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SUNTO. — Si dimostra l’esistenza e regolaritd delle soluzioni di Navier-

Stokes in dominio aperto.

The Navier-Stokes equations

(1) vw—rAv+ yp+ (v .V)e= f
vV-v=20

are assumed to govern the motion of a viscous, incompressible fluid
which is described by the vector field v (x, f) denoting the velocity
of a particle at position x and time ¢t and by the scalar function p,
the pressure. As usual, » > 0 is a constant which is called kinematic
viscosity, and £ is the density of the exterior forces. To consider the
equations of motion in an exterior domain € < R?* (which is the
complement of a bounded domain 2 with boundary X) has proved
useful in the study of flows past rigid bodies that move in a big
reservoir of fluid. For if one wants to derive physical or geometrical
properties of the flow the assumption of an infinite container makes
the flow independent of the particular shape of the container’s
walls; they are always far away from the body and hence are
assumed to have nearly no influence on the behavior of the flow in
its neighborhood.

As an example of this type we consider a rigid body, repre-
sented by 2, that moves with prescribed velocity U ; U generally
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depends on time. Let w,(xz) be a solution to the stationary Navier-
Stokes equations

(2) —vAv+ VYp+ (v V)v="F
v.v:o

in the complement of 2 when the body moves with constant velo-
city U,. If we assume that the reference frame is attached to Q
the velocity of the fluid tends to a constant limit — U, at infinity.
As the Navier-Stokes equations are invariant under Galilean trans-
formations this leads to (2) with the boundary conditions

3) v(r) =0 Vzex
(4) v(@)—>—U, as |[g|>».

We now ask whether a solution wo(x) of (2)-(4) is stable with
respect to small disturbances v*. The means, does there exist a solu-
tion v(x, t) to (1) with initial values wo(x) + v*(z) and does v (z, t)
tend to wv,(x) for £ —» «? Another example is the starting problem:
Let at time £ = 0 both the fluid and the body be at rest; then acce-
lerate the body within some finite interval of time (0, t,) such that
its velocity at ¢, equals U, , and maintain this velocity for all ¢ > &,.
Does the solution w(x, t) of this acceleration process tend to v,, the
solution of the stationary problem?

These two questions involve problems of existence, uniqueness,
and asumptotic behavior for large ¢ of solutions to the non-stationary
system (1); but before we present the results for the initial value
problems we briefly recall some basic facts about solutions to the
stationary equations because their properties require special methods
for the time-dependent case.

The first contribution to (2)-(4) is due to J. Leray [7] who
proved the existence of at least one solution for arbitrary but smooth
data provided the condition at infinity is weakened in the following
sense

(5) | 1ve(@) —Uol?
E

z— P dx <« C uniformly in y€ €.
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The solution is characterized by finite Dirichlet’s integral
§ | Vw2 dx. Later R. Finn proved that v, is continuous at infinity.
€

He also introduced another function class by
(6) |wo(x) — Uyo| < C |2[-¥2-¢ as [2]|—> o

with positive constants C and ¢ and Finn showed (1) that there
exists a solution to (2), (8), (6) for small data. These solutions have
significant physical and geometrical properties; first there is an
expansion at infinity

(7 vo(2) = U, + Fy - E (z,0) + 0(|z|-?)  for |x| large,
where

dvi dvis
(8) Fr= @ T - ndo, Ty = —Podi; +» (—E)-x’— W)’

is the force exerted on the body, and E,; is the fundamental solu-
tion tensor to the Oseen equations

(9) —rAv+ VP 4+ (Up- V) v =10
v-v=0.

From (7) and the estimates for E at infinity one deduces the
existence of a wake behind £2: There is a region of the form of a
paraboloid with axis in the direction of U, in which v, differs much
more from the limiting velocity U, than outside of it. Another
consequence of (7) concerns the kinetic energy associated with the
flows; as E is not square integrable we get

(10) Eu = 5 | Ivo@)—Uofdz = +

€
unless F';, — 0; this can happen only in some cases with boundary
values different from (3), for instance if £ propels itself by rotating
about an axis; such situations will not be considered here. Solutions
satisfying (6) at infinity were termed « physically reasonable » (PR-
solutions) by Finn.

(1) For the proofs we refer to [4] and earlier papers cited there; see also
Finn’s survey articles [2], [3] where our problems are formulated for the
first time.
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These properties of steady state solutions v, are clearly impor-
tant for the investigation of our problems mentioned above. As we
want the time-dependent solution v (z,f) to converge to wy(z) we
have to make sure that the method we may apply in the existence
proof does not exclude the solution a priori from converging to
vo(z). This would be the case, for instance, if the existence theorem
for v (z, t) were based on energy estimates, probably the best known
method for proving existence at all. For a solution v (z, t) whose
kinetic energy (10) is bounded for all £ by some fixed constant can-
not tend to a stationafy solution of class PR.

