski, Regularity and geometric properties of solutions of the Einstein-
Vacuum equations, Journées équations aux dérivées partielles, No. 14, p. 14, 2002

(KIS1) Klainerman S., Nicolo, The Evolution Problem in General Relativity, Birkhduser, Boston,
Basel, Berlin, 1950

(KIS2) Klainerman S., Remarks on the global Sobolev inequalities in Minkowski space, Comm. Pure.
Appl. Math., 40, 111-117, 1987

(KIS3) Klainerman S., Uniform decay estimates and the Lorentz invariance oft he classical wave
equation, Comm. Pure Appl. Math., 38, 321-332, 1985

(KnA) Kneser A., Das Prinzip der kleinsten Wirkung von Leibniz bis zur Gegenwart, B. G. Teubner,
Leipzig, Berlin, 1928

(KoA) Kolmogoroff A., Une contribution a I’étude de la convergence des séries de Fourier, Fund.
Math. Vol. 5, 484-489

(KoH) Koch H., Tataru D., Well-poseness for the Navier-Stokes equations, Adv. Math., Vol 157, No
1, 22-35, 2001

(KoJ) Korevaar 1., Distributional Wiener-Ikehara theorem and twin primes, Indag. Mathem. N. S.,
16, 37-49, 2005

(KrA) Krall A. M., Spectral Analysis for the Generalized Hermite Polynomials, Trans. American
Mathematical Society, Vol. 344, No. 1 (1994) pp. 155-172

(KrR) Kress R. Linear Integral Equations, Springer-Verlag, Berlin, Heidelberg, New York, London,
Paris, Tokyo, Hong Kong, 1941

(KrR1) KrauBhar R. S., Malonek H. R., A charachterization of conformal mappings in R* by a formal
differentiability condition, Bulletin de la Societé Royale de Liege, Vol. 70, Vol. 1, 35-49, 2001

(LaC) Lanczos C., The variational principles of mechanics, Dover Publications Inc., New York, 1970

(LaC1) Langenhof C. E., Bounds on the norm of a solution of a general differential equation, Proc.
Amer. Math. Soc., 8, 615-616, 1960

(LaE) Landau E., Die Lehre von der Verteilung der Primzahlen Vol 1, Teubner Verlag, Leipzig Berlin,
1909

(LaEl) Landau E., Ueber die zahlentheoretische Function phi(n) und ihre Beziehung zum
Goldbachschen Satz, Nachrichten von der Gesellschaft der Wissenschaften zu Goéttingen,
Mathematisch-Physikalische Klasse, Vol 1900, p. 177-186, 1900

(LaE2) Landau E., Die Lehre von der Verteilung der Primzahlen Vol 2, Teubner Verlag, Leipzig
Berlin, 1909

(LaE3) Landau E., Uber eine trigonometrische Summe, Nachrichten von der Gesellschaft der
Wissenschaften zu Goéttingen, Mathematisch-Physikalische Klasse, Vol 1928, p. 21-24, 1928

(LaE4) Landau E. Vorlesungen Uber Zahlentheorie, Erster Band, zweiter Teil, Chelsea Publishing
Company, New York, 1955

(LaE5) Landau E., Die Goldbachsche Vermutung und der Schnirelmannsche Satz, Nachrichten von
der Gesellschaft der Wissenschaften zu Goéttingen, Math.-Phys. Klasse, 255-276, 1930

(LaE6) Landau E., Uber die Fareyreihe und die Riemannsche Vermutung, Goéttinger Nachrichten
(1932), 347-352



41

(LaG) Lachaud G., Spectral analysis and the Riemann hypothesis, J. Comp. Appl. Math. 160, pp.
175190, 2003

(LalJ) An Elementary Problem Equivalent to the Riemann Hypothesis, https://arxiv.org

(LeN) Lebedev N. N., Special Functions and their Applications, translated by R. A. Silverman,
Prentice-Hall, Inc., Englewood Cliffs, New York, 1965

(LeN1) Lerner N., A note on the Oseen kernels, in Advances in phase space analysis of partial
differential equations, Siena, pp. 161-170, 2007

(LeP) LeFloch P. G., Ma Y., The global nonlinear stability of Minkowski space, arXiv: 1712.10045v1,
28 DEc 2017

