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     Abstract 

Hardy-Littlewood [HaG] developed an analytical method, called circle method, which 
concerns with additive prime number problems. The circle method is about Fourier 

analysis over Z , which acts on the circle ZR / . The analyzed functions are complex-

valued power series  
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The fundamental principle is ([ViI] chapter I, lemma 4, Notes) 
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The circle method is applied to additive prime number problems. Hardy-Littlewood [HaG] 

resp. Vinogradov [ViI] applied the Farey arcs resp. major and minor arcs ([HeH]) to 
derive estimates for corresponding Weyl sums ([WaA]) supporting attempts to prove the 
2-primes resp. 3-primes Goldbach conjectures. All those attempts require estimates for 
purely trigonometric sums ([ViI]), as there is no information existing about the distribution 
of the primes, which jeopardizes all attempts to prove both conjectures.  
 
This paper gives a conceptual design proposal to leverage the circle method to prove 
both Goldbach conjectures: it is proposed to replace the discrete Fourier transformation 

applied for power functions )(xf  by continuous Hilbert- ( H ), Riesz- ( A ) resp. Calderon-

Zygmund-transformations ( S ) (which are Pseudo Differential Operators of order 0 , 1−  

and 1 ) with distributional, periodical Hilbert space domains )1,0(#

H .  The analogue 

fundamental principle is 
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for                                        nybnyayf nnn  2sin2cos:)( +=   . 

 
This enables a discrete wavelet analysis (e.g.[GoJ], [LoA]) of a distributional prime 

number density function on )(: 21 RS= , resp. of the distributional von Mangoldt function 

([ViJ]) 
 

                                            )()()()( 2/1 RHnxnx
xn

 −−



−=   . 

 
The distributional fractional part and −)cot( x functions ensure the link to the Zeta 

function in the Hilbert space framework )1,0(#

H . As mother function we propose the 

Kummer function (resp. its derivative) 
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with its relationship to the )(xerf  function and its zeros ( )nnxn ,2/1−  . The translation 

and scaling of the daughter wavelets are to be defined properly by the parameters 

n and
np , which is not in scope of the paper. 
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Baseline and Solution Approach 
 
 

 
The content of this section is an extract from [ViI1], [WoD].  
 
The Hardy-Littlewood circle method ([HaG]) has been applied in additive number theory e.g. for 

partition problems, i.e. an analysis about the number of additive partitions of N  in a given number 
 of integer summands.  
 

The (3-primes, 2-primes) Goldbach conjectures are concerned with 3,2= . 

 
The method is based on the generating power series for the prime number sequence series P 
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Depending from the number 3,2=  of summands for 10  r  it´s about an analysis of 
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fulfilling according to the Cauchy integral theorem 
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The key principle of the circle method is the fact, that for N  being an integer it holds 
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which can be reformulated in the form 
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The corresponding properties for our approach ([BrK1]) to the above lemma are captured in 
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Lemma: Let 
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denote the Kummer function with its zeros ( )nnxn ,2/1−  and 

)(: 21 RS= . Then the transformation into an appropriate distribution 

Hilbert space framework is enabled by the following three isometric 
mappings: 
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The circle method is about Fourier analysis over Z , which acts on the circle ZR / . Fourier analysis 

builds on periodical functions. It provides frequency-domains for corresponding analysis of the 
frequency of the original function. Fourier inverse then allows conclusions back to the origin 
function. The counterpart of FT to analyze non-periodical function is wavelet transforms, which is 
proposed to replace the arcs concept. The proposed corresponding Hilbert space framework is 
given by )1,0(#

H ( 0 ). The relationship to prime number theorem is given by ([ViJ]) 
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The relationship to the prime number distribution is given by the fractional function ([TiE]) resp. its 
Hilbert transform 
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fulfilling the following properties 
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i.e. 
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Lemma: For 1)Re(0  s corresponding Mellin transforms are given by 
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From [LaE] we recall: 
 

Let 
nG  denote the number of all partitions of the even integer n  in a sum of two primes p  and q  

(whereby qp +  and pq +  are counted as two different partitions) and )(xH the number of prime 

pairs, for which xqp +   , then it holds  
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Every n  can be represented as sum 21 nn +  in 1−n  different way. According to the prime number 

theorem the probability that a selected integer is prime is about nlog/1 . Therefore an even n  

seems to have nn log/   sums of two primes. In view of estimates of   
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we recall from [ViI] chapter 1, 
 
