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Abstract

Recently, we have discovered that the Hilbert transformation of a compactly-supported wave-
let is, in a well defined sense, also a wavelet. That is, the HT (Hilbert Transform) wavelets are
orthogonal to their translates, form a basis for L2(R) and define a multiresolution analysis.
However, the HT scaling and wavelet functions do not have compact support. Their support is
all of R . The scaling functions decays (vanishes at co) as 1/|z| and the wavelet function decays
as 1/|z|P*! where p is the number of vanishing moments.

1 Introduction

Recently, we have discovered that the Hilbert transformation of a compactly-supported
wavelet is, in a well defined sense, also a wavelet. That is, the HT (Hilbert Trans-
form) wavelets are orthogonal to their translates, form a basis for L?(R) and define a
multiresolution analysis. However, the HT scaling and wavelet functions do not have
compact support. Their support is all of R . The scaling functions decays (vanishes
at co) as 1/|z| and the wavelet function decays as 1/|x|P*! where p is the number of
vanishing moments.

These various properties of the HT wavelets suggest that they might be useful for
solving exterior boundary problems with a prescribed behavior at the point at co. For
instance, acoustic radiation from a compact object is described by a solution of the
wave equation that satisfies the Sommerfeld radiation condition at co. We examine
a Galerkin method with an HT wavelet basis that can accurately resolve the near
field while automatically preserving the correct far field rate of decay. This approach
could allow the direct numerical simulation of scattering and radiation phenomena
while avoiding the limitations of boundary element methods (nonuniqueness) and the



constraints of artificial, nonreflective boundary conditions. The boundary element
method is based on the potentials of a single and double layer. It is a consequence of
the formulation, and not the physics, that the exterior Neumann problem does not have
a unique solution for a frequency that is an eigenstate of the corresponding (adjoint)
interior Dirichlet problem [20]. (And vice versa.) On the other hand, direct methods
for the exterior problem avoid this problem. However, to use direct methods in a
finite computational region requires an artificial boundary that allows energy to freely
pass into and out of the computational domain without reflection at this boundary.
In general this is difficult to achieve and can lower the resulting accuracy, if not the
validity, of the calculation.

To a significant extent, our development of an HT Wavelet-Galerkin method can
build upon, almost paraphrase, our previous development of the (compactly-supported)
Wavelet-Galerkin method. A careful analysis of the problems caused by the singular
Hilbert Transform and noncompact support of the basis functions will be required to
maintain the accuracy and efficiency of the resulting algorithm. However, the diffi-
culties in dealing with this basis may be far outweighed by the potential advantages
of economy of representation and correct asymptotic behavior.

2  Wavelets and their Numerical Applications.

2.1 Compactly supported wavelets

Ingrid Daubechies defined the class of compactly supported wavelets [5]. Briefly, let
¢ be a solution of the scaling relation

N-1

$(x) = Y apd(2x — k).

k=0

The aj are a collection of coefficients that categorize the specific wavelet basis. The
expression ¢ is called the scaling function.
The normalization [ ¢dx = 1 of the scaling function obtains the condition

Zak = 2.

The translates of ¢ are required to be orthonormal

/ S — k)p(x — m) = S

From the scaling relation this implies the condition

N
Z ApQg—2m = 5Om-

k=0



For coefficients verifying the above two conditions, the functions consisting of trans-
lates and dilations of the scaling function, ¢(2’z — k), form a complete, orthogonal
basis for square integrable functions on the real line, L*( R).

If only a finite number of the aj are nonzero then ¢ will have compact support.

Smooth scaling functions arise as a consequence of the degree of approximation
of the translates. The conditions that the polynomials 1,z,---,z?~! be expressed as
linear combinations of the translates of ¢(x — k) is implied by the condition

Z(—l)kkmak =0

form=0,1,---,p—1.
The compactly supported wavelet is defined by the equation

P(z) = Z(_l)kal—k¢(2x — k)

The translates of the scaling function and wavelet define orthogonal subspaces. i.e.

[ oteyete = myde = Y (=1 ar wanan =0.
The orthogonal subspaces
‘/j = {2]/2¢(2]$ - m)? m = -, _1707 17 o }

W] = {2]/277/)(2]1‘ - m)? m=---, _1707 17 o }

are related by the condition

Vier =V, & W,
This is the basis of Mallat, or Wavelet, transform
VowCWViC--CVip
Vap=WoeWea W, o - W,.
The following are equivalent results [7, 18].
e {l,z,---, 2P~} are linear combinations of ¢(x — k).
o |f =T ead(Za — k)| < C27|| fP.
o [27(x)de=0form=0,1,---,p— L
o [ fz)(2a)de < 279P
o Ly where L; ; = ay,_; has eigenvalues

1.1 ...7(1)19—1‘
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2.2 Numerical Applications
The Wavelet-Galerkin Method.