(LiI) Lifanov I. K., Poltavskii L. N., Vainikko G. M., Hypersingular Integral Equations and their
Applications, Chapman & Hall/CRC, Boca Raton, London, New York, Washington, D. C., 2004

(LiI1) Lifanov I. K., Nenashaev A. S., Generalized Functions on Hilbert Spaces, Singular Integral
Equations, and Problems of Aerodynamics and Electrodynamics, Differential Equations, Vol. 43, No.
6, pp. 862-872, 2007

(LiJ) Linnik J. V., The dispersion method in binary additive problems, American Mathematical
Society, Providence, Rhode Island, 1963

(LiP) Lions P. L., On Boltzmann and Landau equations, Phil. Trans. R. Soc. Lond. A, 346, 191-204,
1994

(LiP1) Lions P. L., Compactness in Boltzmann’s equation via Fourier integral operators and
applications. III, J. Math. Kyoto Univ., 34-3, 539-584, 1994

(LiX) Li Xian-Jin, The Positivity of a Sequence of Numbers and the Riemann Hypothesis, Journal of
Number Theory, 65, 325-333 (1997)

(LoA) Lifanov I. K., Poltavskii L. N., Vainikko G. M., Hypersingular Integral Equations and Their
Applications, Chapman & Hall/CRC, Boca Raton, London, New York, Washington, D. C. 2004

(LuL) Lusternik L. A., Sobolev V. 1., Elements of Functional Analysis, A Halsted Press book,
Hindustan Publishing Corp. Delhi, 1961

(Mal) Mashreghi, J., Hilbert transform of log(abs(f)), Proc. Amer. Math. Soc., Vol 130, No 3, p.
683-688, 2001

(Mal1l) Marsden J. E., Hughes T. J. R., Mathematical foundations of elasticity, Dover Publications
Inc., New York, 1983

(MeY) Meyer Y., Coifman R., Wavelets, Calderéon-Zygmund and multilinear operators, Cambridge
University Press, Cambridge, 1997

(MiJ) Milnor J., Morse Theory, Annals of Mathematical Studies, Number 51, Princeton University
Press, Princeton, 963

(MiT) Mikosch T., Regular Variation, Subexponentiality and Their Application in Probability Theory,
University of Groningen

(MoC) Mouhot C., Villani C., On Landau damping, Acta Mathematica, Vol. 207, Issue 1, p. 29-201,
2011

(MoJ) Morgan J. W., Tian G., Ricci Flow and the Poincare Conjecture, Mathematics ArXiv
(MoM) Morse M., Functional Topology and Abstract Variational Theory, Proc. N. A. S., 326-330, 1938

(NaC) Nasim C. On the summation formula of Voronoi, Trans. American Math. Soc. 163, 35-45, 1972



42

(NaP) Naselsky P. D., Novikov D. I., Noyikov I. D., The Physics of the Cosmic Microwave
Background, Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, Sao Paulo, 2006

(NaS) Nag S., Sullivan D., Teichmtller theory and the universal period mapping via quantum
calculus and the H space on the circle, Osaka J. Math., 32, 1-34, 1995

(NeD) Neuenschwander D. E., Emmy Noether’'s Wonderful Theorem, The John Hopkins University
Press, Baltimore, 2011

(NiJ) Nitsche J. A., lecture notes, approximation theory in Hilbert scales

(NiJ1) Nitsche J. A., lecture notes, approximation theory in Hilbert scales, extensions and
generalizations

(NiJ2) Nitsche J. A., Direct Proofs of Some Unusual Shift-Theorems, Anal. Math. Appl., Gauthier-
Villars, Montrouge, 1988, pp. 383-400

(NiJ3) Nitsche J. A., Free boundary problems for Stokes s flows and finite element methods,
Equadiff 6, 2006, pp. 327-332

(NiN) Nielsen N., Die Gammafunktion, Chelsea Publishing Company, Bronx, New York, 1965

(ObF) Oberhettinger, Tables of Mellin Transforms, Springer-Verlag, Berlin, Heidelberg, New York,
1974

(OIF) Olver F. W. J., Asymptotics and special functions, Academic Press, Inc., Boston, San Diego,
New York, London, Sydney, Tokyo, Toronto, 1974