Lemma: Let )()()( xiQxPxF +=  be a periodic function of x  with period 1, and suppose that the 

interval 10  x  can be split up into finite number of intervals, such that the real functions )(xP  

and )(xQ  are continuous and monotonic in the interior of each. Suppose further that 
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Remark: A sufficient condition that the Fourier series converge is the Dirichlet condition: 
 
The interval ( )1,0  is the union of finite intervals, where the function )(xF  is continuous 

For all points 
sx  where )(xF  is non continuous, )0( +sxF and )0( −sxF  exist, then it holds 
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Remark: The analysis of the fractional part function and its finite partial sums leads to the Gibbs 
phenomenon ([GrT]):  
 
the finite part sums have maxima and minima in the neighborhood of 

sx , but the Fourier series 

above is divergent at 
sx . Those sums are examples of continuous functions, where its 

corresponding Fourier series is divergent at certain points. The situation is different in case of the 

lower regularity assumption )1,0(#
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From [EdH] 1.11, 3.7, we recall Riemann’s prime number distribution function )(xJ definition 
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and a special representation ( 1=r ) of the von Mangoldt function with the zeros of the Zeta function 
in the form 
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It holds 
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In a distribution framework the analogue of e.g. )(xJ   is   HxJS )(
~

, which allows reduced 

regularity assumptions to the domain, than the Dirichlet conditions.  
 
 
Remark: With respect to additive number theory problems and an alternative density definition we 
also refer to Schnirelmann density ([PeB]). 
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With respect to the Mellin and the Hilbert transforms of the Gaussian and Kummer function  
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we recall from [BrK1]: 
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Lemma: For the Hilbert transform 
HG  of the Gaussian function G  it holds 
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                  ii.)  The functions 
HG  andG are identical in a weak ),(2 −L  . 

 

 
Remark: The theorem of Erdös-Kac ([ErP]) concerning the Gaussian law of errors in the theory of 
additive number theoretic functions gave a first linkage from probability theory and additive number 
theory. 
 

     Remark: From ([BeB] 8, Entry 17 (iv), Entry (v)) we quote  
 

“Ramanujan informs us to note that 
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In the −)1,0(#

H framework it holds (see also [ZyA] XIII, (11-3)) 
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The Hilbert space is linked to the Dirchlet series by the following ([LaE1] §227, Satz 40): 
 

Theorem: The Dirichlet series 
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The theorem is applied to derive Dirichlet series for 
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With respect related functions (e.g. von Mangoldt function) we use the following notations 
 

)()( * xJxJ → , )()( * xx  →  , )()( * xLixLi → . 

 
As in the proposed framework the derivative operator is replaced by the Calderon-Zygmund 
operator with reduced domain regularity) this leads to the alternative density functions 
 

  )()( * xJSxJ →   ,    )()( * xSx  →  . 

 
 
 

Minor arcs are defined as the complementary set of the union of major arcs with respect to  1,0 . In 

[HaG] only major (Farey) arcs are applied with center qa /  and 2/1Nq  . We note that 
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The Fourier transformation provides (“just and only) frequency-domains in case of to be analyzed 
periodical function. To analyze non-periodical functions an appropriate transformation needs to 
have two properties: scaling and translation ([LoA]). This is given by the wavelet transform. Scaling 
a mother wavelet is the process of compressing or expanding the wave. Translation is moving the 
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wavelet along the inputted signal. The amount of translation that needs to be done depends on the 
scale of the wavelet. The smaller the scale the more translation that needs to occur. 
 
We note that e.g. the analogue Mexican hat mother wavelet has the form ([LoA] (1.1.3)) 
 









= )

2
(

2

1
:)(

2

2




x
x

dx

d
x

 . 

 
We further note that  
 

the Hilbert transform preserves orthogonality of translates and scaling relations ([WeJ]). The 

Hilbert scale factor 2/1−=  of )1,0(#

2/1−H is related to the wavelet theory ([GoJ], [LoA]) on the 

unit disk (e.g. Daubechies and Möbius wavelets) 
 
the reproducing property (Calderón’s reproducing formula for the continuous wavelet 
transform) of Möbius wavelets is valid in a weak −− 2/1H sense. 

 
 
The working assumption is that the arc analysis of the Weyl sums can be replaced by discrete 
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is proposed to define an appropriate wavelet function with respect to  −− ),(H framework.  
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which are the solutions of the Kummer differential equation 
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For the expansion of the Kummer function in terms of Laguerre polynomials and Fourier transforms 
we refer to [PiA].  
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For an evaluation of the integral 
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The conceptual idea is to transfer the Hardy-Littlewood method and its underlying framework into a 
distributional Hilbert space framework to enable approximation theory in the framework of 
functional analysis. 
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We note that )(:)( nxexen = builds an orthogonal system of )1,0(#

2L . 