We now formulate the main result of [1]. Let A denote Oseen’s
operator, defined for C?+ -functions by the boundary value problem

— 0w+ VP + (Uo- V)v = f .
(1) ‘ V-v=10 n e
’ v(z) =0on 2, v (z)>0 as [z| >,

and Ar a fractional power of A.

THEOREM 1. - Consider the initial value problem

in€ X (0,7)

T wi—rAV+ VP A+ (v Y)v =1f
s v.v:o

(12) Vw2, t) = 0 Yzezx Vie[0,T]
| w(z, t) — Uo| = Clz|-Y2-+, as |x| > =

| v(z,0) = v*(z) Vz€ &.

There exists a unique classical solution for arbitrary values of
T if the data are small in the following sense

v*ED(AY) and ||v¥jc+8s <K 1,

where D(Ar) denotes the domain of definition of Ar. The solution
is an element of C°((0, T), C*++(&)NC*((0, T), C°*«(L)) and at-
tains the initial data continuously in the C°+2(.&)-norm.

The proof uses an approach by semigroups in Holder-spaces,
that is the generator of the semigroup — in our case Osen’s ope-
rator A — acts on suitable subspaces of C°+ (). In this way we
avoid solutions with finite integral norms of v — Uy, especially with
finite kinetic energy, cf. (10). For parabolic equations and systems
this approach was used first by W. von Wahl [8].
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The main differences to the usual semigroup concept when the
generators are defined on subspaces of L, lies in the resolvent esti-
mates. If L is an elliptic operator of second order with zero Dirichlet
data there holds the resolvent estimate of S. Agmon

(13) L — 2, <

if 1 is not in the spectrum of L. If we regard L as an operator on
Co+e we get instead of (13)

\ C
(14) H(L — ) Y|co+e = TP

and von Wahl proved that this estimate is sharp with respect to the
decay in |1|. For the linearization (11) we prove inequality (14),
that is

THEOREM 2. - Let P — € be the domain which is bounded by
the parabola |a|=c¢(U,»)f? — © < a < 0, where a + 7§ denotes
a point in ¢ . Then

‘ —rAv+ yp -+ (Up- Y)v+4ivw
(15) 5 Vv
1 viz) =0 on X, |[v|—>0 as |z| >

(=T

Il

possesses a unique solution for i1 ¢ P, and for large || we have the
decay |v| = C|z|-!' if 1=0 and |v| = C|z|-3 if A5=0.

(16) 4] 1 wllo + 1412 [ Wllora + 14172 [T ol + {2172 | 0]1sa +
+ Ul + [ |9 {lzra = ClI£]lovas

where || ||z denotes the C*(<)-norm.

The proof uses methods of potential theory; one starts with
the construction of a fundamental solution tensor to (15) and intro-
duces potentials of single and double layer. As in classical potential
theory one is led to integral equations of Fredholm type; for i ¢ P
they are uniquely solvable. From this procedure there follows a re-
presentation of the solution by integrals over ¥ and € and from
this the estimate (16) can be derived.
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From the proof we can also get some insight into the special
structure of (16) and therefore also of (14). The fundamental solu-
tion tensor E;; of the Oseen system (15) is for small |x — y| of the
form

a7 Ej(z,y;10) = g(x—y)eVU=—v L higher order terms,

where ¢ grows like |* — y|-! (independently of i), and the terms
of higher order have no influence on the decay in |i]. So for an
arbitrary component of 7 2E we have to study integrals of the form
f[v?2e + v] f(y) dy when we separate the strongly singular part.
By the Holder-Korn-Lichtenstein inequality we get for the singu-

larity
Ce(E=Y)
/ |z —y|
x |z —yl?

and there is left a weakly singular kernel

f(y) dy J = Cifls,

a

(A]e-Y W=l o — y| -t 4 |A]-V2 e~V 13l l=~vl | — y|-2.

So consider for example

V) Jz—vl e‘llllzvl <
e £ d _f 212 - fdy | =
l [ |4] T —F fy) dy 4] —y
T e~V 11l jz—v! e-V 14 12—yl |
= A3z - — — - d =
U e e —F — e e—npE @ % »!

= Cla|** |z — 2| [{fllco s

because |1[** gives exactly the volume element of the transforma-

tion y— ||y =y, and |i|** is the C°*e-seminorm of e-+'*Isl
The last estimate explains the difference between L,- and C0+--
bounds: The C°+2-norm of e-I#'"lsl gives the factor |i|~2 whe-
reas the L,norm is independent of A, [i| large. That the various
bounds in C°+e, C'+=, and C*++ differ by |i]2, follows from (17),
too, because each differentiation gives |1|2.

Once the existence of the semigroup e-** is established we get
a local solution of (12) by investigating the integral equation

(18)  w(®) = e vo+ [ e*N(w()de in €,
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where N(v) is the nonlinearity (v-v)wv and 5@ = C**+(&)nN
N{|v|] < Clz|-* as |z| — »}. Exploiting the interpolation property

19) I wllct+s = C [|A7 v][co+a

with suitable a, §, and y for the fractional power Ar — [A-—r]-},
where

1 . -
A-ry = ————I‘(y) ';’ e—4 ysr-lds,
we are led to
'l
{20) w(t) = e wot | eN(A7v)dr.

