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PREFACE

At the meeting of the Mathematical Association of
America held in the Summer of 1955, I had the privilege of
delivering the Hedrick Lectures. 1 was highly gratified
when, sometime later, Professor T. Rado, on behalf of the
Committee on Carus Monographs, kindly invited me to
expand my lectures into a monograph.

At about the same time I was honored by an invitation
from Haverford College to deliver a series of lectures under
the Philips Visitors Program. This invitation gave me an
opportunity to try out the projected monograph on a ‘live”
audience, and this book is a slightly revised version of my
lectures delivered at Haverford College during the Spring
Term of 1958.

My principal aim in the original Hedrick Lectures, as
well as in this enlarged version, was to show that (a)
extremely simple observations are often the starting point
of rich and fruitful theories and (b) many seemingly un-
related developments are in reality variations on the same
simple theme.

Except for the last chapter where I deal with a spec-
tacular application of the ergodic theorem to continued
fractions, the book is concerned with the notion of statisti-
cal independence.

This notion originated in probability theory and for a
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X PREFACE

long time was handled with vagueness which bred sts-
picion as to its being a bona fide mathematical notion.

We now know how to define statistical independence in
most general and abstract terms. But the modern trend
toward generality and abstraction tended not only to
submerge the simplicity of the underlying idea but also to
obscure the possibility of applying probabilistic ideas
outside the field of probability theory.

In the pages that follow, I have tried to rescue statistical
independence from the fate of abstract oblivion by showing
how in its simplest form it arises in various contexts
cutting across different mathematical disciplines.

As to the preparation of the reader, I assume his famili-
arity with Lebesgue’s theory of measure and integration,
elementary theory of Fourier integrals, and rudiments of
number theory. Because I do not want to assume much
more and in order not to encumber the narrative by too
many technical details I have left out proofs of some state-
ments.

I apologize for these omissions and hope that the reader
will become sufficiently interested in the subject to fill these
gaps by himself. I have appended a small bibliography
which makes no pretence at completeness.

Throughout the book I have also put in a number of
problems. These prob'ems are mostly quite difficult, and
the reader should not feel discouraged if he cannot solve
them without considerable effort.

I wish to thank Professor C. O. Oakley and R. J. Wisner
of Haverford College for their splendid cooperation and for
turning the chore of traveling from Ithaca to Haverford
into a real pleasure.

I was fortunate in having as members of my audience
Professor H. Rademacher of the University of Pennsyl-
vania and Professor John Oxtoby of Bryn Mawr College.
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Their criticism, suggestions, and constant encouragement
have been truly invaluable, and my debt to them is great.

My Cornell colleagues, Professors H. Widom and
M. Schreiber, have read the manuscript and are respon-
sible for a good many changes and improvements. It is
a pleasure to thank them for their help.

My thanks go also to the Haverford and Bryn Mawr
undergraduates, who were the “guinea pigs,” and especially
to J. Reill who compiled the bibliography and proofread
the manuscript.

Last but not least, I wish to thank Mrs. Axelsson of
Haverford College and Miss Martin of the Cornell Mathe-
matics Department for the often impossible task of typing
the manuscript from my nearly illegible notes.

Mark Kac

Ithaca, New York
September, 1969
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CHAPTER |

FROM VIETA TO THE NOTION OF
STATISTICAL INDEPENDENCE

1. A formula of Vieta. We start from simple trigo-

nometry. Write

. Lz z
sin £ = 2 sin — cos —
2 2

T r oz
= 22 gin — cos — cos —
4 4 2

r T x
(1.1) = 23 sin — cos — cos — cos —
8 8 4 2

r " x
= 2"sin — ] cos —-
2" k21 2

From elementary calculus we know that, for 2 = 0,

. X
sm —
. 2" 1 .z
1 =lim = — lim 2" sin —»
n—owo X rnowo 2"
on

and hence

z
(1.2) lim 2" sin o = z.

n—wo

1



2 STATISTICAL INDEPENDENCE

Combining (1.2) with (1.1), we get

(1.3)

A special case of (1.3) is of particular interest. Setting
r = w/2, we obtain

(1.4) 2 d ™

. r—n=ICOS 2n+1
_\/5\/2+\/§\/2+\/2+\/§
T2 2 2

a classical formula due to Vieta.

2. Another look at Vieta’s formula. So far every-
thing has been straightforward and familiar.
Now let us take a look at (1.3) from a different point of
view.
..~ It is known that every real number ¢, 0 < ¢ < 1, can be
¢ \Wrivtjcen uniquely in the form

(2.1) (=242
' 2 2
where each e is either O or 1.
This is the familiar binary expansion of ¢, and to ensure
uniqueness we agree to write terminating expansions ip the
form in which all digits from a certain point on are 0.

Thus, for example, we write

3 1+1+0+0+
4 2 22 28 2



VIETA TO STATISTICAL INDEPENDENCE 3
rather than

3 1+o+1+1+
4 2 92 93 ot

The digits ¢; are, of course, functions of ¢, and it is more
appropriate to write (2.1) in the form

a(t) ) e
5 % = 4o

2.2) t =

With the convention about terminating expansions, the
graphs of €;(f), (), e3(f), - -+ are as follows:

P, - P G Qe Qo G
il - & . _t e o - J
0 } 1o ¢ 7 ¢ 1ot idsiin

It is more convenient to introduce the functions r;(¢) de-
fined by the equations

(2.3) r(t) =1 — 2¢(), k=1,2,3,---,
whose graphs look as follows:

PO . . G G Qe

P —— J L e L e
0 10 10 1
] ® ma e Gmms o

These functions, first introduced and studied by H. Rade-
macher, are known as Rademacher functions. In terms of
the functions r;(t), we can rewrite (2.2) in the form

k

k==l

(2.4) | 1—2=
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Now notice that
1

f iZ(1-20) gy — sin z
0 X

e zr —— = COS —
, xp | ¢ oF S o

Formula (1.3) now assumes the form

sin z 1 1
=f etz(1—2t) dt f exp ( E k( )) dt
x 0 k=1 ok

=ﬁco %=I:if < rk(t))dt

k=1

and

and, in particular, we have
1 o r(t © 1 oA ¢
(2.5) II exp (zx LQ) dt =] f exp (zx ﬁ) dt.
0 k=1 2k k=10 2k
An integral of a product is a product of integrals!

3. An accident or a beginning of something
deeper? Can we dismiss (2.5) as an accident? Certainly
not until we have investigated the matter more closely.

Let us take a look at the function

2 crri(t).
k=1

It is a step function which is constant over the intervals

s s+1
<—, >’ S=0’1’.'.’2n—1; \
2n 21&

and the values which it assumes are of the form

b= = = N R =
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Every sequence (of length n) of 4-1’s and —1’s corresponds
to one and only one interval (s/2", (s + 1)/2"). Thus

1 n 1 n
f exp [i 2 cun®] dt = — T exp (i 2 o),
0 1 1

where the outside summation is over all possible sequences
(of length n) of 41’s and —1’s.
Now

1 n n icg —icy n
E;E exp (¢ 2, +cx) = II (f'—-l:“e—‘) = IT cos e,
1

k1 2 k=1

and consequently
1 n n
(3.1) f exp [¢ D, exrx()] dt = [] coscx
0 1 =1

n 1
=TI [ e ar.
0

Setting
Cr = '2—k'
we obtain
1 ri(t
f exp (z > a )> H cos——v
0 T 2
and, since
lim }‘_‘, —"-(—) =1-—2

n—rw 1

unzformly in (0, 1), we have
1

: 1 n
sz . (L
— =f 1720 gt = lim | exp <zx > ,-ik)) dt
0 ) 1

T n—o 2

hmIIcos———Hcos
k=1

n—eok_1



6 STATISTICAL INDEPENDENCE

We have thus obtained a different proof of formula
(1.3). Is it a better proof than the one given in § 1?

It is more complicated, but it is also more instructive
because it somehow connects Vieta’s formula with binary
digits.

What is the property of binary digits that makes the
proof tick?

4. (I)* =1 ... 1 (n times). Consider the set of ¢'s
for which

ri(®) = +1, () = —1, r3() = —L

One look at the graphs of r{, r2, and r3 will tell us this
set (except possibly for end points) is simply the interval

& 9
The length (or measure) of this interval is clearly &, and
1 1 1 1
8 2 2 2

This trivial observation can be written in the form
ﬂ{rl(t) = +1; T2(t) = —1) 7'3(t) = _1}
= p{ri(t) = +1}u{rs(t) = —1}u{rs(t) = —1},

where u stands for measure (length) of the set defined
inside the braces.

The reader will have no difficulty in generalizing this
to an arbitrary number of ’s. He will then get the follow-
ing result: If &;, - - -, 6, is a sequence of +1’sand —1’s then

#{rl(t) = 617 T 7"n(t) = 6n}
= p{ri(t) = &1 }u{r2(t) = 82} -+ - u{r2(t) = 8a}.
This may seem to be merely a complicated way of writing

(3" =2 X § X+ X 7(n times),
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but in reality it is much more. It expresses a deep property
of the functions r(f) (and hence binary digits) and is a
starting point of a rich and fruitful development. It is
this property which is at the heart of the proof of § 3. For
(3.1) can now be proved as follows:

1 n
f exp [¢ 2, curr(t)] dt
0 1

= D exp (C 2 edu{ri(t) = b1, -, ra(t) = 34}
1

810"'157[.

_}: H giex’k H pire(t) = ok}

.',Bnl

Z H e“rp{re(t) = 8

*»0n k=1

n

=]I Z ekl {ri(t) = 8}

k=1
f tegry (L) dt.
0

5. Heads or tails? The elementary theory of coin
tossing starts with two assumptions:

I
i ,*_‘_1:

a. The coin is “fair.”
b. The successive tosses are independent.

The first assumption means that in each individual toss
the alternatives H (heads) and T (tails) are equiprobable,
i.e., each is assigned “probability’”’ 3. The second is used
to justify the “rule of multlphcatlon of probabilities.”
This rule (stated in vague terms) is as follows: If events
Ay, .-+, A, are independent, then the probability of their
joint occurrence is the product of the probabilities of their
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individual occurrences. In other words:
(5.1) Prob. {A; and As and A3 --- and 4,}
= Prob. {A:}, Prob. {4,}, :--, Prob. {4,}.

Applied to independent tosses of a fair coin, the rule tells
us that the probability associated with any given pattern
(of length n) of H’s and T’s (e.g., HHTT --- T) is

1 % 1 N 1 1

27 2 2 2n
This is quite reminiscent of § 4, and we can use the func-
tions r%(t) as a model for coin tossing. To accomplish this,
we make the following dictionary of terms:

Symbol H +1

Symbol T -1

kthtoss (k =1,2,:--:) r(®) k=1,2,--+)
Event Set of ¢’s

Probability of an event Measure of the correspond-
ing set of ¢'s.

To see how to apply this dictionary, let us consider the
following problem: Find the probability that in n inde-
pendent tosses of a fair coin, exactly ! will be heads. Using
the dictionary we translate the problem to read:

Find the measure of the set of ¢’s such that exactly ! of
the n numbers 7,(t), r2(t), - - -, ro(f) are equal to +1. We
can solve this problem (without the usual recourse to com-~
binations) by a device which we shall meet (under different
guises) many times in the sequel.

First of all, notice that the condition that exactly [
among r1(t), - - -, r.(f) are equal to 1 is equivalent to the
condition

(5.2) () +re@ +---F ) =20 —n.
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Next notice that, for m an integer, one has

1 1, m=0
(5.3) — f e dxr =
27 0 O, m # 0,

and consequently

27
(5.4) o) = if gilr O+ () —(21—n)] g,
27 0

is equal to 1 if (5.2) is satisfied and is equal to O otherwise.
Thus,

1
mmw+~wwmo=m—n}=f¢@m
0

1 1 27
=f __f eix[rl(t)+---+r,,(t)—(2l—n)] dx dt
0 27 Jg
1

27 1
s e_i(2l—n)x (f eiz[rl(t)+- . -+T”(l)] dt) dx.
0

21!'0

(The last step involves interchange of the order of integra-
tion. This is usually justified by appealing to a general
theorem of Fubini. In our case the justification is trivial
since r1(t) + - - -+ r.(t) is a step function.)

Now recall (3.1); useit withe; = ¢cg =---=¢, = z,and
obtain
(5.5) wlr(t) -+ ra) = 2 — n}
1 27

= — e H2I—n)Z o9 o
21!' 0

. . . Coyu -
Finally we leave it as an exercise to show that /Z o

1 /n
(5.6) w{ri(®) +---+ral®) =2l —n} = ?(z)

6. Independence and ““Independence.”® The notion
of independence, though of central importance in proba-



10 STATISTICAL INDEPENDENCE

bility theory, is not a purely mathematical notion. The
rule of multiplication of probabilities of independent
events is an attempt to formalize this notion and to build a
calculus around it. One is naturally inclined to consider
events which seem unrelated as being independent of each
other. Thus a physicist considering events taking place
in two samples of a gas far removed from each other will
consider them as independent (how could they be other-
wise if one sample is, say, in Bismarck, N. D., and the
other in Washington, D. C.?) and will cheerfully invoke
the rule of multiplication of probabilities.