For a PDE of the form
FU Uy Upy Uy --) =0

define the wavelet expansion

U= Uz — k).

An approximation to the solution is defined by

A N A
U= gz —k).

k=—M
In effect, the solution is projected onto the subspace spanned by

Herein and in what follows, we assume, for simplicity and without loss of generality,
that the dilation factor 2/ has been normalized to 1 by a scale transformation y =
2/2. In effect, the integers are the finest scale. To determine the coefficients of this
expansion we substitute into the equation and again project the resulting expression
onto the subspace ®(M, N). This uniquely determines the coefficients U.

The projection requires Uy, to verify the equations

/ Sz — k) (0,0, 0y, - Yda = 0
for k= —M,---, N. To evaluate this expression we must know the connection coeffi-
cients of the form

[ 6@)0e(a = hi) - Gl — ).

We have found ezact methods for evaluating the functionals required in the Wavelet-
Galerkin method [10]. A typical functional (three term connection coefficient) would

be
Ok, ) = [ feale)nle = W)d(x — j)da.

Since the scaling function used to define compact wavelets has a limited number of
derivatives, the numerical evaluation of these expressions is often unstable or inaccur-
ate.

The exact method is based on use of the scaling relation

N

¢(x) =) axd(2z — k).

k=0



By the obvious manipulations a system of equations is found for the Q(k,j). The
system of equations is generally rank deficient (singular). The rank deficiency is
cured and a unique solution is obtained by the inclusion of an additional set of linear
equations that are obtained from the moment equations. The resulting system is
non-singular and non-homogeneous and has a unique solution that is easily found by
standard techniques. This technique is derived in the recent paper by Latto, Resnikoff
and Tenenbaum [10].

The Wavelet-Capacitance Matrix Method

To solve boundary value problems we have developed an extension of the classical
Capacitance Matrix method.

We will describe the method, as developed by Qian and Weiss [15], for the Harmonic
Helmholtz equation

(—-A4+a)U=F

in a domain D with boundary conditions U = ¢ on the boundary of D. One version
of the direct method is equivalent to a numerical implementation of the single layer
potential [13]. A method based on the double layer potential is also a possibility [14].
The algorithm is based on the calculation of a numerical partial Green’s Function [13].

The outline of our method is as follows. Regard the domain D as contained (em-
bedded) in a periodic cell, S. We extend F' from D to S in a smooth way. The
extension [ is periodic on S. We also define a periodic function p where p is zero
except on the support of 9D € S. We determine p so that the periodic solution in S

(—A+a)U=F+p

will verify the boundary conditions U = ¢ on dD. By construction the equation
(—A+ o) U = F is satisfied in D.

We have extended the method by allowing the support of p to be separate from
the boundary of D, dD. When the equations are discretized by the Wavelet-Galerkin
method, this extension eliminates the boundary residuals and defines a spectrally
accurate method for non-separable domains. To our knowledge this algorithm is the
first implementation of its type. We will present an extensive series of numerical
calculations that support our conclusions about accuracy and convergence.

The numerical implementation is straightforward. In effect, we expand the solution
in periodic, wavelet-Galerkin basis

U=3 > Uydle =)oy — )

where ¢ is a scaling function. To calculate the Green’s Function we resolve the delta
function in the space of translates of scaling function

)‘1’071/0 (l‘, y) = Z Zgb(l‘o - Z)qb(l‘ - i)qb(yo - ])Qb(y - ])



Since the translates of the dilated scaling function are orthogonal and complete in L%,
the above expression implies that for a square integrable function f

flaosyo) = [ [ dadyda,uey)f(2,y),

which is the definition of the delta function. Here we can remove the dilation factor
by an affine change of variable.
Therefore, we solve, by the wavelet-Galerkin method [15], the equation

(—A+a) G(z,70;Y,Y0) = Mgy (T, Y)

for the partial Green’s Function, (G. To find the usual Capacitance Matrix, C', we
discretize the boundary into a series of points &; and form the matrix whose (i, j)
component is G(&;,2;). The evaluation of (¢ requires only one solution of the periodic,
fast, wavelet-Galerkin solver [14].