 
With respect to the zeros of the Zeta function we recall 
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Summary 
 
The today´s Fourier analysis of Weyl (periodical, trigonometric) sums in a Banach space 
framework is proposed to be replaced by a discrete wavelet analysis on the circle in a distributional 
Hilbert space framework based on the (hypergeometric, non-periodical) Kummer function. 
 

Related to an alternative distribution function of the primes  
 

xlog−       →     )1,0()1,
2

1
()

2
cot(

2
log:)( #

2/1

#

2 −= HLxx


    , 

 

we propose the functions )(xb  resp. )(xb  as mother wavelet for a discrete wavelet analysis on 

the circle in a distributional −− )1,0(#

2/1H Hilbert space, alternatively to the Hardy-Littlewood circle 

method with )(xe  and power series analysis on the unit disk  1: = zZzD . The reason why 

not be more generous than a Hilbert scale factor 2/1−=  is about the fact, that 

 

 −− 2/1H . 

 
We note that 
 

),2/1(,

1

1

1

)
))((

(1 nnx

else
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b nn

n

n

n −=

=











=
−−

−
− . 

 

The discrete wavelet transforms (as weighted function with respect to the −− 2/1H inner product) is 

proposed as alternative to the Farey resp. the major and minor arcs concept.  
 

The properties of 
nx~  ,

np~  and 
nn xp ~~ −  are proposed to define appropriate translation and dilatation 

factors for appropriate discrete wavelet transforms. The dilation factor triggers a contradiction of 
the analyzing (mother) wavelet function. The translation factor means a shift of the argument along 
the circle. We note that the index n  counts the number of turns through the circle. 

 

For the alternative prime number counting function xxx 1log)( −   we give a first trial 
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1


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Remark: “S(chwartz)-asymptotics” of generalized functions are also called asymptotic by 
translation. Asymptotic by translation in combination with large scale dilations are also applied in 
[ViJ] to prove the prime number theorem in a distributional way.  
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The Goldbach Conjectures 
 

 
A still missing proof of an additive prime number problem is the binary Goldbach conjecture, that 
 

“all even numbers greater equal 4 can be expressed as the sum of two primes”. 
 
 
 
The (“weak”) ternary Goldbach conjecture (“the 3-primes problem) states, that  
 

“every odd number greater equal 7 is a sum of three prime numbers”. 
 
 
Because of  

3)1(212 +−=+ nn  

 
the ternary conjecture is a consequence of the binary conjecture. 
 
An equivalent formulation of the binary Goldbach conjecture is given by: 
 

:NjNn     jnp −=:  and jnq +=:  are prime numbers. 

 
 
 
The conceptual idea of the below it about a transfer into appropriate distributional Hilbert space 
frameworks like 
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being applied to singular integral equations if the form 
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A Distributional Way to the Prime Number Theorem ([ViJ]) 
 

 
“S(chwartz)-asymptotics” of generalized functions are also called asymptotic by translation. 
Asymptotic by translation in combination with large scale dilations are applied in [ViJ] to prove the 
prime number theorem in a distributional way:  
 
The Mangoldt function )(n  defines the Chebyshev function ( 1a ) 
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In order to prove the PNT  xx )(  the asymptotic behavior of )(x   is analyzed by studying the 

asymptotic properties of the distribution 
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with its Fourier-Laplace transform for 0)Im( z  
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This leads to the Fourier transform on the real axis, in the distributional sense, 
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With respect to the asymptotic by translation and dilation we recall from [ViJ] 
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It further holds that  
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being the disk boundary value of the analytic function z/1 , 0)Im( z  ([PeB] I 316), and Y being the 

Heaviside function with the integral representation 
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Recalling the definition of several Pseudo differential operators on the unit circles 
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the analogue von Mangoldt and density distribution function of the primes are given by 
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From the above it follows 
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The explicit formula of the latter equation is given by 
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Appendix 
 
 

Remark: An alternative dissection of the unit boundary circle is provided by the proof of a theorem 
in the context of conjugate function in the unit circle, which is given in [GaD] Chapter II, §1, in the 
context of the integral equation procedure of Theodorsen and Garrick for mapping circle-like 
boundaries on the unit circle the Hilbert transform: 