Unfortunately, in so doing he may (innocently and un-
wittingly) create the impression that what is involved
here is a strict logical implication.

What is really involved is a definition of independence
and a belief (borne out by experience and experiment, to
be sure) that the definition is applicable to a particular
situation.

There is, thus, independence in a vague and intuitive
sense, and there is “independence” in the narrow but well-
defined sense that the rule of multiplication of probabilities
is applicable.

It was the vague and intuitive notions that provided
for a long time the main motivation and driving force
behind probability theory.

And while an impressive formalism was being created,
mathematicians (with very few exceptions) remained
aloof because it was not clear to them what the objects
were to which the formalism was applicable.*

Then in 1909, E. Borel made the observation that the

* Imagine a book on differential equations written solely in terms
of masses, forces, accelerations, and the like falling into the hands
of someone who has never heard of mechanics. The rich purely
mathematical content of such a book could well be lost to this hypo-
thetical reader.
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binary digits () [or equivalently the Rademacher func-
tions 74(t)] were ‘‘independent’ [see (4.1)].

At long last, there were well-defined objects to which
probability theory for independent events could be applied
without fear of getting involved with coins, events, tosses,
and experiments.

The appearance of Borel’s classical memoir “Sur les
probabilités dénombrables et leurs applications arithmé-
tiques’’ marks the beginning of modern probability theory,
and in the next chapter we shall discuss some of the lines
along which the theory developed.

PROBLEMS

1. Write the ternary expansion of {, 0 < ¢ < 1, in the form

® ® | n»®
_m)  m 'f); 3

t
3 32

+--.

(each nx can assume values 0, 1, and 2), and prove that the »’s are
independent.

2. Prove that

o0

1 + 2 cos 2=
s—-
sinz co 3k

== ’
z k=1 3
and generalize it.

3. Prove that if k3 < ks <--: < k; then
1
[0 - rt at = o

4. Let 2n (an even positive integer) be written in binary notation
2n =2" 42" ... 2™ 1 <ny <ng <---<my,

and define the functions w,(!) (the Walsh-Kaczmarz functions) as

follows:
wot) =1

yk(t) = ray(t) +*+ Tny D), k > 1.
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Prove that f e \v—w "

L R \“ [ \‘(7 \ . /’ a—"? a,*/‘//r
@ [ wn®uwal) & = smn. < e s

0 o L0

—
S

®) If f(t) is integrable and
1
f FOwa)dt =0, n=0,1,2, --
0

then f(¢) = 0 almost everywhere.

1 A1 27

© f f | 3> wiltywi(s) | dt ds = 1.
0vY0 k=0

5. Using the formula

1 ™1 -
f coszz .

|ZI=— 2

TV T

prove first that

1 n 1
f | Do () |dt = =
0 1 T

and finally that

© 1 — cos™z 1 pYVB1 — cos™z
[ w2
— T T™V_1/v/n z

1 n

lerk(t)ldt>A\/1—z.

0 1
with

1 (11— e v?2
a-ifl=,
TJ Yy

Note: Schwarz’s inequality combined with the result of Problem 3
for s = 2 gives

fllirk(t)ldts\/;l-
0 1



CHAPTER 9

BOREL AND AFTER

1. ““Laws of large numbers.”” You have all heard
that if you play a fair game of chance, then, in the long run,
it is unlikely that you will get rich. ‘“The law of averages
will take care of it’’ is what one hears uttered wisely in this
and similar connections. What is this “law of averages’?
Is it some sort of a physical law, or is it a purely mathe-
matical statement? It is mostly the latter, although the
agreement with experimental evidence is remarkably
good. Let us forget about experimental evidence and
concentrate on the mathematical issues. Suppose I toss
a ‘“fair” coin, winning $1 each time H comes up and losing
81 each time T comes up. What can I say about my
fortune after n tosses? Using our dictionary of §4,
Chapter 1, we can represent this fortune by

(11) Tl(t) + Tz(t) + e + Tn(t).

The question of obvious interest to the player is what are
his chances that, after n tosses, his fortune exceeds a
prescribed number 4,. Again by our dictionary, this is

equivalent to asking for the measure of the set of t’s for
which '

(1.2) r(t) + ro(t) +-- -+ rn(t) > A

If it is indeed unlikely that I shall get rich by playing this
13
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game, then if 4, is “sufficiently large”’ the measure of the
set defined by (1.2) should be “small.” (Similarly, it
should also be unlikely to lose more than 4,.) We make
all this precise by proving the following theorem:

For every ¢ > 0,
(1.3) lim p{|r (&) +-- -+ ra(t)| > en} = 0.

n—w

An obvious attack can be based on formula (5.6) of
Chapter 1. In fact, we have

pllri®) +- -+ ()| > en}
= 25 wln@® 4+ ralt) =21 —n}

[12l—n| >en

1 /n
_I2l-§>m§ (l)

and all we have to prove is that, for every ¢ > 0,
1 /n
(L.4) lim ), —( )= 0
n—w [2l=n] >en 2 l

Try it! Itisnot hard but not very easy either if you follow
the easy inclination and use Stirling’s formula. If you suc-
ceed, you will have essentially rediscovered the original
proof of Bernoulli. But there is an easier and a better
way due to Tchebysheff.

You simply write

1
(1.5) fo (re(®) +-- -+ ra()? dt

> f (ri) + -+ -+ ra(t)? dt
[ri@ 4 -+ra@®)| >en

> Enu{|ri() +- -+ ra()| > en}.
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If you have worked Problem 3 at the end of Chapter 1,
you will get

1
(L6) f (@) + -+ ra()? dt = 7
0

and hence, using (1.5),

1
(1.7) pilri@®) +- -+ ra()| > en} <e—27;,

which proves (1.3) with “plenty to spare.”

Remember this neat device of Tchebysheff; we’ll meet
it again!

The statement (1.3) embodies the simplest example of
what is technically known as ‘“the weak law of large
numbers.”” The adjective ‘“weak’ is not meant to be
derogatory and is used to distinguish it from another law
of large numbers, referred to usually as the ‘“the strong
law.” “Strong” is not meant to be laudatory except that
for the game of ‘“heads or tails’’ it implies the “weak law’’
and is therefore stronger in the logical sense.

Both laws have been vastly generalized, and in their
ultimate forms neither implies the other. These are, how-
ever, technical questions which will not concern us here.
The mathematical content of the weak law of large num-
bers is relatively meager. In the form (1.4) it is an amus- -
ing theorem about binomial coefficients. Could this then
be a formulation of the mysterious ‘“law of averages’ re-
ferred to above? I am afraid so. This is essentially all we
can hope for from a purely mathematical theory.

2. Borel and ‘“normal numbers.”” Another law of
large numbers was found by Borel. Borel proved that for
almost every ¢ (i.e., for all #s except a set of Lebesgue
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measure 0) one has

@1) lim ri(t) + rot) 4+ -+ ra(t) ~ 0

n—o n

The proof is easy and is based on a well-known theorem
from the theory of Lebesgue measure and integration.
The theorem in question is as follows:

If {f.(t)} is a sequence of nom-negative Lebesgue inte-
grable functions, then convergence of

o0 1
(2.2) 2o | fa() dt
n=1v0
implies convergence almost everywhere of the series
(2.3) > fad). |
Set =

(24) fn(t) =

and consider
fl (pO+ Tn(t)>4dt
0 n .

Using the result of Problem 3 at the end of Chapter 1, we
readily calculate that

(rl(t) ++ rn(t))4
n

1

,n4

4! /n
fl (n(t) +-+ rn(t)>4dt _ nt 2121 (2)
0 n
and hence o 1
> | fa)dt < oo
It follows that |

i (rl(t) 4o+ rn(t)>4

n=1 n
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converges almost everywhere, and a fortior:

(rl(t) +--+ rn(t))“: 0

n

im

n—re

almost everywhere. This proves (2.1).
If we recall that
re(®) =1 — 2.(Y),

then (2.1) is equivalent to saying that, for almost every ¢,

. a) -t e(t) 1
im =

@5) 7lz—>°° n 2
In other words, almost every number ¢ has (asymptoti-
cally!) the same number of zeros and ones in its binary
expansion! This is the arithmetical content of Borel’s
theorem. What does the theorem say probabilistically?
Using our dictionary, we arrive at the following statement:
If a “fair’”’ coin is tossed indefinitely and if the tosses are
independent, then with probability 1 the frequency with
which heads (tails) appear is 1 (in the limit, of course).
This statement satisfies our intuitive feeling of what a
“law of averages” ought to say and reassures us as to the
validity of our dictionary.

The reader is undoubtedly aware that there is nothing
sacred about the base 2.

If g is an integer greater than 1, we can write

¢ t
2.6) t=w1()+w2§)+---, 0<t<1,

g g
where each digit w(f) can now assume the values 0, 1, - - -,
g — 1. We leave it to the reader to prove that for almost
every (0 <t<1)

(2.7) lim
n—o n g

FE@) 1
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where F®(f) denotes the number of times the digit &,
0<k<g-—1, occurs among the first n w’s. (This is
Problem 1 on page 18.)

From the fact that a denumerable union of sets of
measure 0 is of measure 0, it follows that almost every
number {, 0 < ¢ < 1, is such that in every system of nota-
tion (i.e., for every g > 1) each allowable digit appears
with proper (and just!) frequency. In other words, almost
every number is ‘“‘normal’’!

As is often the case, it is much easier to prove that an
overwhelming majority of objects possess a certain
property than to exhibit even one such object. The present
case is no exception. It is quite difficult to exhibit a
“normal”’ number! The simplest example is the number
(written in decimal notation)

0.123456789101112131415161718192021 - - -,

where after the decimal point we write out all positive
integers in succession. The proof that this number is
normal is by no means trivial.

PROBLEMS

1. Prove (2.7) by first proving that the w’s are independent and
then generalizing the result of Problem 3 of Chapter 1.

2. Let f(t), 0 <t < 1, be a continuous function. Prove that
1 1 ces

lim f ...ff(_xl__i____i_ﬁ)dxl oo dz, = f(3).
0 0 n

n—o

Hint: First prove, imitating Tchebysheft’s proof of (1.4), that the
n-dimensional volume of the set defined by the inequalities

e T 1
x—l—_i-——;L—+—n—§|>€, 0<z:<1, ©¢=12,---,n

is less than 1/12¢%n.
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3. The “unfair” coin. Let Tp(t), 0 < p < 1, be defined as follows

i) OStﬁp
y 4
Tp(t)_ t—p
—_ <tL1,
1—-p
and let
1 <t<L
Gp(t)’:{’ 0= _p.
0, p<t<L1

Plot the functions
(1) = et), (1) = p(Tp(®), (1) = ex(Tp(To(t))), ++*

and show that they are independent. Note that, if p = %, one
obtains one minus the binary digits.
4. Prove that the measure of the set on which

W)+ F P =1 0<I<n

(7;) Pl — p)»h

5. Explain how the functions ¢’(f) can be used to construct a

model for independent tosses of an “unfair” coin, where the proba-
bility of H is p and the probability of Tisq¢ = 1 — ».
6. Show that if f(f) is continuous then

folf (egw(t) +n + e,fw(t)) dim i P (z) (:) p*(1 —p)"* =B, (p).

k=0

is equal to

[The B,(p) are the famous Bernstein polynomials.]

7. Using Tchebysheff’s “trick” estimate the measure of the set on
which
2O+ + O

n

p'>e

and prove that )
Lim Bu(p) = £(p)

uniformly in 0 < p <1 [define B,(0) = f(0) and Ba(1) = f(1)].
(This is the original proof of S. Bernstein of the famed theorem of
Weierstrass on approximation of continuous functions by poly-
nomials.)



20 STATISTICAL INDEPENDENCE

8. Let f(t) satisfy the Lipschitz condition of order 1;i.e.,
If&) —fi) | < M|ty — ], 0< 1,8t <1,
where M is a constant independent of ¢; and t;. Prove that

/@) — &@H_MJ;

9. Let
f=t—3], 05t

and note that it satisfies the Lipschitz condition of order 1. Use
the result of Problem 7 of Chapter 1 to estimate from below

and thus show that the order 1/4/% in the estimate of Problem 8
above is the best possible.
10. Prove that for almost every ¢
o S0 ot P

n—®o n

11. Show that there exists an increasing function ¢,(f) such that
(p)(t) fk(d’p(t))y k= 1: 2) te

(&’s are the binary digits). Show further that for p # 3 the function
ép(t) is “singular”; i.e., every set E of positive measure contains a
subset E; differing from E by a set of measure 0 and such that the
image ¢p(E1) is of measure 0. [See Z. Lomnicki and S. Ulam, Fund.
Math. 23 (1934), 237-278, in particular pp. 268-269.]