0

This linear equation is solvable for v€ C'({0, T'], &2) be-
cause N(A-rv) is an element of 52, due to (19). The nonlinearity
N(A-7v) is compact in v and Lipschitz in ywv, so we can use a
fixed point theorem of H. Kielhofer [6] to show that the following

mapping F has a fixed point: F: v—>Tv=w, and w =47 v~v,

where w is a solution of (20).
The existence of a global solution (in time) follows from a
bound of the form

{21) le*w| =C|x|"! as |z|—>

if v decays at infinity in the same way. The proof follows again
from the fact that in the expression for the semigroup

e-tA ==f e* R(A; A)di
r

we have a representation for the resolvent R(A4 ;1) of Oseen’s
operator, which \again can be estimated for |r|— . This con-
cludes the proof of Theorem 1.

The questions we raised in the introduction concern the beha-
vior of the solutions of (12) for { — «; Do the disturbances of a
steady state solutions decay or does the solution of the acceleration
process tend to a PR-solution. Convergence for {— « holds in
these cages, and the method of proof follows closely the analogous
results for parabolic problems. We do not go into details here be-
cause our theorem is weaker as known results as they include
also explicit estimates on the decay with respect to i.
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Instead of this we want to investigate the conditions we posed
on the initial value of v, in Theorem 1. That the data have to be.
small in an appropriate norm was assumed in every existence
theorem where regular global solutions were proved. In addition
to this we have to assume that v, lies in the domain of definition
of a suitable fractional power of A. These domains D(Ar) cannot.
be characterized analytically so far, and therefore we have to show
that this condition is satisfied, at least in the starting problem in
which we are interested primarily.

During the acceleration process in the interval (0, %;) the:
space-time domain in which we have to solve the Navier-Stokes.
equations in noncylindrical whereas this property holds (after a
Galilean transformation) if the immersed body moves with con-
stant velocity; so Theorem 1 can be applied for all £ = ;. On the
other hand, the kinetic energy of the flow for ¢t = ¢, is certainly
finite, and existence theorems based on energy estimates may be
applied, cf. Heywood [5]. The question then arises: Is this solution
u(z, t) for t =1, a suitable initial value for Theorem 1 such that
wu can be continued for all £? Smallness of u(z, ;) can always be
achieved by assuming U to be small, but to show wu(f,) € D(4 ) we.
need the following result.

LEMMA. - Consider the initial value problem

w—rAa+yYyp+(u- Y)u=¢g .
v.u 0o M EX [0, o}
(22) Culz, t) =uo VZEZ VIEIO, L]

wz,t) > ¢ as [2| —> », VEE[O,1]
u(z,0) = 0 Vzeg.

Here g is a fictitious exterior force which corresponds to the
fact that we describe the acceleration process in a reference frame
that is attached to the body {(and hence undergoes acceleration),
such that (22) is an initial value problem in the space-time cy-
linder. Then (22) has a unique solution w (%, t) which fulfills the
same regularity properties as the solution of Theorem 1. w (£) is.
an element of D(S») with a suitable » > 0, where S is the Stokes-
operator, and D(S?) c D(A»-+) for any ¢ > 0 (2).

(2) This inclusion was suggested to me by Professor W. von Wahl.
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S is defined on subspaces of C%*=() by the boundary value
problem for the Stokes equations

—rAu+4+yp=*F£ .
Vou = 0 n &

(23)
? u(x) = 0on 3; |u(x)] >0 as |x|—> «.

The existence of a solution of (22) can be shown in the same
way as for (12); it is much simpler because solutions decay much
more rapidly at spatial infinity. Especially we prove the existence
of a Green’s function S to the Stokes system (23); if we call the
corresponding Green’s function for the Oseen equations ¢, we
get for the resolvents representations by Green’s functions

R(A; ) f — j S(z, y; ) f (y) dy
€

R(S;1) £ — [ca(z,y;xmy)dy.
&

From this explicit formulas we deduce the last proposition
of the lemma.

Combining (22) and (12) we have solved the starting problem
for all ¢ but with different lineariations for ¢ = ¢, and for t = ¢,.
As v (z,%) assumes the initial values w (z, %} continuously it re-

mains to show that the solution is differentiable with respect to
time in ¢ . To prove this we consider solutions a of (22) in
[0, %, + 6] and v of (12) in [t + 6, ) and we assume that § is

so small that u is a permissible initial value to (12). Let

w(z, t), t€ [0, t + 8]
v(z, 8), t€ [ty + 6, ).

u(z, 8), tE€ [0, to]

= lo(z, ), L€ [t o)’ D&D =

U (z, 1)
One can show now that U and U coincide, hence ¢, is a point

interior to the interval {0, {, 4- 6], and a is differentiable in t;
this completes the proof.

SUMMARY. — We prove existence and regularity of solutions to the non-
stationary Navier-Stokes equations in exterior domains.
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