 
 

Theorem: Let )()()( zivzuzf +=  ( vu, real) be regular in the open unit disk 

1z and continuous on the closed unit disk 1z . Then for )( iev the following 

integral representation of )( ieu is valid (Cauchy integral): 
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The essential equation to prove this theorem are built on closed curves 
nC ([GaD] 

Chapter II, §1), mainly on the unit circle, but with a arc within the disk according 

to 0:
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For the polynomials 
nz  on the unit circle this means 
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The Hardy-Littlewood Circle Method 
 
 
Hardy-Ramanujan and later Hardy-Littlewood [HaG] developed an analytical method, called circle 
method, which concerns with additive prime number problems. The basic idea of the circle method 
is an analysis of the generating power series with respect to the prime number series in the unit 
disk 
 




=
Pp

pzzF )(   , 1z  , Cz   

resp. 
 

=
p

pzzzf )(log:)(   . 

 
Then e.g. the analysis of the binary and ternary Goldbach problem is about an analysis of 

)(2 xF resp. )(3 xF . The knowledge of the distribution of the primes on the circle is essential.  

 
 
For the ternary problem the analysis for the major arcs leads to the estimate ( 0A ,n  odd) 
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The proof is based on the (progressions prime number) theorem of Page, Siegel and Walfish 
([ScW] VI, theorem 5.1): 
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and an estimate for the “exponential sum” 
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Lemma: For real  let       −+−= 1;: Min  . Then for integers NM , it holds ([ScW] VII, 

lemma 2.2) 
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From [ViI1] X, lemma 1 and notes, we recall the 
 
Page theorem: Let ),;( lqN denote the number of primes p  satisfying Np    and )(mod qlp   , 

where  1),( =ql  . Let  
10 ,, cc  be fixed positive numbers, and suppose that  10

c
rq  . 

 
Then, if  q  is not exceptional, we have 
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In case   is near to a rational number qa /   with  1crq   for any fixed 
1c , the Siegel theorem with 

the estimate 
 

 +=

N

NNeO
x

dx

q
lqN

2

)(log )(
log)(

1
),;(

2/1


  

 
enables a stronger approximation of   

 )( pe   

 
without exceptional values of q  . 

 
 
The key idea of the circle method is to approximate 1→r  (e.g. by putting  Ner /1−= ) and to split the 

interval  1,0  into “arcs” , i.e. − intervals. Major arcs are − intervals with a rational number as 

its center qa /  with “small” q : for  += qa /  near a fraction qa /  the number   needs to be 

small so that there are no other fractions with denominators  q  within a distance of   of qa / . 

This requirement leads to the Farey decomposition of the unit interval. The Farey fractions of order 
N are given by 
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The Farey arcs around each of these fractions are defined as follows: let  
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are disjoint and their union covers the interval  1,0 . 
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In order to derive appropriate estimates for )(NR  the knowledge of the distribution of the primes 

is applied to analyze 
 

=
p

prrF )(  . 

In order to prove the 3-prime Goldbach conjecture ( 3= ) for at least 
43000

0 104.3 = NN  

([ChZ]) Vinograddov ([ViI]) replaced the infinite power series )(zF  by the finite series (Weyl) 

exponential sum ( R ) 
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The major arcs were analyzed by using the Siegel-Walfisz prime number theorem 
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For the remaining minor arcs related estimate the derived upper bound for )(S  is purely built on 

number theoretical arguments with respect to trigonometric sums ([ViI1]).  
 

 
For the 2-prime conjecture Hardy-Littlewood [HaG1] gave the not proven relationship  
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and therefore 
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Let )(nN r  ( )(NR ) denote the number of representations of n by a sum of primes and 
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then I holds ([HaG] (1.45), (1.47)) 
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Applying the Cauchy integral formula it follows for 10  r , ([HaG] (5.21)) 
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The basic idea to prove appropriate approximation estimates was to approximate the boundary of 

the unit circle by ner /1−=  applying the Farey dissection of the circle boundary with appropriately 

defined major and minor arcs. 
 
Assuming that the zeros of all Dirichlet L-functions have real part less than ¾, Hardy-Littlewood 
applied the circle method to prove the 3-primes problem for sufficiently large odd numbers ([HaG], 
[LaE]).  
 