12. Show that for every ¢ > 0 the series

e 1 (Vaign
E—z—:‘exp {% [71(8) +'"‘+7'n(t)|}

converges almost everywhere and that consequently

|71(t) +- - -+ ralt) |
i <42
n—I'I:o sup Vv nlogn V2

almost everywhere. Hini: Note that (¢ real)

1 1
fe£lrx(t)+---+rn(t)l dt <f ek + - +7a(0) d¢
0 o

1
+ f e~ En®O+ - +m®) df = 2(cosh §)",
0
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Note. The result that

lim sup |71(t) -« -+ ra(®) | <3
n—o vVnlogn

was first obtained by Hardy and Littlewood in 1914 in a rather
complicated way. A much stronger result to the effect that

. |ri(t) 4+ rat) |
lim = Ve
n—w Sup 4/ nloglogn

almost everywhere was proved in 1922 by Khintchin. This is con-
siderably more difficult to prove.

3. “Heads or Tails’>—a more abstract formula-
tion. A universally accepted pattern of statistical theories
(i.e., theories based on the notion of probability) can be
brleﬂy summarized as follows:

One starts with a set Q (“sample space’’) whose measure
(probability) is assumed to be 1. In Q there is a collection
of subsets (‘“‘elementary sets’’ or ‘“‘elementary events’’)
whose measures (probabilities) are given in advance.
The problem is to “‘extend” this measure to as wide a col-
lection of subsets of © as possible.

The rules for extending are the following:

1°. If A,, Ao, - -+ are disjoint (mutually exclusive) sub-
sets of Q@ (events) and if they are measurable (i.e., can be

assigned a measure), then their union U Ay 18 also meas-
urable, and

0 [+ ]
" {U Ak} = D u{ds},
where u{ } is the measure assigned to the set in braces.

2%, If A is measurable, then so is its complement @ — A.
(It follows from 1° and 2° that u{Q — A} =1 — u{4}
and, in particular, since @ is measurable by postulation,
that the measure of the empty set is zero.)
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3%, A subset of a set of measure zero is measurable.

Measurable functions f(w), w e, defined on @ are
called ‘“random variables’” (a horrible and misleading
terminology, now, unfortunately, irretrievably entrenched).
Let us see how “heads or tails” fits into this scheme.

The sample space @ is simply the set of all infinite
sequences of symbols H and 7T, i.e., sequences like

w : HTHHTTT---.

What are the elementary events? Customarily they are
the ‘“‘cylinder sets,” i.e., sets of sequences in which a finite
number of specified places is held fixed. For instance, the
set of sequences whose third element is H, seventh T, and
eleventh T is a cylinder set. What measures are to be as-
signed to these cylinder sets? This depends, of course, on
the nonmathematical assumptions about coin tossing
which we must translate into mathematical language.
Independent tosses of a “fair coin’ are translated into this
language by assigning to each cylinder set the measure

1 k

(2) '
where k is the number of specified places held fixed. There
is now the important problem of proving uniqueness of the
extended measure. In our case, this can be done very
simply by appealing to the uniqueness of Lebesgue’s
measure. This states that if a measure u defined on (0, 1)
satisfies 1°, 2°, and 3° and if the u-measure of every interval
is equal to its length, then u is the ordinary Lebesgue
measure. If we write 1 for H and O for 7', then to each se-
quence of symbols H and T there corresponds (uniquely
except for a denumerable set of dyadic rationals) a num-
ber ¢, 0 < ¢ < 1, namely, the number whose binary digits
are given by the H’s and T”s of the sequence after they are
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replaced by ones and zeros. This mapping also has the
property that it maps cylinder sets into unions of disjoint
intervals whose end points are dyadic rationals, and, more-
over, the measure we have assigned to the cylinder sets is
equal to the Lebesgue measure (length) of the set into
which it is mapped. Now, we are through!

The uniqueness of extension can be also proved without
an appeal to mapping. The most general theorem of this
kind was proved by Kolmogoroff in his 1933 book Grund-
begiffe der Wahrscheinlichkeitsrechnung.

Once a measure on £ has been firmly established, one can
in a standard way, construct a theory of integration which
parallels the usual Lebesgue theory.

Let w € Q, i.e., w is a sequence of symbols H and T.

Set

+1, if the kth element of w is H,
Xi(w) =

—1, if the kth element of w is T'.

The functions X (w) are “independent random variables”
in the sense that

B.1) p{Xi(w) = 8, X(w) = 8y, + -+, Xn(w) = 8}

1 n
=5 = 1T #{Xk(w) = o}
k=1

for every sequence of §;, where each § is either 1 or —1. It
is clear that the X3(w) furnish us with a model of inde-
pendent tosses of a “fair’’ coin.

4, What price abstraction? To abstract is presuma-
bly to come down to essentials. It is to free oneself from
accidental features and to focus one’s attention on the
crucial ones. Abstractly, the theory of ‘‘heads or tails”
(“fair” coin, independent tosses) is simply the study of
functions Xj(w) having property (3.1) defined on some
space @ (of measure 1) in which there is given a measure
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satisfying 1°, 2°, and 3° of the preceding section. It is
immaterial what @ is, and one is allowed to use only (3.1)
and the rudimentary properties of 1°, 2°, and 3° of the
measure. One must, of course, convince oneself that one
is not in a mathematical vacuum, i.e., that the objects we
are talking about can be defined. This is accomplished by
taking Q to be the “sample space’’ and by constructing the
required measure u, as has been indicated in §3. The
fact that a realization of the X(w) is given by the Rade-
macher functions r(f), i.e., that we can take for @ the
interval (0, 1) with the ordinary Lebesgue measure, can be
considered as accidental. Note, that with the exception
of an amusing proof of Vieta’s formula in which we have
used a very special property of the Rademacher functions,
namely, that

2 i)
1—-2t= =

k=1

we have never appealed to anything but the property
(3.1) and the general properties of measure. But the price
one may be called upon to pay for unrestrained abstraction
is greater, much greater in fact. For unrestrained abstrac-
tion tends also to divert attention from whole areas of
application whose very discovery depends on features that
the abstract point of view rules out as being accidental.
Illustrations of this point are scattered throughout the
book. Let me begin by giving a few examples from the
realm already familiar to us.

5. Example 1. Convergence of series with random
signs. What is the probability that the series

o0
}: +ck, (cx real),
k=1

with signs chosen independently and each with probability
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1 converges? This problem was first posed in this form
by H. Steinhaus in 1922 (and independently by N.
Wiener) to whom we also owe the essence of § 3. Steinhaus
noted that the problem is equivalent to finding the measure
of the set of ¢’s for which the series

(5.1) Z ckrx(t)
1

converges. This question had at that time been already
answered by Rademacher who proved that, if

(5.2) > ek < oo,
1

the series (5.1) converges almost everywhere. We could,
of course, consider the convergence of

(5.3) kZ‘, cxXr(w),
=1

where the X;(w) have the property (3.1). Indeed, the
proof of Kolmogoroff who has found the ultimate generali-
zation of Rademacher’s theorem used only (3.1). There
is, however, a beautiful proof due to Paley and Zygmund
which makes an essential use of Rademacher functions.
It is this proof that we shall reproduce here for reasons
which will become apparent a little later. The proof is
based on two not quite elementary but very important
theorems:

1. The Riesz-Fischer theorem, which states that if
Jai? < o

and if ¢;(t), ¢2(f), - - - are orthonormal in a set E, i.e.,

(5.4) fE ¢:(D)¢;(t) dt = by,
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then there exists a function f(t) ¢ L? (i.e., f F2(t) dt < )
E
such that

(5.5) lim fE () ~ T axtal®)? dt = 0,
=1

n—w

2. The fundamental theorem of calculus, which in its
“advanced” version states that if

1
(5.6) fo 170)] dt < o,

then, for almost every 1,

1 Bm
(5.7) lim ———— | () dt = f(to)

m—ow Py — Oy Jap

provided that

am <ty < Bn and lima, = lim B, = i,.

m—>o m—wo

Now, we know that the Rademacher functions are ortho-
normal on (0, 1)
1

f ri(Ori(0) dt = 8.
0

Consequently (by the Riesz-Fischer theorem stated above)
there exists a function f(¢) such that

1
2 o0
(5.8) Lf@&<
and

1 n
(5.9) nmf(my—zqmmfm=o
0

n—o k=1
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(Recall that we assume
Do < )
1

Now let £y be such that (5.7) holds [(5.8) implies (5.6)1],

and let
k kn + 1
(5.10) U, = 5’—,: <ty < ——=bnm

(we exclude the possibility that f is a dyadic rational). We
have

Bm n
@) — D cere(®)) dt )

am 1

< B — am)*t ( j; 1<f ® — éckrk(t))z dt)%

and hence by (5.9)

Bm 0 Bm
(5.11) dt=3 c f re(t) dt.
am 1 am
Observe now that
Bm
(5.12) f @) dt =0, k>m
and

Bm
(5.13) f re(0) di = (Bm — am)ralto), k < m.

m

Thus (5.11) becomes

Bm m
@ dt = Y cxrx(to)
1

Bm — Oy Jay,
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and hence by (5.7)
2 cari(to)
1

converges.
The above argument can be extended immediately to
proving that the series

(5.14) i cx sin 272kt
k=1
converges almost everywhere if
(5.15) ci2 < oo,
This theorem suggests itself naturally if one notices that
r%() = sgn sin 272,

In fact, our proof hinged on three properties of the Rade-
macher functions:

1° Orthonormality
2 (5.12)
30 (5.13)

Of these 1° and 2° are satisfied when ri(f) is replaced by
sin 272%¢. Property 3° is not strictly satisfied, but we have,
for k < m,

Bm
- (5.16) f sin 202%t dt = (B — am) sin 2w2%ty

Bm
4| (sin 2x2*t — sin 2x2%t;) dt

am

and
Bm

(sin 272t — sin 27 2Ft;) dt I
an
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Bm Bm
sf |sin21r2"t—sin27r2"to|dtﬁ21r2'°f [t — to|dt
Cm

2k
< 222 (B — am)? = 21r— Bm — am).

Now, instead of

Bm m
@ dt = 3 exrx(to),
1

Bm — Qp Jan

we get

1 Bm
—_— f f() dt — Z ck sin 272%t, | < Z | ckl —
Bm — om Jan 2™

and since ¢, — 0 as n — « (remember that Zc,% < «!),
one has

lim ZICkl

m-—a 1

and this is sufficient to complete the proof.
The theorem we have just proved concerning conver-
gence of

[+ o]
> ¢ sin 272"t
1

is actually a special case of a famous theorem of Kolmo-
goroff to the effect that

o0
2.0k <o
1
implies convergence almost everywhere of

®
Z Ck Sin 2angt
k=1
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provided that there exists a number ¢ such that

s >q> 1
N
Kolmogorofi’s proof used, in an essential way, the fact
that the series in question were trigonometric series, but,
by an extension of the Paley-Zygmund argument, one can
prove the following much more general theorem:
If g(¢) is periodic with period 1 and if

1
(a) f git)ydt =0
0

(b) [g@) —g@") | < M|t = "%, 0<a<]l,

then convergence of Zc;2 implies convergence almost every-
where of

2 cig(nat)
1

provided that the integers n; are such that

Ngt1
s e>1
e

The proof of this statement is a little too technical to be
reproduced here—though no essentially new idea beyond
that of Paley and Zygmund is needed.
What is the moral of all this? The seemingly accidental
fact that
r(f) = sgn sin 2x2%~1¢

suggests that there may be analogies between r(f) and
sin 272%~1¢. Since the r(f) have a definite probabilistic
interpretation, a way is opened to connect “heads or tails”’
with a mathematical realm unrelated with chance, proba-
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bility, coins, and what have you. Could this be achieved
if we had insisted on treating ‘“heads or tails’” abstractly?
Perhaps, but I doubt it.

6. Example 2. Divergence of series with random
signs. What happens to the series

(6.1) P
(6.2) Z ck2 = o?

1

The answer is now that (6.1) diverges with probability 1.
The proof is quite simple. First, we note that our problem
is simply to determine the measure of the set of con-
vergence of

(6.3) > cxrx(t)
1

under the condition (6.2). Next, we note that the set of
convergence of (6.3) must be either of measure 0 or measure
1 (a special case of the so-called zero-one law). Recall
that

re(t) = (271, *

and hence if ¢ is in the set of convergence then so is

1
t + o
forti=0,1,2, ---.

In fact, if ¢ is replaced by ¢ + 27 only a finite number
of terms of (6.3) are changed, and this cannot affect con-
vergence. Thus the characteristic function of the set of
convergence has arbitrarily small periods, and by a well-

* It should be understood that rx(f) is defined in such a way that
it is periodic with period 1. In other words ri(t 4 1) = rx(f).
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known theorem it must be a constant almost everywhere—
the constant being either 0 or 1.*

We can assume that ¢, — 0, for otherwise the statement
of our theorem would be trivial.

