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SUNlX). - -  Si d i m o s t r a  l ' e s i s tenza  e r ego la r i tb  delle soluzioni di Naviero 

Stokes  in dominio  aper to .  

The Navier-Stokes equations 

(I)  v , - - , , A v ~ -  V P - ~  ( v .  V ) v  ~--- f 

V . v = O  

are  assumed to govern the motion of a viscous, incompressible fluid 
which is described by the vector field v (x, t) denoting the velocity 
of a particle at  position x and t ime t and by the scalar function p, 
the pressure.  As usual, 7, > 0 is a constant  which is called kinematic 
viscosity, and f is the  density of the exterior  forces. To consider the 
equations of motion in an exterior  domain ~ c 1R "~ (which is the 
complement of a bounded domain .(2 with boundary  Z) has proved 
useful in the s tudy of f lows past  rigid bodies tha t  move in a big 
reservoir  of fluid. For  if one wants  to derive physical or geometrical 
propert ies  of the flow the assumption of an infinite container makes 
the flow independent of the par t icular  shape of the  container 's  
walls;  they are  always far  away  from the body and hence are  
assumed to have near ly  no influence on the behavior of the  flow in 
its neighborhood. 

As an example of this type we consider a rigid body, repre- 
sented by P., tha t  moves with prescribed velocity U ; U  general ly 
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depends on time. Let vo(x) be a solution to the s ta t ionary Navier-  

Stokes equations 

(2) - - ~ A v +  V P +  (v" V)v-----  s 

V . v : O  

in the  complement of P. when the body moves with constant  velo- 

city U o .  I f  we assume tha t  the reference f rame is a t tached to 

the  velocity of the fluid tends to a constant  limit - - U o  at  infinity. 

As the Navier-Stokes equations are  invar iant  under Galilean t rans-  
format ions  this leads to (2) with the boundary  conditions 

(3) v ( x )  ~ 0 V x ~  

(4) v ( x ) - - > - -  Uo as Ixl--->or 

We now ask whether  a solution Vo(X) of (2)-(4) is stable with 

respect  to small disturbances v ' .  The means, does there  exist  a solu- 
tion v(x,  t) to (1) with initial values Vo(X) -}- v , (x)  and does v (x, t) 

tend to Vo(X) for  t--> ~ ? Another  example is the s tar t ing problem: 
Let  at  t ime t ~ 0 both the  fluid and the body be at  res t ;  then acce- 

lerate the body within some finite interval of t ime (0, to) such that  
its velocity at  to equals Uo ,  and maintain this velocity for  all t > to. 
Does the solution v (x, t) of this acceleration process tend to vo ,  the 
solution of the s ta t ionary problem ? 

These two questions involve problems of existence, uniqueness, 

and asumptot ic  behavior for  large t of solutions to the non-stat ionary 

system (1); but  before we present  the  results for  the initial value 
problems we briefly recall some basic facts  about  solutions to the 

s ta t ionary  equations because their  propert ies  require special methods 
for  the t ime-dependent case. 

The f i r s t  contribution to (2)-(4) is due to J. Leray  [7] who 

proved the existence of at  least one solution for  a rb i t ra ry  but  smooth 

data provided the condition at infini ty is weakened in the following 
sense 

I vo(X) ~ UO~ 2 
(5) .t ~ dx  < C uniformly in y E I x - - y l  2 

E 
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The solution is characterized by finite Dirichlet 's integral  
f IVVo] 2 dx. Later  R. Finn proved that  vo is continuous at  infinity. 

He  also introduced another function class by 

(6) Ivo(x)- -  U~ I < C Jxl -:/2-~ as Ix[-  

with positive constants  C and ~, and Finn showed (:) tha t  there  
exists a solution to (2), (3), (6) for  small data. These solutions have 
significant  physical  and geometrical proper t ies ;  f i r s t  there  is an 
expansion at infini ty 

(7) vo(x) ~ U,, + F• �9 E (x, 0) + 0([xJ-'-') for  Jx I large, 

where  

{ av~0 avJo t 
(8) F _ , ' ~  T �9 n do, T ~ j - - - - - - p o 6 ~ + v  \-3~ 7 + 0 ~  T / ,  

X 

is the force exerted on the body, and E~j is the fundamental  solu- 
tion tensor  to the Oseen equations 

(9) - - , ' / X v §  Vp ~- (Uo. V ) v  ~ 0 
V - v - - ~ O .  