Vinogradov gave a proof w/o the Dirichlet L-functions assumptions, but “only” for sufficiently large 
n: 
 
 
Theorem (Vinogradov, 1937 [ViI]), every sufficiently large odd integer can be written as the sum of 
three primes (w/o a Dirichlet L-function assumption). 
Vinogradov proved an appropriate estimate of the major and minor arcs in the form  
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For the major arcs of the binary problem Hardy-Littlewood ([HaG]) showed an appropriate estimate 
in the form 
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An analogue estimate of the minor arcs in the same way as for the ternary problem leads to a not 
sufficient estimate in the form  
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while a behavior same as for the major arcs or better would be required.  
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With respect to P1 and the −2L norm there is an alternative (still not sufficient) estimate in the form 

 

    (*)      
2

1

2

min
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






 

= −
n

n
ndeS

a

n

M arcsor

in    

 
basically due to the Bessel inequality    
 

( )



nm

m vev
22

, . 

 

 
The Hurwitz Zeta function 

 
 

A function, which is in a sense a generalization of )(s  is the Hurwitz Zeta function, defined by 

([TiE] 2.17: 
 




= +
=

0 )(

1
:),(

n
san

as     for  1)Re( s   , 10  a  . 

 

For 1=a  resp. 2/1=a this reduces to 

 

)(s   ,   )()12( ss −  . 

 
There are also other generalized Zeta function, e.g. Lerch or Epstein or Dedekind Zeta function, as 
well as Zeta functions associated with cusp forms ([IvA] 11.8). Related to the Hurwitz Zeta function 
is the Dirichlet series ([IvA] 1.8), defined by 
 

1

1

))(1(
)(

:),( −−


=

−==  s

pn
s

pp
n

n
sL 


   for  1)Re( s    

 
where for a fixed 0q  )(n is the arithmetical function known as a character modulo q  (for 

)(),(,1 ssLq  == , if 1),( qa then 0)(( =a ). For 1=q it holds 

 


−−−−−− −−=−=

qp

s

p

s

p

s pppssL 111

1 )1()1()1()(),(  . 

Thus ),( 1sL  has a first-order pole at 1=s  just like )(s  and it behaves similar to )(s  in many 

other ways, while  ),( sL  for 
1   is regular for 0)Re( s . 

 
 
The Generalized Riemann Hypothesis (GRH) states that all non-trivial zeros of all Dirichlet L-
functions have real part equal to ½. 
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Notation and Formulas 
 

 
With respect the notation and reference to the Riemann Hypothesis we refer to [KBr1]: 
 

Let  )(*

2 = LH  with )( 21 RS= , i.e.  is the boundary of the unit sphere. Let )(su  being a 

−2 periodic function and  denotes the integral from 0  to 2  in the Cauchy-sense. Then for 

)(: 2 = LHu  with )(: 21 RS=  and for real  Fourier coefficients and norms are defined by      

 


−= dxexuu xi




)(
2

1
:    



−

=
222

: 




 uu  . 

 
Then the Fourier coefficients of the convolution operator 
 
 

dyyuyxkdyyu
yx

xAu )()(:)(
2

sin2log:))((  −=
−

−=  

 
are given by                  
 




uukAu
2

1
)( ==  . 

 

The operator A  enables characterization of the Hilbert spaces 2/1−H  and 1−H  in the form 

 
 

 ==
−− 0

2

2/12/1 ),(  AH  ,  ==
−− 0

2

11 ),(  AAH    . 

 
     
With respect to the Dirac function we note that building on the Dirichlet kernel there is a formal 
representation of )(x  in the distribution sense in the form 

    
 

),(),()(nsg
2

1
)cos(

1

2

1

2

1
)( 12/1

0

2

0




 


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

−=
 HHxdkkxdkeex ikx

n
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For     

 




==
1

)2sin(2)cot(:  n      

 
it holds (see also [ZyA] XIII, (11-3)) 
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From literature (e.g. [GaD] pp.63, [GrI] 1.441) we recall 
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



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n

n
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  .

 

 

Due to the corresponding property of the Hilbert transform the functions H ,  are identical in a 

weak −)1,0(#

2L sense, i.e. it holds 

 

i) 2

0

2

0 H =    

 

ii) ),(),(  H=   )1,0(#

2L  

 

iii) 
2/12/1 ),(),( −− = H
  )1,0(#

2L  

 
because of 

2/10002/1 ),(),(),(),(),( −− ====  AA HHH
.    