Suppose now that (6.2) holds, ¢, — 0, and the series
(6.3) converges on a set of positive measure. By the re-
mark above it must converge almost everywhere. Hence,
there exists a measurable function g(¢) such that

(6.4) lim i cxre(t) = g(t)

7n—>0 1

almost everywhere. From (6.4) it follows that, for every
real £ # 0,

lim exp [i£ D, cxri(t)] = €&

n-—w 1

almost everywhere. By Lebesgue’s theorem on bounded
convergence we conclude that

* For a bounded, measurable (hence Lebesgue integrable!) func-
tion ¢(f) the proof is as follows: We have

I=(owat=3 (" otya=2"""s0a
—foqb() —Mﬁm, o(0) dt = Lm, o(t) dt.

Let to be such that
1.11121 ! /l¢ dt = d)t

l—w

for ki/2! <ty < (k1 + 1)/2%. From the fundamental theorem of cal-
culus (see § 5) almost every f has this property. Thus ¢(lp) = I
for almost every ty. If ¢(f) is not assumed bounded, apply the above
argument to ¢, This proof is due to Hartman and Kirshner; the
theorem was first proved in a more complicated way by Burstin.
That the characteristic function of the set of convergence is measura-
ble is clear since the set of convergence of a series of measurable func-
tions is measurable.
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1

“nl n
(6.5) lim f exp [¢t D cxri(®)] dt = f e*e® g,
0 1 0

n—

But we know that 7\
1 n n o s
(6.6) f exp [t& D care(®)] dt =" ][] cos &cx,
0 1 k=1

and we leave it to the reader to prove that (6.2) and ¢, — 0
imply

n
lim ] cos &k = 0.
-0k

Thus, .
(6.7) f e¥eEW gt = 0
0

for every real £ # 0.
Now take a sequence £, — 0, but make sure that each
£n #~ 0 (e.g. &, = n1); we have

lim Sng(t) =0

n—w
for almost every ¢ and hence

lim e%n8(® = 1
n >0
for almost every ¢.
Again by Lebesgue’s theorem on dominated convergence

1
lim | e#ne®W gt =1
n—owdQ
which implies 0 = 1, a contradiction. Hence (6.3) could
not converge on a set of positive measure. Hence it must
diverge almost everywhere.
This method of proof utilizes independence of the r(t)
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in an essential way [see (6.6)] and does not seem immedi-
ately applicable to studying the series

ol Nk+41
> cksin 2amt, —— > g > 1
k=1 N

under the condition
o0
S o = e
1

Actually, the method can still be adapted, but we postpone
the discussion of this point until later.

PROBLEMS

o0
1. Let Y x> = =, cx — 0 and consider the series
i

[- -]
Z ¢k sin 272%1¢,
k=1

(a) Prove that

n 4
! Z cr sin 272k
dt

lim

1
n

M \/ 2 ot
1

exists and find its value.
(b) Prove that if Fp(t), 0 <t < 1, is a sequence of functions such

that
1 1

lim [ F.X)dt = o, lm f Fo\(0) dt = 8
0 n—w Jo

n—o

then the measure of the set E on which F,(f) approaches 0 cannot
exceed

1 ——.
B
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(c¢) Using (a) and (b), prove that under the conditions of the
problem the series

0
Z cx sin 27251
k=1

diverges almost everywhere.

2. The following example shows that sine in the theorem of
Problem 1 cannot be replaced by an “arbitrary’’ periodic function

1
f(@t) of period 1 (subject, of course, to the condition f f@) dt = 0)
0

Let
f() = sin 2xt — sin 4xt;
show that
> ek
T Vk

converges everywhere.
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CHAPTER 3

THE NORMAL LAW

1. De Moivre. In §1 of Chapter 2, we discussed the
“weak law of large numbers.” A more precise result was
proved by De Moivre to the effect that

(1.1) Iim p{orV < ri@) ++ -+ ralt) < 0V )
n—o 1 wg 2
- \/2_f e dy.
¥y w1

The reader will have no trouble interpreting this result in
probability terms. An elementary proof can be based on
formula (5.6) of Chapter 1, and (1.1) becomes equivalent
to the purely combinatorial formula

1 1 2
(1.2) lim > n( ) = \/__f e V2 gy,
n—own w;\/— ) f+ _\/ 2 l 27!' wi

Adroit use of Stirling’s formula will yield (1.2), but this
proof will also obscure the nature of the theorem. At-
tempts to generalize (1.1) provided one of the strongest
motivations for developing analytical tools of probability
theory. A powerful method was proposed by Markoff, but
he was unable to make it rigorous. Some twenty years
later, the method was justified by Paul Lévy. The next
two sections are devoted to Markoff’s method.

36 :
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2. The idea. Let

wy < T < wy,

otherwise.

) ]_,
@.1) gw=k

From the elementary theory of Fourier integrals, one
knows that

1 ] eiw2£ _ eiwl£ )
22) g@=—f——e—rw&
27 1€

with the usual proviso that for £ = w; and z = wz one
gets 1. Now unless w; and w; are integral multiples of

+/n one has

2.3) n {w1 <1 +;};~%+ ) wz}

=flg (Tl(t) +;}'+ Tn(t)> P
i

X exp (—’LE r1(8) +\/’,_l+ rn(t)> dt dt.

Interchanging the order of integration [easily justiﬁéd in
our case since 71(t) +--+-+ r,(t) assumes only a finite
number of values] we get

ri(f) +- -+ ra(t)
(24) u {‘*’1 < '\/7—’; < w2}

1 ) eiw2£ _ eiwlf
T o f —» 1§
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x [j;lexp (—z‘g ri(f) +;}-E+ rn(t)> dt] dt

1 foo eiw2£ _ eiwl.‘f ( E )nd
= — —— | COS —= .
27 J_» 1€ V'n ¢

Now, for every real £,

o i (oo =) = oo

n—wo n

and it is tempting to conclude that

26) hﬂﬂ {wl < r1(2) +;}‘ﬁ+ ra(t) < wz}

0 dwsE _ iwé w
= if f__z.—'el 812 dt = l_f 2e—-y2l2 dy.
27 — 'I«E \/27r wy

What is the trouble with this method? The only step
which needs justification is the interchange of the opera-
tions of integration and taking the limit n — «. Un-
fortunately, the limits of integration are —« and +«, and
the function

e’isz _ eiwzf
3
is not absolutely integrable.
Markoff, who was a superb mathematician, was unable
to overcome this difficulty, and he abandoned the method!
The physicists, whose concept of rigor is less strict than

ours, still call the method the ‘“Markoff method,” whereas
mathematicians are hardly aware of its origin.

3. Markoff’s method made rigorous. The justifica-
tion of Markoff’s method is actually quite easy. It is
based on a simple idea of wide applicability.



THE NORMAL LAW 39

First, let us examine formula (2.2). It is simply Fou-
rier’s formula

B g@) = — f [ s aya
applied to the special function (2.1).

Introduce now two auxiliary functions, g.*(z) and g~ (),
whose graphs * are shown below (¢ > 0, 2¢ < wp — wy).

VARNAVARN

w2 O)2+6 w +e wz-e

&} (x)

We have
3.2) g (2) < g(x) < gt (2)

and consequently

33) f (7'1(15) + - n+ rn(t)>

{wl < ri(?) +;};;+ ra(t) < wz}

- j; (rl(t) +- n+ rn(t)> .

6@ = [ g Gy and 6@ f g H@)et d

—0

IA
®

IA

are absolutely integrable functions of ¢ in (—w,®), and
because of this the argument of § 2 yields rigorously

* The heights of both graphs are equal to 1.
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1 )
3.4 liﬁ fo . (Tl(t) +\/ﬁ+ rn(t)> .

1 ® .
=— f e—t2 f g (y)e dy d
2 J _ —00

1 o -
Voo f ge (y)e ¥ '*dy
and '

(@t ()
+
69 tim [l (TETT)

1 0 “ .
=— | %2 f get (y)e™ dy dg

27 J_

1 [+ 4]
=V g (y)e V"2 dy.

Combining (3.4) and (3.5) with (3.3), we get

1 ® ,
38 s f g (@)e "2 dy

_<_liminfp.{w1 <

n-—r0

ri®) +- -+ ral) <w}
Vn ’

ri(t) 44 ra(f)
{wl < \/ﬁ < w2}

< lim sup u

n-—»x0

1 .
o f g (y)e V2 dy.

<
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Since (3.6) is valid for every ¢ > 0, we obtain at once

r(@) -+ rall)
Vn < “’2}
1

0 1 wg
gly)e ™ P dy = —= f eV dy.
vV 2r f_w 27 J o,

(
3.7) limp ey <

n—wo |

PROBLEMS

1. In 1917, the late H. Weyl proved that for every irrational « the
sequence a, = na — [nal, n = 1,2, -- -, is equidistributed in (0, 1).
In other words, if 0 < w1 < w2 < 1 and kp(w;, we) denotes the number
of aj’s, 1 £ j < n, which fall in (), w2) then

I n(er, we)
m — = w3 — wj.
n—o n
Introducing the function g(z), periodic with period 1, given by (2.1)
in (0, 1) and using Fourier series instead of Fourier integrals, prove
Weyl’s theorem.
2. Use Markoff’s method to prove Laplace’s formula

) z¥* 1 “2 a9
lim e™* —_—=— f e~V 2qy,
z—w stwvi<k<z+wvz k! /2r w1

4. A closer look at the method. An inspection of
the derivation of § 3 reveals that we have really proved
the following theorem:

Let f,(f), 0 < t < 1, be a sequence of measurable func-
tions such that for every real £

1
(4.1) lim | €#n® gt = ¢—¥2,

n-—-«0 0

Then
1 et )
42) lim wlos < fo(®) <o} = == f iy,

n—rx
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Let

(4.3) on(w) = p{fn(t) < o},

then ¢,(w) has the following properties:
1°, ga(—0) = 0, gp(+) = 1.

2°. ¢,(w) is nondecreasing.
3%, on(w) is left-continuous.

(Note that property 3° is a consequence of complete addi-
tivity of Lebesgue’s measure.) A function o¢(w) having
properties 1°, 2°, and 3° is called a distribution function.
Now

1 ©
(4.4) f e gt = f e doy(w),
0 —00

and our theorem can also be stated as follows:
If a sequence of distribution functions ¢, (w) is such that

for every real £
[+ o]

(4.5) lim % don(w) = e ¥/2,
then —w

(4.6) on(wz) — on(w1) — Glwz) — G(w),

where
1 © 2
o f _we"” dy.

4.7) G(w) =

An attentive reader will notice a slight logical gap. If
we are simply given a sequence of distribution functions
on(w), the last formulation follows from the preceding
one only if we can exhibit a sequence of functions f,(),
0 <t <1, such that

(4.8) p{fa(®) < w} = op(w).

One can circumvent this step by repeating, in essence, the
argument of §3. But the construction of the functions
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fa(t) is exceedingly simple. In fact, we can simply take for
fa(t) the tnverse of o,(w), with the understanding that the
intervals of constancy of o,(w) are reflected in discon-
tinuities of f,(f) and discontinuities of ¢,(w) in intervals of
constancy of f,(f). We leave the details to the reader.
The conclusion that (4.5) implies (4.6) is a special case of
an important general theorem known as the continuity
theorem for Fourier-Stieltjes transforms. This theorem
can be stated as follows: If ¢, (w) is a sequence of distribu-
tion functions such that for every real £

2]

(4.9) lim €% don(w) = c(f)
and if ¢(¢) is continuous for £ = 0, there exists a unique
distribution function ¢(w) such that

(4.10) f €% do(w) = c(§)
and -
(4.11) 1‘1_[2; on(w) = o(w)

for every w for which ¢(w) is continuous.

The proof, in addition to ideas already explained, makes
use of the so-called Helly selection principle and is a little
too technical to be presented here. We consequently omit
it though we shall feel free to use the theorem in the sequel.

PROBLEMS

1. Let fo(t), 0 <t < 1, be such that for k¥ = 0, 1,2, --- we have

0, kodd

. 1 X 1 ® b —y2/2 k!
’}lrgj;fn(t)dt=-\—/2—;f_wye viddy = {————— keven

2“2(E)!
2
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Prove that for every real ¢

1
Hm | e#2® dt = ¢—8/2

n— 0

and that consequently (4.2) holds.
2. Let {nn,} be a sequence of integers such that

. Nm
hm—ﬂ=oo

m—o My

Prove that fork =0,1,2, ---.