(OIF1) Olver F. W. 1., Lozier D. W., Boisvert R. F., Clark C. W., NIST Handbook of Mathematical
Functions

(OIR) Oloff R., Geometrie der Raumzeit, Vieweg & Sohn, Braunschweig/Wiesbaden, 1999

(OsK) Oskolkov K. I., Chakhkiev M. A., On Riemann ,Nondifferentiable™ Function and the
Schrédinger Equation, Proc. Steklov Institude of Mathemtics, Vol. 269, 2010, pp. 186-196

(OsH) Ostmann H.-H., Additive Zahlentheorie, erster Teil, Springer-Verlag, Berlin, Géttingen,
Heidelberg, 1956

(PeB) Petersen B. E., Introduction the the Fourier transform and Pseudo-Differential operators,
Pitman Advanced Publishing Program, Boston, London, Melbourne, 1983

(PeM) Perel M., Gorodnitskiy E., Representations of solutions of the wave equation based on
relativistic wavelet, arXiv:1205.3461v1, 2012

(PeO) Perron 0., Die Lehre von den Kettenbrichen, Volumes 1-2, Nabu Public Domain Reprint,
copyright 1918 by B. G. Teubner in Leipzig

(PeR) Penrose R., Cycles of Time, Vintage, London, 2011

(PeR1) Peralta-Fabi, R., An integral representation of the Navier-Stokes Equation-I, Revista
Mexicana de Fisica, Vol 31, No 1, 57-67, 1984

(PeR2) Penrose R., Structure of space-time, Batelle Rencontre, C. M. DeWitt and J. M. Wheeler,
1967

(PeR3) Penrose R., Zero rest mass fields including gravitation: asymptotic behaviours, Proc. Toy.
Soc. Lond., A284, 159-203, 1962

(PeR4) Penrose R., The Emperor's New Mind: Concerning Computers, Minds, and the Laws of
Physics, Oxford Univ. Press, 1989

(PeR5) Penrose R., Rindler W., Spinors and Space-Time, Cambridge University Press, Cambridge,
1984



43
(PhR) Phillips R., Dissipative operators and hyperbolic systems of partial differential equations,
Trans. Amer. Math. Soc. 90 (1959), 193-254

(PiS) Pilipovic S., Stankovic B., Tauberian Theorems for Integral Transforms of Distributions, Acta
Math. Hungar. 74, (1-2) (1997), 135-153

(PiS1) Pilipovic S., Stankovic B., Wiener Tauberian theorems for distributions, J. London Math. Soc.
47 (1993), 507-515

(P13) 1. Plemelj, Potentialtheoretische Untersuchungen, B.G. Teubner, Leipzig, 1911

(PoE) Postnikov E. B., Singh V. K. Continuous wavelet transform with the Shannon wavelet from the
point of view of hyperbolic partial differential equations, arXiv:1551.03082

(PoG) Polya G., Uber Nullstellen gewisser ganzer Funktionen, Math. Z. 2 (1918) 352-383

(PoG1) Polya G., Uber eine neue Weise bestimmte Integrale in der analytischen Zahlentheorie zu
gebrauchen, Gottinger Nachr. (1917) 149-159

(PoG2) Polya G. Uber die algebraisch-funktionentheoretischen Untersuchungn von J. L. W. V.
Jensen, Det Kgl. Danske Videnskabernes Selskab., Mathematisk-fysiske Meddeleler. VII, 17, 1927

(PoG3) Polya G., Uber Potenzreihen mit ganzzahligen Koeffizienten, Math. Ann. 77, 1916, 497-513

(PoG4) Polya G., Arithmetische Eigenschaften der Reihenentwicklung rationaler Funktionen, J.
Reine und Angewandte Mathematik, 151, 1921, 1-31

(PoD) Pollack D., Initial Data for the Cauchy Problem in General Relativity, General Relativity
Spring School 2015, Junior Scientist Andrejewski Days, March 22nd to April 4th, 2015,
Brandenburg an der Havel, Germany

(PoP) Poluyan P., Non-standard analysis of non-classical motion; do the hyperreal numbers exist in
the quantum-relative universe?