 
 

Remark: The functions of the Hardy space )(H


 of  −2L  functions on the unit disk circle  with 

an analytical continuation inside the unit disk D can be parametrized by a point of Dz  by 
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where the functions )(ze  define a linear, continuous mapping according to 
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which is an isometry of the spaces )(H


 and )(DH


. 
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Remark: The dual space of 
22/1

*

2/1 LHH =−
 is isometric to the classical Hardy space H2 of 

analytical functions in the unit disc with norm 
 


−
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



 


drefref i

H

i
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)(
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It holds  
 
i) If f  H2 ,  then there exists boundary values  ),()(lim)( 2

1
 −=

→
Lrefef i
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i  with 

. 
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H
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ii) If 
2/1)( Heuef ii =



−




 , then its Dirichlet extension into the disc is given by ( irez = ): 
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with 
 

2
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0
fuF == 


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   . 

 
Remark: The Voronoi summation formula is related to the Dirichlet divisor problem. The Euler 
function )(n  is defined as product of all prime divisors of n  ([LaE])  
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Remark: From [SeA] we note that all zeros nz of the Kummer function 
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lie in the half-plane 2/1)Re( z  and in the horizontal stripe  nzn 2)Im()12( − . It holds 
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Remark: With respect to the Kummer function we recall from [LoA] 1.1, [SeA]: 

 

1. The zeros nz  of the Kummer function )2(11 ixF   lie in the intervals ( )nn ,2/1−   

 
     2. If )(111 RLF   continuous and differentiable and )(: 211 RLF = , then   is a wavelet. 
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Remark: For the expansion of Kummer functions in terms of Laguerre polynomials and Fourier 
transforms we refer to [PiA]. Putting 
 

dte
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xFxK
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x

t


−

−=
2

:)(   

 

the link between the polynomial function nz  and the Hermite polynomials )(zH n
is given by ([CaD]): 
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 . 

 
Alternatively we propose a corresponding polynomial system defined by 
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Lemma ([TiE] 3.7): Let )(xf  be positive non-decreasing, and, as →x  let  
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x
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then                                                              xxf )(   . 

 
 

Examples:                           xxxg log)()( =      and          
x

udug
0

log)( . 
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Additional formulas 
 
 

For 10  r , ( ) 2,0 , 
irez =  the function 
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It further holds ([GaD] §3): 
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Theorems from Polya, Müntz, Ikehara, Wiener, Ramanujan, Nyman, Theodorsen, 

Frullani, Hardy 

 

Theorems from G. Polyá 

G. Polyá obtained the following general theorem about zeros of the Fourier transform of a 

real function: 

Theorem 1:  Let  ba0  and let )(xg  be a strictly positive continuous function on ),( ba  

and differentiable there, except possible at finitely many points. Suppose that 

 


−
)(

)(

xg

xg
x

 

at every point of ),( ba where )(xg is differentiable. Suppose further that the integral  


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=
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)(:)(
x

dx
xgxsG s

 

is convergent for ** )Re(  sa . Then all zeros  of )(sG  in this stripe satisfy   )Re( . 

Let                                                            


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dxx
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sg
s

s        . 

 

Theorem 2 (G. Polya):  If   is a polynomial which has all its roots on the imaginary axis, or 

if  is an entire function which can be written in a suitable way as limit of such polynomials, 

then  

If    (*)  


−

0

1 )(
u

du
uFu s     has all its zeros on the critical line, so does  



−

0

1 )(log)(
u

du
uuFu s   .     

Modern version:  An operator which takes an even function )(q  and replaces it by 



 )1()1( −−+ qq  has the property of moving the zeros of a function closer on the imaginary 

axis, and so an eigenfunction of this operator should have its zeros on the imaginary axis.  

 

Theorem 3 (G. Polya): If )(xm is a polynomial which has all its roots on the imaginary axis, 

or if  it is an entire function which can be written in a suitable way as a limit of such 
polynomials, then  

if 


−

0

)( dxxFx s  has all its zeros on the critical axis, so does  

 

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−



− = dyyeFedxxxFx yyss )()()(log)(
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 . 
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The Müntz Formula 

 

Theorem (Müntz’ formula):  For )(),( xx  
 continuous and bounded in any finite interval 

with )()(  −= xox  and )()(  −= xox  for →x  and 1,   it holds 
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Proof:  because )(x  is continuous and bounded in any finite interval with )()(  −= xox it 

holds 

 
 
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1 0

1 )(
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dxxx
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s


    

 exists for    1  , 

i.e. the inversion leading to the left hand side of (4.3) is justified. 
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The first summand is justified, because )(x  is continuous and bounded in any finite interval 

the second summand is justified, because )()(  −= xox , i.e. it holds 

x

c
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for 0  except  1=s . Also                            

1
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−
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s

c
dxxc s      for 1  

and therefore the result for 1)Re(0 = s       •  
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Ikehara’s Theorem 