1 e k
( \/— cos 2rnit + cos 21rn2t_ + + cos 21rnmt) it
m—no \/ m
o0 2 .
= 5 [ yeriay
-0
and hence
2mngt s 2wngt 2 t
lim p {wl < \/—cos 1t + cos 2mwnat + - - - 4+ cos 270y, < w2}
m—o \/ m

1 @y
= — —y2/2 dy.
'\/27" ‘[)1 ‘ v

Note: By the same method but utilizing trickier combinatorial
arguments one can prove that, if

-}
Y at=oo and |a|< M
k=1

and if

then
n
Z Cr €08 2wyt

Iim g {w; <\/2
n—e
\/ch

In particular, it follows that Z cx? = « implies divergence almost

N /—1 f vz g
(.0 = .
2 2w Jg, y

everywhere of Z Cr, €08 2mnyl (the argument is, of course, applicable

if one replaces cosine by sine).
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As the reader can see this is closely related to the method used in
Example 2 of § 5 Chapter 2.
3. Let o(w) be a distribution function, and let

of) = f €49 do ().

- -]

Prove that
1 T
I}im T f le(®) |2dt = sum of the squares of the jumps of o(w).
— 0

(This simple but beautiful theorem is due to N. Wiener.)
"(A proof can be based on noting that

1
o®) = [ O a
0

where f(t) is the inverse of o¢(w) as described above. Thus

1 T 1 nl g T
_f le(e) |2 d¢ -_-ff _f U@ —10) dg ds dt
T Jo 0Jo T Jy

1T . [0, F(®) #(s)
fd Ef —1(s =1
;'IE:O J; e @ —1() dE {1, f(t) _ f(s).

By the theorem on bounded convergence, it follows that

and

1T
lim = fo lo() 2 d

—

exists and is equal to the plane measure of the points (¢, 8), (0 < ¢,
s < 1) for which f(t) = f(s). This is equivalent to our theorem.)

4. Prove that
o0 o0
&) = 2 an), 2-a? <,
k=1 1
cannot be constant on a set of positive measure unless all but a
finite number of ¢’s are equal to 0.

5. A law of nature or a mathematical theorem?
To conclude this chapter, we shall consider an example
which concepfually and technically is quite instructive.
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First, we need three definitions.

1°. The relative measure. Let A be a set of real numbers,
and consider the subset of A which lies in (=T, T), i.e,,
A N (=T, T). The relative measure ugr{A} of A is de-
fined as the limit

1
(5.1) nr{d} = ;iinw-ﬁ#{fi N (=T, T,

if the limit exists. The relative measure is not completely
additive, for if A; = (4,7 + 1), ¢ = 0, 1, £2, -- -, then

IJR{_(OJ Ai} =1,

l=—w0

while
> uridi} =0.

1,'=—oo

2. The mean value of a function. The mean value
M{f()} of the function f(f), —o < t <, is defined as
the limit

1 T
(5.2) M{f®)} = ;}_Iﬁoﬁ Tf(i) dt,

if the limit exists.

3%, Linear independence of real numbers. Real numbers
A1, Ag, - - - are called linearly independent (or independent
over the field of rationals) if the only solution (ky, ks, - - *)
in integers of the equation

(5.3) kai + kg +---=0

18
ky =ky =kg=--+-=0.

The most famous example of linearly independent numbers
is the sequence

(6.4) log p1, log ps, log p3, - - -
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of logarithms of primes (p, = 2,ps =3, --:). As the
reader will no doubt notice, linear independence of (5.4)
is equivalent to the unique factorization theorem. This
simple and beautiful remark was made in 1910 by H. Bohr
who made it a starting point of a new attack on many
problems related to the celebrated ¢-function of Riemann.

Let now Aj, Ag, -+ be linearly independent, and con-
sider the function

\/5 cos Mt +- - -+ cos At
Vn

Let A, (w1, wz) be the set on which

(5.5)

cos At + -+ -+ cos At
w1<\/§ ! +

(56) \/; < ws.

We can now prove that ug{A4,(w;, wg)} is defined and more-
over that

1 e
6 lim el An(on, an)} = 7= f 12 gy,

n—ro wi

Using the notation of § 3 of this chapter, we have

1 T —coS Mt + - - -+ cos At
58) — (V2 _ )dt
(58) or J_,’ ( VvV'n
1 pT —cos Mt 4+ - -+ cos At
< V2 _ )dt
- 27 _Tg< \/n

1 pT cos Mt 4+ - -+ cos At
< — gt <\/§ it + _+ )dt
2T T \/n
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and
1 pT cos Mt +- - -+ cos At
: Ve —21 ) dt

(5.9) oT ( Vn

1 1 T

=— [ a2
27 ©) [2T
A oo A
o (A
n

where both G.1(£) and G.=(¢) are absolutely integrable
in (—e,»). (Thus, the interchange of order of integra-
tion is easily justified.)

We now prove that

1 pT cos Mt +- - -+ cos Aul
(5.10) lm — | exp (ig\/é b+ )dt
T—w -7 \/n

= Jo" (\/5

where J is the familiar Bessel function.
We carry out the proof for n = 2 since the proof for
arbitrary n is exactly the same.

We have (setting n = £¢4/2/4/n)

)

1 T
(511) — ein(coshit+coshat) Jt
2T J ¢
7 k ) l T
= E (i) () cos At cos® Aot dt,
ki—o k! 2T

* Recall that we use the abbreviation

G EE) = f ” g (x)e* dz.
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and we must find

T
lim 5T cos® A\t cos® Aot dt = M {cos® At cos® Ast}.
T—w T
Now
cos® At cost Ayt = 55 (€Mt 4 e Mt)k(gMat - ghat)l
Eol
= l _1 >, <k> (l> el@r =+ @s =Dt
and 28 21125 s=o\r/ \s
: 1 T 1, a=0,
M{emt} = lim — 6mt dt = {
T—w 2T J_p 0, a=0.

Because of linear independence,
(2r — E)A\y + (2s — DA

can be zero only if 2r = k and 2s = [, and thus it follows
almost immediately that

1 /k\ 1/1

5.12 M{cos® A\t cos® Aot} = — —
(5.12) {cos”® A1t cos’ Aot} 719/ 1
2 2

if both k and [ are even and 0 in all other cases. We can
write (5.12) in the form

(5.13) M {cos® Mt cos® Aot} = M{cos® Mt} M {cos® \at},
and combining this with (5.11) we obtain
(514) M{ein(cos)qt+cos)\zt)} — M{eiqcosht}M{eiﬂcos)\zt} .
It is clear that
. 1 p%=,
(5.15) M{emcoskt} — §_f ewcoso de = JO("I)
0

™
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and hence [from (5.14)] that
M{ ein(cos)qt+cos)\2t)} — JOZ("?)-

Thus we can consider (5.10) as having been proved. Let-
ting T — « in (5.8) and using (5.9) and (5.10) we obtain

(5.16) 2—17r f_ZG:(s)JOn (\/ 2 T%) dt

1 T c At LA AR knt
gnminf—f g<\/§ oshit: + cos )dt
or J_p V'n

T

1 ‘ cos At + - -+ cos At
< lim sup — g <\/§ - _+ ) dt
T—ow T —T \/n

It is well known that as 97 — =

Jola) = 0 <\/1m>

and consequently, for n > 3,

(5

is absolutely integrable in £ This implies that (n > 3)

1 pr° £
lim— | G ()T \/5—)
cl—I»% ¥ —0 (E) 0 ( '\/ﬁ dg

T —w

1 -
= lim — G (EJ " (\/2 i_> d¢
e—0 4T J \/'n
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and hence that

1 pT cos A\t - - - S Ant
lim — g(\/é A >dt
- 2T J_p V'n

= pr{An(w1, w2)}

exists! * Now (5.16) can be written in the form

51; f_w wGe—(g)JO” (\/ 2 7%) df < pr{dn(w1, 02)]

1 £
— + n —
< 21rf G (@0 (\/5 \/ﬁ) ds,

and one verifies easily that

lim Jo" (\/5

n—«0

L) e
vn

The proof of (5.7) can now be completed exactly as in § 3.
If we look upon

coS Ait 4+ - <4 cos At
() = V2
ga(t) r

as a result of superposition of vibrations with incommensu-
rable frequencies, the theorem embodied in (5.7) gives
precise information about the relative time ¢,(f) spends
between w; and we. That we are led here to the normal law

1 @2

__ e Y2 g
V'or j;l Y
usually associated with random phenomena is perhaps an
indication that the deterministic and probabilistic points

*For n = 1 and n = 2 this is still true, but the proof has to be
modified.
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of view are not as irreconcilable as they may appear at
first sight. To dwell further on this question would lead
us too far afield, but it may be appropriate to quote a
statement of Poincaré, who said (partly in jest no doubt)
that there must be something mysterious about the normal
law since mathematicians think it is a law of nature
whereas physicists are convinced that it is a mathematical
theorem.

PROBLEMS
1. Prove that if A, - - -, A\, are linearly independent then the func-
tion cos A, -« -, cos A\t are statistically independent, i.e., for all real
@y, -+, an
n
pr{cos Mt < ay, *+ -, cOS At < an) =H pricos Mt < ag}.

k=1

[It is, of course, this property that is at the heart of the proof of
(5.7).]
2. Let s = ¢ + i, ¢ > 1, and consider the {-function of Riemann.

) = 3 = = [[—

n=1 P 1 — _1;.
Y4
Prove that forl > 0
1
sy — 1—1
M5t + D) = M | 6171020,
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CHAPTER /],

PRIMES PLAY A GAME OF CHANCE

1. Number theoretic functions, density, inde-
pendence. A number theoretic function f(n) is a function
defined on the positive integers 1,2,3, ---. The mean
M{f(n)} of f is defined as the limit (if it exists)

1 N

(L) M{f(n)} = lim — 3 f(n).

N-oo N n=1
If A is a set of positive integers, we denote by A(N) the
number of its elements among the first N integers. If
(1.2) lim 2 _ D{A}

Nox N

exists, it is called the density of A. The density is analo-
gous to the relative measure (see § 5 of Chapter 3), and
like relative measure it is not completely additive. Con-
sider the integers divisible by a prime p. The density of
the set of these integers is clearly 1/p. Take now the set of
integers divisible by both p and ¢ (¢ another prime). To
be divisible by p and ¢ is equivalent to being divisible by
pq, and consequently the density of the new set is 1/pq.

Now
1 1 1
(1.3) — = — .-
P P q
53
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and we can interpret this by saying that the “events” of
being divisible by p and ¢ are independent. This holds, of
course, for any number of primes, and we can say, using a
picturesque but not a very precise language, that the
primes play a game of chance! This simple, nearly trivial,
observation is the beginning of a new development which
links in a significant way number theory on the one hand
and probability theory on the other.

We shall illustrate in detail some of the elementary as-
pects of this development and sketch briefly the more
advanced ones.

2. The statistics of the Euler ¢-function. The
number of integers not exceeding n and relatively prime
to n is denoted by ¢(n). This number theoretic function, -
first introduced by Euler, has many applications and is of
considerable interest in itself.

One verifies at once that, if

(m,n) =1
(i.e., m and n are relatively prime), then
(2.1) ¢(mn) = ¢p(m)¢(n)
and
(2.2) ¢(p*) = p* — p*~ L.
Thus
(2.3) o(n) = Iall (p* — p*h),

i pgzﬂfn
or, since
(2.4) n = g p*
pg+lfn

(unique factorization!),
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25 Mﬂ.l(l—l)'

n D

Let us now introduce the functions p,(n) defined as follows:
1, pln,

(2.6) op(n) ={
0, pin.

In terms of the functions p,(n), we can write

en ¢ o (1 _ pp(n)>.

Observe now that, if ¢; is either 0 or 1, then

(28) D{ppl(n) = elyppz(n) = €2, """, ppk(n) = ek}
= D{ppl(n) = el}D{pm(n) = 52} tee D{pPk(n) = Gk}.

This is simply another way of stating that the “events’ of
being divisible by p;, ps, -+ -, pr are independent (or that
the functions p,(n) are independent).

Property (2.8) implies that

oo x|~ - [ 22

P <Pk P <Pk P

1
PPk yy
and it suggests that

2.10) M {@} - M { I} (1 — ””(n))}

n
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Unfortunately, (2.10) cannot be derived directly from
(2.9) because the density D is not completely additive.
On the other hand, (2.10) can be easily derived as fol-

lows:
From (2.5) it follows that

o) _ - pd)

2.11
( ) n dln d
where u(d) is the Mobius function defined as follows:

1. u(1) = 1.
2. u(m) = 0, if m is divisible by a square of a prime.
3. u(m) = (—1)”,if m is a product of » distinct primes.