In our formulation of the algorithm, we discretize the boundary by the points Z;
and the support of p in S by the points g;. The definition of the capacitance matrix
is then

Cij = G(i,9;)-
Depending on the cardinality of the sets & and gy, the system of equations for the
discrete potential p are determined, overdetermined or underdetermined. We have
examined these possibilities and present the results in ref. [15]. In general, if § is
exterior to &, we obtain excellent numerical results that depend stably on the choice
of y.

In terms of the (extended) Capacitance Matrix, the discrete potential of a single

layer is a solution of the system

g=0Cp.
For non-determined systems we use a singular value decomposition of C' to find the
least square or minimal norm solution [9].

The Capacitance Matrix is a fast and general method for solving boundary value
problems in nonseparable domains. It uses fast periodic solvers based on the FFT
to drive direct or iterative (Conjugate Gradient) algorithms. The geometry at the
boundary is enforced by potentials with singular support on the boundary. The use of
functions with singular support effectively restricts the Capacitance Matrix method to
low order solvers, requiring a high level of discretization to produce accurate results.
Due to boundary residuals, the introduction of higher order solvers can cause the rate
of convergence to become worse. For problems with complicated geometries this fact
limits the applicability of the method.

By combining a reformulation of the Capacitance Matrix method with a wavelet
discretization, we have defined a Wavelet-Capacitance Matrix method. This allows
the use of higher order approximations with rapid (even spectral) convergence and



produces highly accurate solutions for low to moderate levels of discretization. In
effect, we cure the Capacitance Matrix method of its’ most serious limitation, while
retaining the method’s advantages.

The method applies equally to equations with three space dimensions and problems
with a time dependence. For instance, we have already applied the method to the long
time integration of Euler and Navier-Stokes flows, with excellent results [23]. Figure
1 shows the evolution of Navier-Stokes flow in an L-shape region.

3 The Hilbert Transform of Wavelets.

3.1 The Hilbert Transform of Wavelets

The basic scaling function satisfies a scaling relation of the form

N-1

o(x) = Y axd(2z — k).

k=0

It is also true that the Hilbert transform of ¢

o)) =+ [ ae

X

is a solution of the same scaling relation. Although ¢ may have compact support,
the Hilbert transform has support on the real line and decays as y~!. The Hilbert
transform of the related wavelet, v, is also noncompact and decays like y=?~! where

/xm¢(x)dx =0

form=20,1,---,p—1. We expect to use these properties to obtain wavelet-Galerkin
solutions with the proper behavior at oc.
The definition of Hilbert transform is [16]

b=H@)w) == [ ) .

o t—2x

It is true that H : L*(R) — L*(R) is an isometry map, and the Hilbert transform
of wavelets is a complete, orthogonal basis set on L*(R). The Hilbert transform
preserves orthogonality of translates.

/qg(:zj — n)qg(:zj —m)dz = by

It also preserves the local (Lipshutz) continuity.



¢ is a scaling function.

The basic compactly-supported scaling function satisfies a scaling relation of the form

N-1

$(x) = Y apd(2x — k).

k=0

Apply the Hilbert Transform to the above scaling relation and use the identity

£/+00Mdt:qg(2x_k)7

T J—oo t—x

which is a consequence of the change of variable ' = 2t — k. Therefore, qg(:zj) verifies

the scaling relation
N-1

O(z) = Y ard(2x — k).

k=0
We note that the Hilbert transform of ¢(x) exists as a well defined function since
¢(x) is integrable, square-integrable (has compact support). In fact, ¢(x) is gener-
ally Lipshutz continuous, implying that ¢(z) is Lipshutz continuous with that same
modulus [16].
Orthogonality of trasnslates of (/;(x)

The orthogonality of translates of qg(:zj) is a direct consequence of the (distributional)

identity on L'(R) [2, 16]

1 gpte 1
=38 (= 2)(s o) ==,

where, as usual, the integral is evaluated in the principal value sense [16]. Therefore,
[ ot —mdte —myde = [ o —n)é(e —m)de = o

Asymptotic behavior of (/;(J:), 1/3(9:)

The moment equation

/xm;/)(:zj) dx =0,

where (m =0,1,---,p — 1), implies the asymptotic behavior. As © — oo
~ 1 ptee o(t M, M M,_
¢(x):_/ ﬁdt%__o__l_.._La

T/ t—2 T  mwa? TP



where M; = [#/¢(t)dt for 7 = 0,1,...,p— 1 are the moments of ¢(t) and are known
explicitly. Since the moments of ) (¢) vanish

By = L [0,

TJeo t—x

where C' = [tPy)(t)dt.
It is straightforward to show that there are finite linear combinations of translates of
¢(x) with coefficients depending on the moments that decay as =7 for j = 1,2,...,p.