F rom (7) and the est imates for  E at  infini ty one deduces the 
existence of a wake  behind ~2: There is a region of the  form of a 
paraboloid with axis in the direction of Uo in which Vo differs  much 
more f rom the limiting velocity Uo than outside of it. Another  
consequence of (7) concerns the kinetic energy associated with the  
f lows;  as E is not  square integrable we get  

(10) Eke,, 2 I ]Vo(X)--  Uol 2 dx ~ + 

unless F x  -----0; this can happen only in some eases with boundary  
values d i f ferent  f rom (3), for  instance if  s propels itself by rotat ing 
about  an axis;  such si tuations will not be considered here. Solutions 
sat isfying (6) a t  infini ty were  termed (< physically reasonable �9 (PR-  

solutions) by Finn. 

(1) For the proofs we refer to [4] and earlier papers cited there; see also 
Finn's survey articles [2], [3] where our problems are formulated for the 
first time. 
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These propert ies  of s teady state solutions vo are clearly impor- 
tan t  fo r  the  investigation of our problems mentioned above. As we 
want  the t ime-dependent solution v (x, t) to converge to v0(x) we 
have to make  sure  that  the method we may apply in the existence 
proof  does not  exclude the solution a priori  f rom converging to 
Vo(Z). This would be the case, for  instance, if the existence theorem 
for  v (x, t) were based on energy estimates, probably the best  known 
method for  proving existence at  all. For  a solution v (x, t) whose 
kinetic energy (10) is bounded for  all t by some fixed constant  can- 
not  tend to a stational~y solution of class P R .  

We now formulate  the main result  of [1]. Let A denote Oseen's 
operator ,  defined for  C -'+" -functions by the boundary  value problem 

(1) 
~ - - ~ ' / ~ v + V p + ( U o -  V ) v ~  f in e 

V . v ~ O  

~ v(x) ~ 0 on ~, v ( z ) - - , 0  as I x [ ~ o %  

and Ar a fractional power  of A. 

THEOREM 1. - Consider the initial value problem 

(12) 

v t - - , , A v §  V P §  ( v .  V ) v ~ - f  
V . v = 0  

v ( x , t ) - ~  0 V x E Z  V t e [ 0 ,  T] 

I v(x,  t ) - -  Uo[ -< Clz1-1/2-', as Jx I --, oo 

v(x,  O) ----- v*(x)  Vx  E e .  

in e X (0, T) 

There exists a unique classical solution for  a rb i t r a ry  values of 
T if  the data  are  small in the following sense 

v * E D ( A  ~) and ]l v*llc~+P << 1,  

where  D(Ar)  denotes the domain of definition of A t .  The solution 
is an element of C~ T), C - ' ~ ( e ) ) ~ C I ( ( 0 ,  T), CO+-(e))  and at- 
tains the  initial data continuously in the C~ e ) - n o r m .  

The proof  uses an approach by  semigroups in HSlder-spaces, 
tha t  is the generator  of the  semigroup m in our case Osen's ope- 
ra tor  A m acts on suitable subspaces of C~ In this way  we 
avoid solutions with finite integral norms of v ~ U~ ,  especially with 
f ini te  kinetic energy, cf, (10). Fo r  parabolic equations and sys tems 
this approach was used f i r s t  by W. yon Wahl [8]. 
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The main differences to the usual semigroup concept when the  
genera tors  a re  defined on subspaces of Lp lies in the  resolvent esti- 
mates. I f  L is an elliptic operator  of second order  with zero Dirichlet 
data  there  holds the resolvent est imate of S. Agmon 

C 
(13) I I ( L - -  ~.)-~llLp < 

= I),l 

if 2 is not  in the spectrum of L. If we regard L as an operator  on 

C ~247 we get  instead of (13) 

(14) 
C 

IAI ~-./~ , 

and von Wahl proved that  this est imate is sharp with respect  to the 
decay in I~]. For  the linearization (11) we prove inequality (14), 
that  is 

THEOREM 2. - Let P c E be the domain which is bounded by 
the parabola la[ = c ( U ,  v ) f 2 ,  ~ ~o < a < 0, where  ~ + ip denotes 
a point in (~. Then 

(15)  
~ - - , , A v +  V P - -  (Uo- V) v §  v = f 

V . v = O  

i v(x) = 0 on Z, ]vl--->O as Ixl.---~ 

in 

possesses a unique solution for  2 • P, and for  large Ix[ we have the 

decay [ v] _-< Clxl-~ if ~ =  0 and Iv I --_< Clx1-3 if ~ # O. 

(16)  I~[ II vllo + I~11-~ llvllo+o + I~l "~ II v i i ,  + I~l "'-'~' I lvl l ,§  + 

+ Ilvl l , ,  + I~1 -'~'~ I l v l l ~ .  ~ cIIfllo+., 

where  [] [[~ denotes the C~(e)-norm.  