(PrK) Prachar K., Primzahlverteilung, Springer-Verlag, Berlin, Géttingen, Heidelberg, 1957

(RiB) Riemann B., Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe,
Abhandlungen der Kéniglichen Gesellschaft der Wissenschaften zu Géttingen, transcribed by D. R.
Wilkins, 2000

(RoC) Rovelli C., Quantum Gravity, Cambridge University Press, Cambridge, 2004

(RoC1) Rovelli C., The Order of Time, Penguin Random House, 2018

(RoC2) Rovelli C., Reality is not what it seems, Penguin books, 2017

(RoC3) Rovelli C., Seven brief lessons on physics, Penguin Books, 2016

(RoJ) Roberts J. T., Leibniz on Force and Absolute Motion, Philosophy of Science, Vol 70, No 3, pp.
553-573, 2003

(RuC) Runge C., Uber eine Analogie der Cauchy-Riemannschen Differentialgleichungen in drei
Dimensionen, Nach. v. d. Gesellschaft d. Wissenschaften zu Goéttingen, Math-Phys. Klasse Vol
1992, 129-136, 1992

(RuM) Ruskai M. B., Werner E., Study of a Class of Regularizations of using Gaussian Integrals,
arXiv:math/990212v2

(RyG) Rybicki, G. B., Dawson'’s integral and the sampling theorem, Computers in Physics, 3, 85-87,
1989

(ScE) Schrédinger E., Statistical Thermodynamics, Dover Publications, Inc., New York, 1989

(ScE1) Schrédinger E., My View of the World, Ox Bow Press, Woodbridge, Connecticut, 1961



44

(ScE2) Schrodinger E., What is Life? and Mind and Matter, Cambridge University Press, Cambridge,
1967

(ScP) Scott P., The Geometries of 3-Manifolds, Bull. London Math. Soc., 15 (1983), 401-487

(SeA) Sedletskii A. M., Asymptotics of the Zeros of Degenerated Hypergeometric Functions,
Mathematical Notes, Vol. 82, No. 2, 229-237, 2007

(SeE) Seneta E., Regularly Varying Functions, Lecture Notes in Math., 508, Springer Verlag, Berlin,
1976

(SeH) Seifert H., Threlfall W., Variationsrechnung im Grossen, Chelsea Publishing Company, New
York, 1951

(SeJ) Serrin 1., Mathematical Principles of Classical Fluid Mechanics
(ShF) Shu F. H., Gas Dynamics, Vol II, University Science Books, Sausalito, California, 1992
(ShM) Scheel M. A., Thorne K. S., Geodynamics, The Nonlinear Dynamics of Curved Spacetime

(ShM1) Shimoji M., Complementary variational formulation of Maxwell s equations in power series
form

(SiT) Sideris T., Formation of singularities in 3-D compressible fluids, Comm. Math. Phys., 101, 47-
485, 1985

(SmL) Smolin L., Time reborn, Houghton Miflin Harcourt, New York, 2013

(SmL1) Smith L. P., Quantum Effects in the Interaction of Electrons With High Frequency Fields and
the Transition to Classical Theory, Phys. Rev. 69 (1946) 195

(SoH) Sohr H., The Navier-Stokes Equations, An Elementary Functional Analytical Approach,
Birkhdauser Verlag, Basel, Boston, Berlin, 2001

(SoP) Sobolevskii P. E., On non-stationary equations of hydrodynamics for viscous fluid. Dokl.
Akad. Nauk SSSR 128 (1959) 45-48 (in Russian)

(StE) Stein E. M., Conjugate harmonic functions in several variables

(StE1) Stein E. M., Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory
Integrals, Princeton University Press, Princeton, New Jersey, 1993

(SzG) Szego, G., Orthogonal Polynomials, American Mathematical Society, Providence, Rhode
Island, 2003

(ThW) Thurston W. P., Three Dimensional Manifolds, Kleinian Groups and Hyperbolic Geometry,
Bulletin American Mathmematical society, Vol 6, No 3, 1982

(TiE) Titchmarsh E. C., The theory of the Riemann Zeta-function, Clarendon Press, London, Oxford,
1986

(TrH) Treder H.-]., Singularitaten in der Allgemeinen Relativitatstheorie, Astron. Nachr. Bd. 301, H.
1,9-12, 1980

(TsB) Al "Tsuler B. L., Integral form of the Einstein equations and a covariant formulation oft he
Mach s principle, Soviet Physics Jetp, Vol. 24, No. 4, 1967