It now follows that
(2.12) 1
. N -_—

and hence that

e m{tP - i“—((j—)=1}(l -=)

d=1 p
_ 1 _ 6
@
Now set .
(2.14) fun) =TI (1 _P p(")),
PPk YU
and consider -
o(n
‘ fi(n) — T
We clearly have
é(n)

(2.15) 0 < fulm) = —— <1,
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and moreover by (2.13) and (2.9)

216) M {5m) - %}

Now, for I > 1,
1
2.17) 0L fil(n) — (——E—?) < l(fk(n) — ﬂ?)
}a,nd hence
1 X (on)
_ I _
N1§1fk (n) > T Z=: ( )
Ty Ly _ ¢
> nz_:lfk(n) NE (fk( ) " )

Letting N — « we obtain

(2.18) M{fi'(n)}

> lim sup — E <¢(n)) > lim inf —1— % <@>l

Now n=1 \ T Now Np=1 \ T
> M{fil(n)} —IM {fk(n) — ?}
But
M{fi(n)}
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and combining this with (2.16) and (2.18) we obtain, by
letting £ — oo,

o ()] -3 20D

a formula due to I. Schur.
Formally (2.19) follows in one line:

l l
(D))= (m(-27))
n 3 /4
l
{22
P p
1 1 1\}
-3
P p P D
but because D is not completely additive one needs the

justification given above.
From (2.7) we have

(2.20) 1og___ _ 2,,: ( pp;n)>

1
= D pp(n) log (1 - —)
b2 p
and formally, for every real £,

(2.21) M{exp £log¢—(—)>}

(
e orn( )
( _14l e (zs 10g< ;))) — @),
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A rigorous’ justification of (2.21) is almost identical with
the one given for (2.19) and can be left to the reader.
Let now Ky (w) be the number of integers n not exceed-

ing N for which

n

log ?—(—) < w.

n

Set

Kxy(w
(2.22) ox(w) = =2 (@)

N

and note that on(w) is a distribution function and that

(2.23) f €% doy(w)

1 N
exp (z'E log f%l) +---+4 exp (ig log ¢§V )>
~ .

From (2.21) it follows that

Q0

(2.24) lim e doy(w) = M { exp (z'g log ?—(:—)—>}

Nowd__gp

= c(§€),

and it is easily seen that ¢(£) is continuous at ¢ = 0. Thus
by the theorem stated at the end of § 4, Chapter 3, there
exists a distribution function ¢(w) such that

(2.25) f w e do(w)

= c(f) = I} (1 — % + Z—l)exp (iE log (1 - %)))

and such that

(2.26) lim oy (w) = o(w)
N
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at each point of continuity of o(w). It is now easy to prove
that o(w) is continuous for every w. To do this, we use
the result of Problem 3 (page 45, Chapter 3).

We have

2.27) [e®

[ o) 3
(20 -Dmlon(e-D) e

and one can show (see Problem 1 following this section)

that the numbers
1
log (1 — —)
D

are linearly independent.
By considerations of § 5, Chapter 3, we have

1 T 1\2 2 1
o (-2
Too T Jgo p<ok P 14 p
1 1
Xcos<£log(1——=)>+——2]d£
4 p
1 T 1\ 2 1
Rt (6267
ngT]{»an 0 P +p P
1 1
Xcos(ijlog(l——))—l—-—z] dt
p p
1\2 1
-2+
PDk y!) D
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and from elementary facts about the primes we know that

i IL[(1-2) + 5] =11 [(1 - 2) + 5] =

Thus, it follows that
T

1 .
(2.28) lim [ le@ras=o,

T—ow 0

and consequently o(w) is continuous for all w. To sum-
marize:
The density

D {log¥ < w} = g(w)

exists for every w, o(w) is continuous, and

[~ o (ane(c-2))

This result (first obtained by I. Schoenberg) can be derived
in a more elementary way, and it has been vastly general-
ized by P. Erdos.* We have chosen the more circuitous
route to bring out the peculiarly probabilistic flavor of the
result and to exhibit the interplay of a variety of ideas and
techniques.

Formula (2.21) is a clear analogue of the formula

* Erdos has also proved the remarkable theorem that our o(w)
is singular, i.e., ¢’'(w) = 0 almost everywhere.
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with which we have started. Itis, in a manner of speaking,
a variation on the same theme, and the fact that a theme
allows such diversified variations is a clear tribute to the
richness of its “melodic”’ content.

PROBLEMS

1. Prove that the numbers log (1 — (1/p)) aswellaslog (1 + (1/p))
are linearly independent.

2. Statistics of o(n) (sum of divisors of n).

(a) Let ap(n) be defined as the power with which the prime p
appears in the (unique) representation of n as a product of powers of
its prime divisors, i.e.,

n = [] papm.
P

Prove that the functions a,(n) are statistically independent.
(b) Show that if ¢(n) denotes the sum of all divisors of n then

a(’n) H (1 et — (,,))

(¢) Using the fact that

prove that

[

(1) -2
(d) Show that

1
M {p<m (1 to T +p“p(”))} - pIS];)kl 1

p2
(e) Set
fitmy = I (1 +o e +pa,,<m)
note that ) .
wwn) ,
o T 1

Lttt
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and hence derive the inequality

palm)\ _ fi(m) 1
PI>]1:JI: 1= ) STm (n) pypk pp(n)

" Lre
(f) Show that

M{cEsT) = IPIM {exp [islog(l +%+---+ 1 )]}

Pep(n)

H[l——+2 — - ‘,lﬂ)exp[zslog(w +- 1)]]

Q=]
= c(§).
(9) Using the fact that

I —1—1)+§1 %—palﬂ)exp [ietog (142 +++ )]
S‘l _%_}.;1;(1 —%)exp [iglog(l +%)]l +£‘2‘
= (1 —%)\/1 +§cos [glog(l +I—1?):| + .

as well as the fact that the numbers log (1 + (1/p)) are linearly
independent, prove that

D {o_;n_)<w} = 7(w)

exists and is a continuous function of w.

This result first proved by H. Davenport is included in a more
general theorem of Erdos.

The case w = 2 is of particular interest because it shows that
“abundant numbers”’ (i.e., numbers for which o(n) > 2n) as well as
“deficient numbers” (i.e., numbers for which ¢(n) < 2n) have a
density. It also follows that ‘“perfect numbers” (for which o(n) =
2n) have density 0. It is conjectured that there are only a finite
number of “perfect numbers.”
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3. The inversion formula. Prove that if

f " et do(w) = c(b),

00
where o(w) is a distribution function, then
1 etwet — etund
on —————¢(§) dt = o(w2) — o(w1)
T o e 1§

if w; and we are continuity points of . If either w; or w2 (or both)
are points of discontinuity, then o(w;) or o(we) (or both) should be
replaced by

o(wy — 0) + a(w1 + 0) or o(wg — 0) + a(wz +0)
2 2

In particular show that

D{w1<log—(—)< }

_%I”Wﬁ—emfn( __+ exp[zslog(l——)])dé

an explicit but nearly useless formula!

3. Another application. Let w(n) denote the number
of prime divisors of n counting multiplicity, i.e.,

3.1 wn) = ; ay(n).

where the o’s have been defined in Problem 2, § 2, of this
chapter.

Let v(n) denote the number of prime divisors of n not
counting multiplicity, i.e.,

(3.2) v(n) = 2 pp(n).

The difference w(n) — v(n) will be called the excess, and we
shall determine the density of integers for which the ex-
cess is equal to k (k > 0, an integer), i.e.,

(3.3) dr, = D{w(n) — v(n) = k}.
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Needless to say, the existence of the density is not obvious
and needs to be established.
We start with formula (5.3) of Chapter 1

2% — 0
(3.4) — f (% gy = { :
0, ms=0,
where m is an integer, and consider
1 N
3.5) — fi(w(n)—V(n)—-k)xdx
n—1 1I"

1 2% 1 N
— _f —ikz Z ez(w(n) v(n))z de.
2 0 Nn_l

The left-hand side of (3.5) represents [in view of (3.4)] the
fraction of integers n < N whose excess is exactly k. Thus

1 N 1 27
(3.6) di = lim — f g m—rm—h)z gy
N-—MNn__l 27

if the limit exists.

Invoking once again the principle of bounded con-
vergence, we see from (3.5) that it is enough to prove that
for every real x the limit

N
(3.7) lim _1__ Z gilwm —v(n))z — M{ei(w(n)—v(n))z}

N—ow n=1

exists.
Now

w(n) — v(n) = Z (ap(n) — po(n)),

and the functions a,(n) — p,(n) are easily seen to be inde-
pendent. This suggests that not only does the limit (3.7)
exist but also
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(3.8) M{ei(w(n)—v(n))z}
= Mf{exp [iz 2 (ap(n) — pp(n)]}
»

= H M {eiztap(m) — pp(m) }
D

1 &/1 1 ,
- )

a=1 p p

=I,,I<1"',1§>(l+p_leiz>'

A rigorous justification is easy, and it follows along lines
similar to those of § 2. Take first

N

2. (ap(n) — pp(n)),

n=1

and consider the integers n, 1 < n < N, for which
ap(n) = B.

These are the integers divisible by p® but not divisible by
pP*1 and hence their number is equal to

[p—]\;] - [plﬁl].
It thus follows that
(3.9) é (ap(n) — pp(n))
- oo )=l
Let now

(3.10) gr(n) = 2 (ap(n) — pp(n)),

P>Dk
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and note that (3.9) implies that

1 1
G Mg} =X X6 -1 (ﬁ - %)

P>prB22
1
<2 2 6- 1) — = 5
N p>pKB 22 P >Dk (p —1)
ow
1 N
_ en(w(n)-—v(n))
N
1 N
(3.12) = — Z exp [ix Z (ap(n) — pp(n))]eizerm),
N .o P <Dk
and hence

Z gir(w(m)—v(n)) _ E exp 1T Z (Olp(n) - Pp(n))] |

N n=1 p<pk

_ i_ Z exp [zx Z (ap(n) — pp(’n))](eixgk(n) — 1) l

n_l D <Dk
1 N I x l N
— ezxgk(n) —-11< — gk(n)
Syl NSy x

Since

lim N Z exp [ix Z (ap(n) — pp(n))]

N-ow p <Dk
= M{exp [ix Z (ap(n) — pp(m))1}
p<pk
M {eiz(ap(n) = pp(n) } H(l 1><1—|— ' >
_pISka {e P P —pSpk p p——ei’”
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we see that (3.11) implies that the distance of every limzt
point of the sequence

— Z ew(w(n)—t'(n))
Nn_l

gk-30+WLJ

2] 2 ——

p>or(p — 1)2

from

18 less than

Since k is arbitrary it follows at once that

1 N
(313) Iim — Z giz(@(n)—v(n))
N—ow n=1

— M{eix(w(n)——v(n)) }

-1 (-3) (=)

and thus (3.8) is justified.
Going back to (3.5) and (3.6) we obtain

(3.14) dy = D{w(n) — v(n) = k}

1 . 1 1
L e (=D (e
2z » P p—e€”

Consider now the function

(3.15) F@=HO—3@+ 1>

P P—=z

and note that it is analytic in the whole plane, except for
simple poles at 2 = 2,3,5, ---. In particular, F(z) is
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analytic in the circle |z| < 2, and we can expand F in a
power series

F(z) = Z akzk)
k=0

whose radius of convergence is 2.
What are the coefficients a;? If we use the familiar

formula
1 F(2)
W= Zr;'fz"“ @,
where the integral is taken over the circle |z| = 1, we ob-

tain by substituting z = €% that

ay = dk.
In other terms,

(3.16) kédkzk -TI <1 _ l) (1 4+t >

P p P—z

This beautiful formula was discovered by A. Rényi in a
different way.

Although it is cumbersome to get explicit formulas for
dx, it is quite easy to determine the asymptotic behavior
of dj, for large k.

In fact, F(2) can be written in the form

A
F@) =——+ G(),

where G(z) is analytic in the circle [z2| < 3 and A (the
residue of the pole at 2) is given by the formula

R [
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Thus

f0 = () (55 B B

p>2 Y p—2ko

where the radius of convergence of Zb.z* is 3. Since

and

we have, for k — «,

o a1 (=) (4 )
' F gk P p—2
or

(3.18) lim 242, = ][] (1 _ l) <1 N __1_2)

Two special cases of (3.16) merit attention. Settingz = 0,

we get
1 1 6
do=H(1“—§)="‘—=—§'
P p

This is a well-known result to the effect that the density of
“square-free”’ numbers (i.e., not divisible by a perfect
square) is 6/x2.

Setting z = 1, we obtain

B ()55 -

k=0 » . p—1

Since the sets of integers for which w(n) — v(n) = k are
mutually exclusive and together exhaust the whole set of
integers, this result would be entirely trivial, were the
density completely additive. Since it is not, the fact that
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we nevertheless get
i dp = 1
k=0
is at least mildly amusing.
4. Almost every integer m has approximately

log log m prime divisors. Consider the integers m,
1 < m < n, for which either

(4.1) v(m) < loglogn — g,V loglogn
or

v(m) > loglogn + g,V log log n,
where ¢, is a sequence approaching infinity:

(4.2) lim g, = 0.

n-—0

Let their number be denoted by K,, and let us try to
estimate K,. We use the Tchebysheff trick explained in
§ 1 of Chapter 2.

We have

4.3) zn: (v(m) — loglog n)2 > Z'(v(m) — log log n)?,
m=1

where the prime on the summation sign indicates that the

summation is extended only over integers m satisfying
(4.1).
Clearly

(44) Z'(v(m) — loglogn)? > K,.g,2loglog n,
and hence, by (4.3),

n

< ! i (v(m) — log log n)2.