 

If the measure d is positive and the function )(sg fulfills 

    i)  )(sg  is properly defined for 0)Re( s  

    ii) )(lim sg   exists for +→1s  and is written as )1(g  

    iii) 
)1(

)1()(

−

−

s

gsg  has a continuous extension from the open halfplane 1)Re( s , (whereby it is 

necessarily defined and analytical) to the closed halfplane  1)Re( s  ,  

then 
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s

s     for +→1s           then           
1lim 0 =




A

o

A

dx

d   for  →A  

i.e. roughly speaking dxd   in the sense above. The function 








 
−−=

)(

)(
)1(:)(

s

s
ssg



  

gives the prime number theorem. The Siegel formula (see below) might give the link to the 

Stieltjes density above: 

....2/)1(1)()(1(:)( +−+−= ssssg     . 

 

From [LGa] we recall the two versions of Ikehara theorem: 

Lemma (Ikehara version 1): Let be a monotone nondecreasing function on ),0(  and let 


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1 )(
)(

x

xd
xsF s   . 

If the integral converges absolutely for 1)Re( s  and there is a constant Asuch that 

1
)(

−
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s

A
sF  

extents to a continuous function in 1)Re( s  then 

Axx )(  . 
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Lemma (Ikehara version 2): Let the Dirichlets series 


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)(
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n
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sF

 

be convergent for 1)Re( s . If there exists a constant A such that 

1
)(

−
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s

A
sF  

admits a continuous extension to the line 1)Re( s , then 

 
N

n NAc
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*      as   →N  . 

 

 

Wiener’s Tauberian theorem 

 

The closed linear hull of the translates of a function 

)()( 1 RLxf 
 

is the whole space )(1 RL  if and only if its Fourier transform 


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R

itx dttfexf )(:)(ˆ  

never vanishes. Note that the close linear hull in question contains all convolutions 

 −=
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Ramanujan’s Master Theorem 

 

Ramanujan’s Master Theorem: In the neighborhood of 0=x  for  

kx
k

k
xF )(

!

)(
)(

0

−=
   

the following representation holds true 

)()()( 1

0

ssdxxxF s −=−



   . 

 

Ramanujan motivated his formula with the following wordings ([1] B. C. Berndt, chapter 4, 

Entry 8): 

“Statement: If two functions of x  be equal, then a general theorem can be formed by simply 

writing )(n instead of 
nx  in the original theorem 

Solution: “Put 1=x  and multiply it by )0(f  then change x  to ....,,, 432 xxxx  and multiply 

,...
!3

)0(
,

!2

)0(
,

!1

)0( fff   respectively and add up all the results. Then instead of 
nx  we have 

)( nxf for positive as well as for negative values of n  . Changing )( nxf  to )(n  we can get the 

result.” 

 

Example:                                
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
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x
x  
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Replace zarctan  by its Maclaurin series in z , where z is any integral power of x . Now add 

all the equalities above. On the left side one obtains two double series. Invert the order of 

summation in each double series to find that 

)1(
212

)()(
)1(

0

1212

f
n

xfxf nn
n 

=
+

+
−

 −−+
 . 

 Replace )( nxf by )(n  to conclude that 

)0(
212

)12()12(
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0




=
+

−−++
−



n

nnn  . 

Of course, this formal procedure is fraught with numerous difficulties, but the theorem was 

finally correctly proved by G.H. Hardy. 

The link to differential form is given by the Pfaff form    dyydxx xy )()(  +−=  . 

Let 

 )0,0(: 2 −= RU

    

and        0)0,(: 2 −= xxRV

 

In case of the (non-star formed) domainU

 

there is no “integral” for the differential, but this is 

the case for the domainV . In this case the “integral” of   is related to one of the “core” 

functions used by Ramanujan )(arctan( xy , which is
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It holds 
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Remark  Putting  
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the Hardy/Littlewood resp. the Riesz equivalence criteria of the Riemann Hypothesis are 

(HL) RH holds          if and only if       )()(
!
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Bagchi’s Nyman criterion formulation 

 

Let H denote the weighted −2l space consisting of all sequences  Nnaa n =  of complex 

numbers such that 

                                         


=1

2

n

nn a     with  
2

2

2

1

n

c

n

c
n    . 