A comment on the applicability of HT wavelets.

The scaling and wavelet functions of compact support can be defined on the real line,
R, or on the circle (is periodic). The HT scaling and wavelet functions do not have
compact support and are defined on the real line, R. The periodic Hilbert Transform
is defined by a cot(x) kernel [6]. It is easy to see that the periodic Hilbert transform
of a periodic, compact-support scaling or wavelet function is not a periodic solution
of the scaling relation. The reason for this result is explained in the Section 4.

3.2 Evaluation of the HT scaling function, ¢(z).

The Hilbert Transform, ¢, verifies the same scaling relation as ¢.

N-1

oz) = Y ard(2x — k).

k=0

If values of & are known at the integers then the values of & are known at the dyadic
rationals © = m /27 by recursion

N-1

S(m[2) = 3" ard(m/2™" — k).

k=0

(qg(m) |m < 0,m > N — 1) can be computed directly since the integrals are nonsin-
gular. The scaling relation can be used to infer certain values of qg(m) without direct
calculation.

The values (qg(m) |0 < m < N — 1) are defined by the principal values of singular
integrals [16]. To avoid direct evaluation of these integrals we form for ¢(m), for



m € [0, N — 1], the system of equations
S0) = aod(0) + arp(—1) + aap(=2) + - + ay 1 (=N + 1)
o(1) = aopd(2) + a1(1) + azp(0) + - - - + an_16(—N + 3)
QB(N'— 1) _ aod(2N —2) + 162N —3) + - + an_16(N — 1)

The recursion matrix Ly that determines the vector

6 = [6(0),9(1), -+, SN — 1]

¢=Lyo+ [

%\z

1s
L;; = a_;_,

where

fi= Y. azioj0(j—1).
J<13>N
In the compact support case f = 0 and the above system is an eigenvalue problem.
The direct evaluation of qb involves a singular mtegral The direct evaluation of f
involves nonsingular integrals. Therefore, we calculate f and use the recursion matrix
to find ¢. However, ¢ is not uniquely determined by the recursion matrix equation.
There is the constraint on ¢,
+oo
> ¢lm) =
We fix the normalization of qg by this constraint.
To numerically evaluate the normalization of ¢ we use MacLaurin’s Formula

> e = [ fe)de + 5rn) + Fe)

=0

—I-Z sz 2k 1) (l'n) . f(2k—1)(x0)] + R2m-

The constants B’s are the Bernoulli number, Ry, is the remainder. The integral in the
formula is not singular and the result allows the unique determination of ¢. Figure 2
shows the D6 scaling function and its” Hilbert Transform as evaluated by this method.
We will continue the development and analysis of methods for the fast evaluation of the
HT wavelets. Specifically, we will evaluate the stability and accuracy of the algorithms
and find a more direct inclusion of the asymptotic behavior in the evaluation of the
HT wavelets.
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3.3 Expansion of function in the HT wavelet basis.

Figure 2 also compares the truncation errors for sin(z) using the HT wavelet and
compactly-supported wavelet (CS wavelets). The expansion of this function in the
HT basis has a lower truncation error per mode.

The HT above wavelet expansion use the fact that the Galerkin coefficients of a
function in the HT basis are equal to the Galerkin coefficients of the Hilbert transform
of the function in the CS wavelet basis. The HT scaling function is evaluated by the
previously described algorithm.

3.4 Representation of differential operators in the HT wavelet basis.

The Galerkin coefficients (Connection Coefficients) for differential operators in the HT
wavelet basis can be shown, in certain cases, to be identical to the Galerkin coefficients
(Connection Coefficients) in the CS wavelet basis. This important result uses the
properties of the Hilbert transform and assumes a certain smoothness of the basic
wavelet function. In effect, we require that the Hilbert operator and differentiation
commute.

For instance, the two term connection coefficient required for the Galerkin approx-
imation of the first derivative are of the form

O = /qb(:z; — b)) do.