The proof uses methods of potential theory;  one s tar ts  with 
the construction of a fundamental  solution tensor to (15) and intro- 
duces potentials of single and double layer. As in classical potential 
theory one is led to integral equations of Fredholm type;  for  ~ ~ P 
they are  uniquely solvable. From this procedure there  follows a re- 
presentation of the solution by integrals over Z and C and f rom 
this the  est imate (16) can be derived. 
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From the  proof we can also get some insight into the  special 
s t ruc ture  of (16) and therefore  also of (14). The fundamenta l  solu- 
tion tensor  E,~ of the  Oseen system (15) is for  small I x - - y [  of the  
fo rm 

(17) E~i(x,y;,~ ) : q~(x--y) e-l'~l~-.~l + higher  order  terms, 

where  ~ grows like Ix--Y1-1 (independently of 2), and the terms 
of h igher  order  have no influence on the decay in [~1. So for  an 
a rb i t r a ry  component of V 9E we have to study integrals of the  form 
ff[~72~ @ v2] f ( y )dy  when we separate  the  strongly singular  part.  
By the  HSlder-Korn-Lichtenstein inequality we get  for  the singu- 
lar i ty  

�9 " I x - - y l  f ( y )  d y  < C [ f ] ~ ,  
. I x - - y P  a = 

and there  is left  a weakly singular kernel 

121e~ I,I1~,~1 I x - - y l  , + 121-,~ e-Y I~1 I~-.I I x - -  yl--'- 

So consider for example 

u 

�9 l;tli/~- Ix--uP f ( ~ ) d y - -  I z - - y P  

< I~,1 :'/= e-V IZl I~---~! 

= . i 1 , ~ 1 ~ ~ - ) 1  ., 

-< Cl21 '~= I z - - x l  ~ I t f l l ~ ,  

e-I / I~t tz-vl I 
- -  1 [ 2 [ l / 2 ( z _ y ) r  f(y) dy 

because 1~] ~/2 gives exactly the volume element of the t ransforma-  

tion y--->l;qi/~y~--y, and l,t] ~/2 is the C~ of e -Ix~jl~l 

The last est imate explains the difference between L~- and C ~ 
bounds:  The C ~ -norm of e-[~l"l~l gives the factor  121 a/2 whe- 
reas  the Lp-norm is independent  of 2, [21 large. That  the various 
bounds in C ~247 C 1+~, and C 2+~ di f fer  by I2[ l/e, follows f rom (17), 
too, because each different iat ion gives N 1~. 

Once the  existence of the semigroup e -tA is established we get 
a local solution of (12) by investigating the integral equation 

t 

(18) v(t) = e -'A u  Jr- t e-'A N(v(r)) d~" in ~ ,  
0 
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where  N ( v )  is the  nonlineari ty ( v ' V ) v  a n d ~ C ~  
N {I vl < Clzl -~ as Ixl --> ~ }. Exploiting the interpolation proper ty  

(19) II vll ,+p --< c IIA  vll o+o 

with  suitable a, fl, and ~ for  the fractional  power Ar ~ [A-y] -1, 
where  

we  are  led to 

1 [ e - s A v  8 )'-1 4 8  , A - r v -  r(~,) ,; 

t 

(20) w ( t )  = e -'A wo d- Ii e ' ~ N ( A - ~ v )  dT" 

This l inear equation is solvable for v ~ C " ( [ 0 ,  T], ~ ) b e -  
cause N ( A - ~  v) is an element of ~ ,  due to (19). The nonline~rity 
N ( A - y  v)  is compact  in v and Lipschitz in Vv ,  so we can use a 
f ixed point theorem of H. KielhSfer [6] to show that  the  following 

mapping  F has a fixed point: F :  v - - > T v ~ - w ,  and w ~ A y w ,  

w h e r e  w is a solution of (20). 
The existence of a global solution (in time) follows f rom a 

bound of the form 

(21) le - 'Avl < C l x l - I  as Ixl-->or 

i f  v decays at inf ini ty in the same way. The proof follows again 
f rom the fact  tha t  in the expression for  the semigroup 

-~- f e ~t R ( A  ; 2) e - tA d). 
F 

we have a representat ion for the resolvent R ( A ; ~ ) o f  Oseen's 
operator ,  which ~again can be est imated for  Ixl--> ~.  This con- 
eludes the proof of Theorem 1. 

The questions we raised in the introduction concern the  beha- 
vior of the solutions of (12) for  t--> ~ ;  Do the disturbances of a 
s teady  state solutions decay or does the solution of the  acceleration 
process tend to a PR-solution. Convergence for  t--> or holds in 
these cases, and the  method of proof follows closely the  analogous 
results for  parabolic problems. We do not go into details here  be- 
cause our theorem is weaker  as known results as they include 
also explicit est imates on the  decay with respect to t. 