(VaM) Vainberg M. M., Variational Methods for the Study of Nonlinear Operators, Holden-Day, Inc.,
San Francisco, London, Amsterdam, 1964

(VeG) Veneziano G., A simple/short introduction to pre-big-bang physics/cosmology, in , Erice 1997,
Highlights of subnuclear physics" 364-380, talk given at conference: C97-08-26.2 p. 364-380

(VeW) Velte W., Direkte Methoden der Variationsrechnung, B. G. Teubner, Stuttgart, 1976



45
(ViI) Vinogradov I. M., The Method of Trigonemotrical Sums in the Theory of Numbers, Dover
Publications Inc., Minelola, New York 2004

(ViIl) Vinogradov, I. M., Representation of an odd number as the sum of three primes, Dokl. Akad.
Nauk SSSR 15, 291-294 (1937)

(ViJ) Vindas J., Estrada R., A quick distributional way to the prime number theorem, Indag.
Mathem., N.S. 20 (1) (2009) 159-165

(VilJ1) Vindas J., Local behavior of distributions and applications, Dissertation, Department of
Mathematics, Louisiana State University, 2009

(ViJ2) Vindas J., Introduction to Tauberian theory, a distributional approach, https://cage.ugent.be
(ViM) Villarino M. B., Ramanujan’s Harmonic Number Expansion Into Negative Powers of a
Trangular Number, Journal of Inequalities in pure nd applied mathematics, Vol. 9, No. 3 (2008),

Art. 89, 12 pp.

(VIV) Vladimirow V. S., Drozzinov Yu. N., Zavialov B. 1., Tauberian Theorems for Generalized
Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 1988

(WeD) Westra D. B., The Haar measure on SU(2), March 14, 2008

(WeH) Weyl H., Space, Time, Matter, Cosimo Classics, New York, 2010

(WeH1) Weyl H., Matter, structure of the world, principle of action, ...., in (WeH) §34 ff.
(WeH2) Weyl H., Was ist Materie? Verlag Julius Springer, Berlin, 1924

(WeH3) Weyl H., Philosophy of Mathematics and Natural Science, Princeton University Press,
Princeton and Oxford, 2009

(WeH) Weyl H., Uber die Gleichverteilung von Zahlen mod. Eins, Math. Ann., 77, 1914, 313-352

(WeP) Werner P., Self-Adjoint Extension of the Laplace Operator with Respect to Electric and
Magnetic Boundary Conditions, J. Math. Anal. Appl., 70, 1979, pp. 131-160

(WeP1) Werner P., Spectral Properties of the Laplace Operator with respect to Electric and
Magnetic Boundary Conditions, J. Math. Anal. Appl., 92, 1983, pp. 1-65

(WhJ1) Whittaker J. M., Interpolatory Function Theory, Cambridge University Press, Cambridge,
1935

(WhJ2) Whittaker J. M., The ,Fourier" Theory of Cardinal Functions, Proceedings of the Edinburgh
Mathematical Society, Vol. 1, Issue 3, pp. 169-176, 1928

(Wh3J) Wheeler J. A., On the Nature of Quantum Geometrodynamics
(WhJ1) Wheeler J. A., Awakening to the Natural State, Non-Duality Press, Salisbury, 2004
(WhJ2) Wheeler J. A., At home in the universe, American Institute of Physics, Woodbury, 1996

(WoJ) Wohlfart J., Werte hypergeometrischer Funktionen, Inventiones mathematicae, Vol. 92,
Issue 1, 1988, 187-216

(WoW) Wong W. Kant’s Conception of Ether as a field in the Opus posthumum, Proc Eighth Intern.
Kant Congress, Marquestte University Press, Vol. II, Memphis 1995

(YeR) Ye R., Ricci flow, Einstein metrics and space forms, Trans. Americ. Math. Soc., Vol. 338, No.
2, 1993

(ZeA) Zemanian A. H., Generalized Integral Transformations, Dover Publications, Inc. New York,
1968

(ZhB) Zhechev B., Hilbert Transform Relations


https://cage.ugent.be/

46

(ZyA) Zygmund A., Trigonometric series, Volume I & II, Cambridge University Press, 1959