The corresponding HT connection coefficient is

) = /é(x — k)d(2) do.
By definition and integration by parts

o= [t =na oo | s

and by the principal value for the Hilbert kernel
Qp = O,

By the same argument, the general two term connection coefficients required for
the Galerkin representation of linear differential operators are also identical in the CS
and HT bases.

Furthermore, the general n-term connection coefficients required for the Galerkin
representation of nonlinear expressions are also identical in the CS and HT bases. To
show this requires an analysis of the Cauchy type integral

1 goo dr
F/_oo (b —x)(ty— ) (t, — x)’

@(tl,tg, . ,tn) —
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for {t1,t,...,t,} on the real line. It can be shown that, as a distribution on L'(R")
2, 16],
Oty tg, ... ) = 0(ty —t2)0(ty —t3) -+ 0(t, — 1),

This immediately implies the identity of n-term connection coefficients in the CS and
HT bases.

See Bremermann [2] and Roos [16] for further discussion of distributions and the
Hilbert transformation.

3.5 Applications of HT Wavelets.

Exterior Boundary Value Problems

We can apply the HT Wavelet-Galerkin method to boundary value and scattering
problems in R and RZ.
The Schrodinger equation in R"* for n = 1,2, 3 can be written

(A+U(E)V = AV,

The Schrodinger equation has, of course, many applications. In general, it is assumed
that U(2) decays sufficiently fast at oo so that for some p depending on n [1]

Ja+

We can approximate the potential U in the HT wavelet basis and apply the Galerkin
method with HT wavelet basis to discretize the Schrodinger Equation. This leads to
a (discrete) eigenvalue problem for A = —&? with solutions Vj(&) € L*(R"). In one
dimension, there is a well known class of reflectionless potentials that have closed form
solutions. In this case comparison with the exact solutions over R is possible.

In R? there are various scattering problems with exact closed form solutions that
decay at oo. These are associated with the Kadomtsev-Petviashvili and Davey-
Stewartson equations as so-called lump solutions [1]. We can apply the Galerkin
method with a HT wavelet basis to solve these problems and compare to the exact
solutions in specific cases.

Also of interest is the problem of the acoustic radiation from an compact object,
D, into the domain exterior to D containing the point at infinity in R? or R>. This
requires finding solutions of the reduced wave equation

dr < oo.

(@)

T

(A+k2)P:O

with prescribed normal derivative % on the boundary of D and that verify the Som-
merfeld radiation condition

Tk P(3) — VaP(2)] =0

T

lim
|&| =0

12



in R”™.
The Sommerfeld radiation essentially requires that for || — oo, P — |2
We can discretize the system by the Galerkin method with HT wavelet basis and
impose the Neumann boundary conditions on dD by a variant of the Capacitance
Matrix method.

—n+1
2

€2k|1’|‘

4  Summary

The Hilbert Transform acts as an involution on the space of square-integrable solu-
tions of a scaling relation. The Hilbert transform preserves the orthogonality, local
smoothness, and connection (coefficients) of a scaling function (wavelet) basis. In
other words, the Hilbert transform of a wavelet is a wavelet.

The Hilbert transform also acts as an involution on the space of solutions of a
more general class of linear functional-differential equations. Rvachev [17] has made
an extensive study of differential dilation equations of the form

Ly(z) = XY cry(az — by).

k=1

where L = D" + a; D"t 4+ -+ 4 a, , D = %, and |a| > 1. These systems can have
(™ solutions with compact support. In general, the translates of a compact solution
can define a basis for Sobolev spaces. However, the translates are not orthogonal [17].
It is simple to verify that the Hilbert transform of a solution of the above differential-
dilation equation is also a solution of the equation.

In addition, by a result of Stein [19], the Hilbert transform is the unique, bounded
linear operator on L*(R) that commutes with translation, dilation and reflection.
Therefore, the Hilbert transform is the unique operator that preserves the L?( R) solu-
tion space of the one-dimensional, linear, translation-dilation equations. The higher
dimensional scaling relations involve translations, dilations and rotations of the argu-
ment vector. The appropriate bounded linear operators on L*( R") that map solutions
into solutions would be the Riesz operators described in reference [19].

We suggest that the Hilbert wavelets may have several useful numerical applica-
tions. These include exterior boundary value problems and the inversion of the Radon
transform. The inverse Radon transform requires the evaluation of derivatives and

Hilbert transforms. A Galerkin approximation could be a natural application of the
Hilbert wavelets [24].
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