Seminario Matematico e FriSco - 7 
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Instead of this we want  to investigate the conditions we posed 
on the initial value of  vo in Theorem 1. That  the  data  have to b e  
small in an appropr ia te  norm was assumed in every exis tence 
theorem where  regular  global solutions were  proved. In addit ion 
to this we have to assume that  Vo lies in the domain of definition 
of a suitable fractional  power  of A. These d0mains D(A~ ) canno t  
be characterized analytically so far,  and therefore  we have to show 
tha t  this condition is satisfied, at  least in the  s tar t ing problem i n  
which we are interested primarily.  

Dur ing the acceleration process in the  interval (0, to) t h e  
space-time domain in which we have to solve the Navier -S tokes  
equations in noncylindrical whereas  this proper ty  holds (a f te r  a 
Galilean t ransformat ion)  if  the  immersed body moves with con- 
s tant  velocity;  so Theorem 1 can be applied for  all t ~ to. On t h e  
other  hand, the kinetic energy of the f low for  t ~ to is cer ta in ly  
finite, and existence theorems based on energy est imates may be 
applied, cf. Heywood [5]. The question then arises:  Is this solution 
u ( x ,  t) for  t =  t~ a suitable initial value fo r  Theorem 1 such t h a t  
u can be continued for  all t? Smallness of u (x, to) can always b e  
achieved by assuming U to be small, but  to show U ( t o ) E D ( A  ) we. 
need the following result. 

I~MMA. - Consider the  initial value problem 

(22) 

u t - - ~ A u + V p +  ( u .  V ) u  = g 
V . u - ~ - 0  

u (x ,  t) = u o  Vx  EZ V t  E [0, to] 

u t ( x , t ) - - ~ g a s  I x [ - - ~ ,  V t E [ O ,  to] 

u(x ,  0) = 0 V x E ~ .  

in e X  [0, to] 

Here  g is a fictit ious exterior  force  which corresponds to t he  
fac t  tha t  we describe the acceleration process in a reference f r ame  
that  is at tached to the body (and hence undergoes acceleration), 
such that  (22) is an initial value problem in the space, t ime cy- 
linder. Then (22) has a unique solution u (x, t) which fulfilis t h e  
same regular i ty  propert ies  as the solution of Theorem 1. u (t~) is. 
an element of D(S~ ) with  a suitable ~ ~ 0, where  S is the  Stokes-  
operator ,  and D(S~) c D(A~-,) for  any t ~ 0 (2). 

(2) This inclusion was suggested to me by Professor W. yon Wahl. 
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S is defined on subspaces of C~ ) by the boundary  value 
problem for  the  Stokes equations 

(23) 
! - - ~ A u W v  p : f  in 

V . u  ----- 0 

I n ( x )  ---- 0 on z ;  [ u ( x ) [ ~ o  as Ixl--,  ~ 

The existence of a solution of (22) can be shown in the  same 
way as for  (12); it is much simpler because solutions decay much 
more rapidly a t  spatial infinity. Especially we prove the  existence 
of a Green's function S to the Stokes system (23); i f  we call the 
corresponding Green's function for  the Oseen equations rat,  we 
get  for  the  resolvents representat ions by Green's functions 

/ 

R(A;A)f-----  t , .~(x,y;,t)f(y)dy 

R(S;~)  s ~- f r162163 
! 

From this explicit formulas we deduce the  last proposition 
of the lemma. 

Combining (22) and (12) we have solved the s tar t ing problem 
for  all t but  with d i f ferent  l ineariations for  t < to and for  t > to. 
As v (x, t) assumes the initial values u (x, to) continuously it re- 

mains to show tha t  the solution is differentiable with respect to 

t ime in to. To prove this we consider solutions u of ( 2 2 ) i n  

[O, to-}-O] and v of (12) in [to-4-6, oo) and we assume tha t  ~ is 

so small tha t  u is a permissible initial value to (12). Let  

,u(x, t ) ,  t e [0, to] l~(x,  t ) ,  t e [0, to + 6] 
u (x, t) = iv(x,  t ) ,  t e [to, ~ )  ; O(x ,  t) = Iv(x, t ) ,  t ~ [to + 6, oo). 

One can show now that  U and I~ coincide, hence to is a point 

interior to the interval [0, to ~ -6 ] ,  and u is different iable  in t ;  

this completes the proof. 

SUMMARY. - -  We  prove  exis tence  a n d  r e g u l a r i t y  of solut ions  to the  non-  
s t a t i o n a r y  N a v i e r - S t o k e s  equa t ions  in  ex te r io r  domains .  
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