Let                           ,......1,1,11:=     ,    Hn
k

n
k 









== ,....3,2,1)(:       for  ,...3,2,1=k  

and  
k be the closed linear span of k . Then the Nyman criterion states  

The Riemann Hypothesis is true              
k
   

. 

 

Integral Equation from Theodorsen 

 

For a complex valued function −2 periodic function )()()(  ivuf +=  its conjugated 

function can be represented by ([DGa], 1.1, 1.2) 
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Let 
nn baa ,;0
 be the Fourier coefficients of f . Then 

nn ab ,;0 −  are the Fourier coefficients of its 

conjugate and it holds 
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 . 

Conformal mapping problem: Let C  be a star-shaped Jordan curve of the −w plane with 

respect to 0=w , let )( =  its representation by polar coordinates. Let D denote the inner 

region of C  and  )(zfw =  the conformal mapping function with domain 1z  onto  D , which 

is normalized by 0)0( =f and 0)0( f . Then the unknown “boundary function” )( =  is 

the solution of the non-linear, singular integral equation from Theodorsen: 
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This results in the following representation of the conformal mapping function  
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Theorem of Frullani 

 

Lemma (Theorem of Frullani)    Let )(xf be a continuous, integrable function over any 

interval  BxA0 . Then, for ab 0 , 

   


−=−
0

log)0()()()(
b

a
Ff

x

dx
bxfaxf  

where )(lim)0( xff = for +→ 0x  and )(lim)( xff =  for →x . 

We mention a generalization of this lemma, due to Hardy (Quart. J. Math. 33 (1902) p. 113-

144) in the form 

 


−
0

)(log)()(
x

dx
xbxax pnm   . 

 

The Hardy Theorem 

 

The Gauss-Weierstrass density function  

2

:)(:)(1

xexfx 

 −==      with   1:=  

gives the Jacobi’s − relation ([HEd] 1.6ff.) 

)(21:/)/1()(:)(:)( 22 xxxGnxfxGx  +==== 
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−

 . 

A modified integral operator representation ([HEd] 11.1) in the form 


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
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−−=

−
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1 1
1)(

)1(

)(2

x

dx
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ss

s s  

is used to prove the Hardy theorem ([HEd] 11.1), i.e. that there are infinitely many roots of  

0)( =s  on the line 2/1)Re( =s  . If the integral operator would be self-adjoint all zeros have to 

be on the critical line.  
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Hilbert Scales 

 

There are certain relations between the spaces 0H  
for different indices: 

Lemma: Let   . Then 


xx   

and the embedding 
 HH → is compact. 

 

Lemma: Let   . Then 








xxx   for 

Hx  

with 





−

−
=  

and  





−

−
= . 

 

Lemma: Let   . To any 
Hx  and 0t  there is a )(xyy t= according to 

i) 





xtyx −−   

ii) 


xyx −  ,
  

xy 
 

iii) 





xty )( −−

  
.
 

Corollary: Let   . To any 
Hx  and 0t  there is a )(xyy t= according to 

i) 





xtyx −−     for     

ii) 





xty )( −−        for      . 

Remark: Our construction of the Hilbert scale is based on the operator A with the two 

properties i) and ii). The domain )(AD of A equipped with the norm  

( )
=

=
1

222
,

i

ii xAx   

turned out to be the space
2H which is densely and compactly embedded in 

0HH = . It can 

be shown that on the contrary to any such pair of Hilbert spaces there is an operator A with 
the properties i) and ii) such that 

2)( HAD =

 
0)( HAR =  and  Axx =

2
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For 0t we introduce an additional inner product resp. norm by 
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Now the factor have exponential decay 
tie

−
 instead of a polynomial decay in case of 

i . 

Obviously we have 


 xtcx

t
),(

)(
  for 

Hx  

with ),( tc  depending only from  and 0t . Thus the normt −)(  is weaker than 

any norm− . On the other hand any negative norm, i.e. 


x  with 0 , is bounded by the  

norm−0 and the newly introduced normt −)( . It holds: 

Lemma 5: Let 0 be fixed. The norm−  of any 
0Hx  is bounded by 
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22

t
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−

 

with 0 being arbitrary. 

Remark 2: This inequality is in a certain sense the counterpart of the logarithmic convexity of 
the norm− , which can be reformulated in the form ( 0,  , 1+ ) 
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applying Young’s inequality to 
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The counterpart of lemma 4 above is 

Lemma 6: Let 0, t be fixed. To any 
0Hx  there is a )(xyy t= according to 

i) xyx −   

ii) xy 1
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