4.5) —
(4:5) n ~ ng,?loglog n—1
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It remains to estimate

(4.6) i (v(m) — log log n)?
m=1

= > ¥¥(m) — 2loglogn D v(m) + n(log log n)2.

m=1 m=1
Now
V(m) = Z Pp(m)7

and

”2(m) = Z pp(m) + 2 Eg pp(m)pg(m)

(0> = pp); consequently

n r -
(4.7) Sum) = 3|2
m=1 p LD
and
n M ]
(4.8) > v m) = z +2> [.?'_]
m=1 p LD p<elPq

In (4.7) and (4.8) the summation is only over primes p
and ¢ which are less than or equal to n, and thus

* 1
(4.9) 2 v(m) >n Z; — w(n),
m=1 p<n

where w(n) denotes the number of primes which do not
exceed n; similarly

@10) Sem<nXitom T L

me=1 p<n D r<g<nPq

<nYt4n 21)2.

p<nD <nD
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It is known that
1
(4.11) > — = loglogn + ey,
pSnp

where e, is bounded, and hence

Y v3(m) < n(log log n)? + 2n log log ne,

n=l + nen? + nloglogn + ne,
and

> v(m) > nloglogn + ne, — w(n).

m=1

Finally, (4.6) yields

Y (v(m) — log log n)? < ne,?
m=1

+ n log log n + ne, + 2 log log nw(n),
and consequently

K, < 1 + x + en + 21r(n) 1
n " gn® gulloglogn  g,2loglogn n o gp?

Since e, is bounded, r(n) < n, and g, — «, it follows
that
K,

(4.12) lim — = 0.

n—o N

Because of the slowness with which log log m changes,
(4.12) implies the following:

If I, denotes the number of integers, 1 < m < n, for
which either

(4.13) v(m) < loglogm — gm\/ log log m

or

v(m) > log log m 4+ gnV log log m,
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then l
(4.14) lim = = 0.

n—wo N

The proof is left to the reader (see Problem 1 at the end of
this section). The theorem embodied in (4.14) was first
proved by Hardy and Ramanujan in 1917. It is they who
stated it in the picturesque way that almost every integer
m has approximately log log m prime divisors. The proof
reproduced above is due to P. Turdn, and it is much
simpler than the original proof of Hardy and Ramanujan.
As the reader can see, Turdn’s proof is a direct analogue of
the proof of the weak law of large numbers, which we gave
in § 1 of Chapter 2. Here then is another example of ideas
borrowed from one field yielding fruitful applications in
another.

PROBLEMS

1. Prove (4.14). (Hint: Let 0 < a@ < 1; consider only integers in
the range n® < m < n, and show that every integer m in this range
satisfying

[¥(m) — log log m|> gm Vloglogm
satisfies also
|¥(m) — loglog n| > hx \/log log n,

with an appropriately chosen h, — «.)
2. Prove (4.12) for w(m).

5. The normal law in number theory. The fact
that »(m), the number of prime divisors of m, is the sum

(5.1) Z pp(m)

of independent functions suggests that, in some sense, the
distribution of values of »(m) may be given by the normal
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law. This is indeed the case, and in 1939 Erdés and Kac
proved the following theorem:

Let K, (w1, wz) be the number of integers m, 1 < m < n,
for which

(5.2) loglogn + w;Vloglogn

< y(m) < loglogn + wsV log log n;
then

Ko(or, 1 e
(53) Lm0 92 f ¢ V2 gy,
w1

n—wo n - \/—2—1;

Because of the slowness with which log log n changes (see
Problem 1 at the end of § 4) the result (5.3) is equivalent
to the statement:

(5.4) Df{loglogn + «;'Vloglogn
< v(n) < loglogn + wyV loglogn }

1 f“’z 2 P
= (4 .
Vird,, v

There are now several different proofs of this result (the
best being, in my opinion, a recent proof of Rényi and
Turédn), none, unfortunately, sufficiently short or elemen-
tary to be reproduced here. Consequently, we shall have
to be content with a heuristic argument based on the fol-
lowing classical result of Landau:

If =x(n) denotes the number of integers not exceeding n
having exactly & prime divisors, then

65 ) ~—— — (og log )"
. me(n) ~ og log n)* .
* b —1)llogn * ° 8
For k = 1, this is the familiar prime number theorem;
for £ > 1, (5.5) can be derived from the prime number
theorem by entirely elementary considerations.
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Now

(5.6) Kp(wy, wg)
= Z Wk(n)y

loglogn 4+ w1V loglogn <k <loglogn +waV loglogn
and hence one might expect that

57 Ka(w, ws)

1
N ———e
10g 7N loglogn+w1 Y4 loglogn <k <loglogn +w2V/ loglogn
(log log n)*—!
(& — 1)!

If one recalls Problem 2, § 3, Chapter 3 and sets

1
(5.8) r = log log n (e_"’ =1 >,

one will obtain
K,.(wl, wz) 1 ot
n VarJy,
or (5.3).

Unfortunately, it is not easy to rigorize this highly ap-
pealing argument because one needs uniform error esti-
mates in Landau’s theorem (5.5), and they are not easily
obtainable. It might be of interest to mention that the
original proof of Hardy and Ramanujan of the theorem
of § 4 was based essentially on (5.5), although they needed
only certain estimates rather than the precise asymptotic
result. The theory which we have developed in Chapter 3
suggests a method of proving (5.3). Let K,(w) denote the
number of integers m, 1 < m < n, for which

v(m) < loglogn + wVloglogn,
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and set

K,(w
(5.9) on(w) = @) .

It is clear that ¢,(w) is a distribution function, and

(6.10)

1 n o0
3 (s(m) — loglog n)? = f w? don()
n log log n pm—; —o0
If we use the precise estimate
' 1
(5.11) Y —=loglogn +C+ €1, € — O,
p<nD

then the argument of § 4 gives

[+ o] 1 [ o] .
(5.12) Hm | w?®dop(w) =1 = Vo f yle V2 dy.
TV

n— o —

We also have (almost trivially!)

1 n
lim S m) — loglogn) = 0,
nqun\/loglognmé (v(m) g log n)

and hence
[+ <] 1 0
(56.13) r{1_1"101° _ww don(w) =0 = oo _ooye_"zl2 dy.

If we could prove that for every integer k > 2

=]

1 ® .
(5.14) lim | o*don(w) = oo f yke V1% dy,

NoRY _p

it would follow that

0
lim | €% doy(w) = e ¥/2

n—wod _g
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for every real ¢ and hence that

1 w
(5.15) lim o, (w) = Vo e V2 dy,
n—>o0 T J_p

This, in view of (5.9), is nothing but our theorem (5.3).
Proving (5.14) is, of course, equivalent to proving that

(5.16) li 1 i(( ) — loglog n)*
. im — 10
n—en(log log n)k/2m=1 vim g log n

yke—yzl2 dy,

1
va )
and this in turn depends on asymptotic evaluations of sums
1
by Ty <n DU - - Dl

(Recall that in § 4 Turdn’s proof depended on an estimate

of ]
> =)

pg<n Dq

This, remarkably enough, is not at all easy, but recently
Halberstam succeeded in carrying out the proof along
these lines. This approach, without doubt, is the most
straightforward and closest in spirit to the traditional lines
of probability theory. The ultimate triumph of the proba-
bilistic method in number theory came with the proof by
Rényi and Turdn that the error term

K (w) 1 f‘“ 2
— e V2
n Vr J_, Y

1

v/ loglog n .

1s of the order of
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That the error is of order (log log n) ~** was conjectured by
Le Veque by analogy with similar estimates in probability
theory—the primes, indeed, play a game of chance!

PROBLEMS

1. Show that (5.4) holds if »(n) is replaced by w(n) (i.e., number of
prime divisors counting multiplicity). (Hint: From the fact that
M{w(n) — v(n)} < «, deduce first that the density of the set of
integers for which w(n) — »(n) > gn, gn — =, is 0.)

2. Let d(n) denote the number of divisors of n.

(a) Show that
YRR i) =TT () + 1).
¥

(For definition of ap(n) see Problem 2, § 3 of this chapter.)
(b) Show that

d(n) 1
¥ g =1 (1+ g5 —5) <=
2/ IpI T -1/ <"
(¢) Using (5.4) and the hint to Problem 1 above, prove thét

D {2loglogn+w1\/loglogn < d(n) < 2loglogn+w2\/loglogn}

1 f"’z 2 g
= wle Y.
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CHAPTER §

FROM KINETIC THEORY TO
CONTINUED FRACTIONS

1. Paradoxes of kinetic theory. About the middle of
the nineteenth century attempts were begun to unite the
disciplines of mechanics and thermodynamics.

The main problem was to derive the Second Law of
Thermodynamics from the picture of matter as consisting
of particles (atoms or molecules) subject to forces and
obeying the laws of mechanics.

In the hands of Maxwell and Boltzmann (and later
J. W. Gibbs) this kinetic approach flowered into one of the
most beautiful and far-reaching achievements of science.

But the approach was marred, at the outset, by two
paradoxes. The first, voiced in 1876 by Loschmidt, con-
sisted in observing that the laws of mechanics are time re-
versible (i.e., invariant under the change of { into —¢).

On the other hand the Second Law of Thermodynamics
postulates a typically irreversible behavior.

It thus seems impossible to ever derive the Second Law
from purely mechanistic considerations.

The second paradox, associated with the name of
Zermelo, is even more decisive.

Zermelo invoked a simple but fundamental theorem of
Poincaré to the effect that a conservative dynamical
system, satisfying certain mild conditions, has the property
that “almost every” (in a certain technical sense to be ex-

80
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plained below) initial state of the system is bound to recur,
to any degree of accuracy.

This too is in contradiction with irreversible behavior.

To appreciate these paradoxes consider two containers,
one containing a gas and the other completely evacuated.

At some time we connect the containers. The Second
Law predicts then that the gas will flow from the first con-
tainer into the second and that the amount of gas in the
first container will decrease monotonically in time. Such
behavior of the gas shows a definite arrow of time.

From the kinetic (mechanistic) point of view we are
dealing with a dynamical system which cannot possibly
show the time arrow and which moreover will behave in a
quasi-periodic way as implied by Poincaré’s theorem.
That we have here a paradoxical situation is clear.

2. Preliminaries. To understand Boltzmann’s reply
we need a little review of classical dynamics.

A system of n degrees of freedom is described in terms
of n generalized coordinates ¢y, ¢s, - -, ¢, and conjugate
momenta Py, P2, -+ *, Po- For a conservative dynamical
system there is a function H(qi, - -, qz; D1, ***, Pn),
known as the Hamiltonian function, of the system which
represents its total energy.

The equations of motion are of the form

dg; oH
(2.1) —_——= — 1 = 1, 2’ .. ., n,
di 0p;
dp; 0H |
(2.2) —_—= = = 2=1’2’...,n’
dt 0q;

and, if we know the initial positions ¢;(0) and initial mo-
menta p;(0), the motion [i.e., the functions ¢;(¢) and p;(t)]
is uniquely determined.

It is customary to represent the system as a point in the



82 STATISTICAL INDEPENDENCE

2n-dimensional Euclidean space (phase space or I'-space)
with coordinates ¢, « - -, gn, D1, * * *, Pn.

Thus at time ¢ the dynamical system is represented by
the point

P; = (QI(t); T Qn(t)y pl(t)) ) pn(t))

Now, the motion of our system defines a one-parameter
family of transformation T'; by the relation

(2.3) T.(Py) = P;.

Suppose now that we have a set A of points Py, and
denote by T.(A) the set of corresponding points P;.

It was noticed by Liouville (the proof is quite simple
and can be based on the generalization of the familiar
divergence theorem to 2n-dimensional space) that the
Hamiltonian equations of motion (2.1) and (2.2) imply
the remarkable fact that the 2n-dimensional Lebesgue
measures of A and T;(A) are equal!

In other words the transformations T; are measure pre-
serving, the measure being the ordinary Lebesgue measure
in I'-space. v

Equations (2.1) and (2.2) have another important con-
sequence, namely, that

H(Ql(t)) Tt qn(t); pl(t); Tt pn(t))
= H(QI(O)i T Qn(o), p1(0), Y pn(o))

(conservation of energy), and consequently the point
representing our dynamical system is constrained to lie
on an “energy surface” Q

(24) H(Qh ‘9 qny, P1,y 0, pn) = const.

Let us assume that the energy surface Q is compact and
sufficiently “regular” so that the elementary theory of sur-
face integration is applicable and assume also that on Q
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2.5) | ﬁH I? = Zn_‘, <6H)2+ <ﬁ>2> ¢ > 0.

i=1 \0D; 9g;
Let B C Q be a set on the energy surface such that
do
sl VH |

where do is the surface element, is defined. We define the
measure u{B} of B by the formula

do
H
2.6) iy = 222
el VH ||
so that
(2.7) p{Q} = 1.

It now follows from Liouville’s theorem above, by simple
geometric considerations, that

(2.8) u{T«(B)} = n{B}.

In other words T'; preserves the measure u on Q.

Formula (2.6) assigns measures only to certain elemen-
tary sets (to which the elementary theory of surface inte-
gration is applicable). However, the measure can be ex-
tended to a much wider collection of sets in the same way
as, starting from intervals on the real line and defining the
measure of an interval to be its length, one builds up the
completely additive measure of Lebesgue.

In particular, a set C is of u-measure O if for every
€ > 0 there is a finite or denumerable collection B; of ele-
mentary sets such that

CCUBz and Eu{Bi}<€.
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We can now state in precise terms Poincaré’s theorem
invoked by Zermelo.

If B is p-measurable then almost all Py € B (i.e., except
for a set of u-measure 0) have the property that for some ¢
(depending possibly on Py) T:(Po) € B.

3. Boltzmann’s reply. To understand Boltzmann’s
reply let us go back to our example of the two containers.
Suppose that we know the precise functional form of the
Hamiltonian

(31) H(QI; ***y4qn, P1, "y pn)

and its value C at ¢ = 0. Thus we know the energy surface
(its equation is H = ().

There is clearly a set B of points of Q corresponding to the
condition that at t = 0 all the particles are in one of the
two containers, and we know that our system starts from
the set B.

The first assertion of Boltzmann was that the u-measure
p{B} of B is “extremely’”’ small, corresponding to our in-
tuition that we are starting from a highly unusual or rare
state. On the other hand the set R of points of Q, cor-
responding to states in which the number of particles in
the two containers are ‘“very nearly” proportional to the
volumes of the two containers, is such that u{R} is “ex-
tremely’’ close to 1.

Of course, these statements depend to a large extent on
the meanings of “extremely’”’ and ‘‘very nearly,” but suffice
it to say that because of the enormity of the number of
atoms per cubic centimeter (of the order of 10%) it is quite
safe to interpret ‘‘extremely’’ as being less than 1071 and
“very nearly’”’ as being within 10™1° of the proper ratio.

The second assertion was much more daring. Boltz-
mann argued that the first assertion ¢mplies that the rela-
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tive times which the actual curve describing the motion of
the system spends in B and R are respectively “‘extremely”’
small and “‘extremely’’ large.

In other words, the system in an unusual state will al-
most immediately leave it (though by Poincaré’s theorem
it will almost surely return to it eventually), and once in a
set corresponding to “nearly normal’ states it will stay
there “‘essentially’’ forever.

Boltzmann dealt with the first assertion by plausible
but not very rigorous estimates. To justify the second as-
sertion he introduced a hypothests that the curve represent-
ing the motion of the system passes through every point of
the energy surface.

This hypothesis which Boltzmann called the ergodic hy-
pothesis (Ergodenhypothese) is false (except for n = 1
when it is trivial).

Boltzmann tried to salvage his explanation by replacing
the wrong ergodic hypothesis by what he called the “quasi-
ergodic hypothesis.” This new hypothesis postulated that
the curve of motion passes arbitrarily close to every point
on the energy surface. This, though highly plausible, is
not sufficient to establish a connection between the relative
time spent in a set A C Q and its u-measure, u{A}.

Clearly it is the connection between the relative time
spent in A and u{A} that is the crux of the matter.

But what do we mean by the relative time spent in A?
The definition suggests itself almost immediately. Let
t(r, Py, A) denote the time the curve of motion starting
from Py spends in A up to time 7. The relative time is then
the limit

. t(T, P07 A)
Im ——

T® T

3.2)

if, of course, it exists.
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It turns out that the proof of existence of this limit con-
stitutes the real difficulty. Once this is done one needs
only an additional assumption of T'; to conclude that the
limit is equal to u{A}.

4. The abstract formulation. Now that I have
dwelt at such length on the background of statistical me-
chanics I shall proceed to disregard most of it and abstract
from it its purely mathematical content.

Instead of the energy surface I take a set @ (of total
measure 1) on which a completely additive measure u is
given.

I now assume that there is given a one-parameter family
of transformations T; of @ onto itself which preserve the
p-measure. This statement requires a word of comment.
In dynamics the transformations T'; are one-to-one (this
is an immediate consequence of uniqueness of solutions of
Hamiltonian equations of motion). It is, however, not
necessary to assume that T'; are one-to-one if one properly
defines what is meant by measure preserving.

The proper definition is as follows: Let T,~!(4) be the
inverse image of the set 4; i.e.,

(4.1) T«(T:~'(4)) = A.
The transformation T is said to be measure preserving if
(4.2) p{T: 71 (4)} = u{A}.

For one-to-one transformations (4.2) is clearly equivalent
to the usual definition of preservation of measure; i.e.,

(4.3) w{T(A)} = u{d}.

Let now Py ¢ @ and ¢g(P) the characteristic function of
the measurable set 4; i.e.,
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(44) (P) {1’ Pl
' 7= o, Pza.
It is now clear that {(r, Py, A4) is given by the formula,
(4.5) tr, Po, 4) = [ o(Tu(Po) &,
0
and the problem is the existence of the limit
. 1T
(4.6) lim - | ¢(T.(Py)) dt.
T2 T J

Together with this version, in which the time varies
continuously, it is convenient to consider a discrete version.
Let T be a measure-preserving transformation; i.e.,

(4.7) w{T7HA)} = {4},

and consider its powers (iterations) T2, T3, -.-.
The analogue of the limit (4.6) is now

1 n
(4.8) lim — 3~ g(T*(Py)).
n—ooll g1

In 1931 G. D. Birkhoff succeeded in proving that the
limits (4.6) and (4.8) exist for almost every Py (in the
sense of u-measure). A little earlier John von Neumann
proved that the limits (4.6) and (4.8) exist in the sense of
mean square.

There are now various proofs of these theorems, the
shortest being one given by F. Riesz. We shall omit the
proof, referring the reader to an excellent booklet of P. R.
Halmos, Lectures on Ergodic theory, published by the
Mathematical Society of Japan.

What can one say about the limit (4.8) [or (4.6)]?

Denoting this limit by h(P,) we see immediately that it
is u-measurable, bounded (in fact, 0 < h(Py) < 1), and
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such that for almost every P,
(4.9) h(T(Py)) = h(Py).
Let now H, be the set, of Py’s for which
h(Po) < e,
and let Q e T"1(H,). Thus T(Q) ¢ H,, and hence

MT@Q)) < e

Since, for almost every @, A(T(Q)) = h(Q) we see that
h(Q) < a except for a set of @’s of u-measure zero. Con-
sequently, except for a set of u-measure zero,

T-'(H,) = H,

for every a (the exceptional set may, of course, depend on
a).

In other words the sets H, are tnvariant (up to sets of
measure zero) sets.

A transformation is called ‘“metrically transitive’’ if the
only invariant sets are either of measure zero or one.

If we assume that our transformation T is metrically
transitive we see that all sets H, are either of measure zero
or one, and hence h(P,) is constant almost everywhere.

The value of this constant is readily determined by
noting that

1 n
lim =~ 3 g(T*(Py)) = h(Pg) (a.e.)

n—e 1l 1

implies (by the theorem on bounded convergence) that

1 n
@10) lim >3 [ g(THPo) du = f h(Po) du.

n—o 1



KINETIC THEORY TO CONTINUED FRACTIONS 89

In fact,
o @y au - [oPo) au = uiay

(this is an immediate consequence of the fact that T is
measure preserving), and hence

j;h(Po) du = p{d}.

Thus the constant is equal to u{A}.
Combining all this we can say that, if T is metrically
transitive, then for almost all Py

1 n
(4.11) lim — - g(T*(Po)) = u{A}.
n—wo M ko
This can be easily generalized as follows:
If f(Py) is p-integrable, i.e.,

[ 1520 1du < =,

and if T is metrically transitive, then for almost all Py’s

1 n
@12)  lm= 3 ATP) = [4(Po) du.
n—oN g1 Q
One might think that the proof of (4.12) vindicates com-
pletely Boltzmann’s views. Unfortunately the transforma-
tions T'; to which we are led in dynamics are so complex
that, except for some very simple cases, it is not known
whether they are metrically transitive or not. This, how-
ever, in no way detracts from the beauty and importance
of the ergodic theorem (4.12).

5. The ergodic theorem and continued fractions.
Let z, 0 < 2 < 1, be a real number and let us expand it
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in a simple continued fraction

1

(5.1) T = 1 ]

ay + - 1

a + —
az +
where a;, ay, - - - are positive integers. It is easy to derive
formulas for the a’s.
We have

ay(z) = E],az(x) = 1 v e

H
x x
where as usual [y] denotes the greatest integer less than or
equal to y.
The formulas for the a’s become progressively more and

more complicated but a little thought will show that they
can be fitted into the following pattern.

Let
1 1
5.2 1@ =--|-|;
then
(5.3) az(z) = a1(T(x)),
(5.4) a3(z) = ax(T(@)) = a(T?(x)),
ete.

The possibility of applying the ergodic theorem becomes
evident now since we are dealing here with iterations of
the transformation 7'(x) given by (5.2).

What is the space 2? Simply the interval (0, 1) with 0
excluded.
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What is the invariant measure? This is more difficult
to answer but was, in essence, done already by Gauss.

One can proceed as follows: Let p(x), 0 <z <1, be
such that

1

65 @ @20 © [e@d-=1,
0

and let us define u{A} by the formula

5.6 Al = de.

(5.6) “{}LM)”

Take now an interval (o, 8), 0 < @ < 8 < 1, and con-
sider its inverse image under transformation 7'(x).
We have

(5.7) T*@m=0(l 1)

e \E+ 8 &+ a
and hence
. o0 1/ (k+42)
(5.8) w{T e, B)} = D p(z) dz.
k=1 Y1/ (k+8)

If u is to be preserved we must have
o 1/(k+2)

B
(5.9) fmmM=Z o(@) dz

k=1vY1/(k+8)

for all « and 8.
We do not know how to go systematically about solving
(5.9). But it is easy to verify that

1 1
(5.10) p(x) = —

is a solution and satisfies conditions (5.5).

This is all one needs except to check that T'(z) is metri-
cally transitive, and this is entirely trivial.!

If f(x) is u-integrable, i.e.,

1 See footnote on page 94.
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1 dx
(56.11) — | [f@)]—— < o,
o x

then by (4.12)

(5.12) lim - Z f

n—o N Lo 10 2

“1+s

for almost every = (note that sets of u-measure 0 are
identical with sets of ordinary Lebesgue measure 0).
Let now

(5.13) f(x) = log a;(x).
We obtain now from (5.12) that for almost all x
(5.14) lgn (@ras -+ - ax)t™ = C,
where '
(5.15) C = exp (—l-fllog a,(x) dz >
log 2 Jy 14z

] o (k + 1)2)
- log k log —— ).
exp (10g 2 ké 0BFI8 Lk ¥ 2

This remarkable theorem was first proved (by a different
method) by Khintchine in 1935. The presented proof is
due to C. Ryll-Nardzewski.

I could have easily spared the reader the first three sec-
tions of this chapter. I could have started with the ab-
stract formulation of § 4 and have avoided any mention
of dynamics and kinetic theory.

But had I done this I would have suppressed the most
exciting and, to my mind, most instructive part of the
story, for the road from kinetic theory as conceived by
Boltzmann and others to continued fractions is a superb
example of the often forgotten fact that mathematics is
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not a separate entity but that it owes a great deal of its
power and its beauty to other disciplines.

PROBLEMS

1. Let B € @ be p-measurable and u{B} # 0. If T is measure
preserving (but not necessarily metrically transitive), prove that for
almost every Py ¢ B there is an integer n > 1 such that 7"(Py) ¢ B.
(This is the discrete version of Poincaré’s theorem; to prove it con-
sider the set C < B such that if Py eC then T"(Py) é B for n =
1,2, ---. Show then that C is u-measurable and that C, T~Y(C),
T—%C), - - - are all disjoint).

2. Let n(Py), PoeB, be the first positive integer such that
T*PO(Py) e B. If T (in addition to being measure preserving)
is metrically transitive, prove that

f n(Po) du = 1.
B

3. Let x, 0 <z < 1, be expanded in a continued fraction

1
T = ’

1
a+— 1
02+a—3|.

and let B be the set on which a1(z) = k (i.e., 1/(k + 1) <z < 1/k).
Let n(z, k) denote the least integer greater than 1 such that a, ,x) = k.

Show that
1 1/ (k+1)

dx
K —1 ——=1.
log 2 Jix (n(z, k) )1+x

4. Let 0 <z <1land T(x) = 2z — [2z]. Derive Borel’s theorem
of Chapter 2 by an application of the ergodic theorem.
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[94]

! Here I was carried away by a burst of inexplicable optimism.
While the fact is intuitively obvious the proof is, alas, not. In the
paper by Ryll-Nardzewki cited at the end of this cha.pter the proof
is given in § 2. It is due to K. Knopp.





