
FINITE ELEMENT APPROXIMATIONS FOR SOLVING 
THE ELASTIC PROBLEM 

Joachim Nitsche 

Finite element approximations for the first boundary 
value problem of elasticity are given which allow to use 
subspaces of functions not vanishing on the boundary. L2 
and L error estimates are derived. 

00 

1. The boundary value problem, variational formulation 

Let n c R2 be a bounded domain with boundary 00 
sufficiently smooth. We will work w1th vectors v = (v1,v2 ) 

In case vi E L2 = L2 (0) we write ~ E ~ = L2 x L2 • The 
meaning of w21 etc. is analogue. For simplicity we will 

- 01 2 
also use the notation li1 = ~2 ' ~ = li1 n ~ • Correspon~ 
1.ngly we def ine 

(The summation convention is used throughout the paper). 
To a displacement-vector ~ are associated the two 
tensors: 
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Here #,1 denotes the partial derivatives, ~ik is the 
Kronecker symbol and \ ~ 0 , ~ > 0 are the Lame­
constants. The first boundary value problems of elasticity 
is 

given f. E l!2 ' such that 

( 1 ) in Q 

We mention the shift theorem 

THEOREM 1: For f E L2 the solution u E ~ exists 
uniquely and 

(2 ) 1I~1I 2 ~ c 11f.IIL 
~2 .!;;2 

Here and later c is a numerical constant which may 
differ at different places. 

with 

(4) 

The solution of (1) is equivalently characterized by 

a (v,w) 
0--

a (u,v) = (f ,v) 
0-- --

(aik(~) , E: ik (!!)) 

SI {\(Vi,i) (Wk,k) + 2~E:ik(~)E:ik(!!)}dx 
o 

The form ao is symmetric, bounded and because of Korn's 
. 01 

inequality coercive in ~1 • As long as we are in ~1 = ~ 

ao in (3) can be modified without influencing the solu­
tion ~ by - ~ is the normal vector of 00-

a 1 (~,!!) a (v,w) - § ni{aik(~)wk + aik(!!) Vk} ds 0--

(5 ) 00 

a2(~'!!) = a1(~'!!) -1 § + K h viwi ds 

These terms are motivated because of 

LEMMA 1 : Let u be the solution of (1) and w E~ . 
Then for i = 1,2 

(6) a i (~,!!) (f.,!!) 
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This relation is essential in deriving L2 and L 
estimates, it is not true for the form 

2. Finite elements 

a o 

00 

By r h a V-regular subdivision of 0 with mesh­
seize h into generalized triangles will be denoted: For 

any ~ E r h there are two spheres ~, K with radii ~,r 
-1 such that K c f\ c K and y h:S; ~ < r :s; h (for more 

details see CIARLET-RAVIART [1 J). 
Besides the usual Sobolev-norms we will need certain 

weighted norms. Let Xo E 0 and P > 0 • We use the weigh~ 
factor 

p (x) = IJ. (x)-a. lJ.(x) 
? 

+ p2 with /x-xo /-a. 

and define for any 0' S;; 0 

I/vlla..o' {Sf 2 dx}1/2 
Pa. v 

(7 ) 0' 

k 
{/K/=k 

1/2 

1117 vlla..o' \iDKvn 2 ,} a..O 

In case 0' = 0 we simply write 
products are denoted by (.,.) • 

a. 

11· Ila. • The scalar-
If T S 0 is a curve we 

u3e for the corresponding integrals the 

resp. <.'.>a..T and drop T in case of 

notation 

T = 00 • 

The functions we work with will have a reduced regu~ 
ity across the edges of r h • Therefore we introduce the 

h_k. k 
spaces -~2 of functions v with vl~ E W2(~) for ~Erh 
and define 

k k 2 Jl~ 
(8) 1117 vlI~ = {E 1117 vlla.. 

tErh -

For simplicity we will consider in this paper only 

linear finite element spaces ~, i.e. any X E ~ is 
continuous in 0 and piece-wise linear in ~ E r h • 
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o Sn s ~ 1s the subspace of funct10ns van1sh1ng 1n the 
nodes of r wh1ch are on 00. The standard propert1es of 
~ resp. h §h used 1n the next sect10ns are summar1zed 
1n 

THEOREM 2: There 1s a constant 

y-regular subd1v1s1on rh and any 
proposlt1ons hold: 

such that for any 

p w1th P ~ y1h the 

(1 ) To any v E Wl n hwk 
2 2 (k=1,2) 

there 1s a X E Sh w1th 

(9) I!v-xll + h 11\7 (v-X) 11 :5 cl (0.) hk I1l7kv llh 
0. .0. 0. 

(11) For any X E ~ 

(10) Il vxll a :5 c2 (a) h- 1 1IXlla 

IvXla:5 c 3 (a) h- 1/ 2 {llxil a + I/vxlln} 
o 

(111) For any X E ~ 

rhe bounds c1 (a) depend only on a'Y'Y1 and abound of 
the curvature of 00. 

o 
Remark: If v E H1 then the cho1ce X E ~ 1s poss1ble 1n 
assert10n (1). In add1t1on X may be chosen accord1ng to 

(12 ) 

FOT more details see NATTERER [ 1 J, MITSeHE [ 1 ], [2 ] • 
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3. Finite element approximations, B1- and L2 - error 

estimates 

The solution ~ of the boundary value problem (1) 

will be approximated by an element ~ E ~ = Sh x Sh • 

Though the functions in ~ are not exactly zerooon 00 

the forms a o ' a l , a 2 are positive definite in Sh. The 

finite element approximations ~i) are defined by 

o 
(~,~) for X E ~ (i=O,l) 

for X E S 
- n 

For K - see (5) - sufficiently large a2(~,r)1/2 is in ~ 
a norm equivalent to 

therefore also 

\\~II 1 + h- 1/ 2 111 
~2 

(2 ) 
u' 
-h is well-defined. 

By standard arguments we get immediately for the 
errors e(i) = e~i) ~ _ ~i) : 

THEOREM 3: Assume f E L2 resp. Q E H2 • The errors in 

the energy norm are bounded by 

(14 ) !1~i)!lWl $ c h \\~II 
-2 

in the ~-norm ~he bounds differ 

i1~o)!I $ c h 3/ 2 I\~I' 

(i 

(i 0,1,2) 

1,2) 
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The approximation ~l) seems to be of most interest. In 

this case we have in addition 

4. Error-estimates in weighted norms 

In this and the next section we restrict ourselves to 

the bilinear form a 1 and drop here as well as in ~l) 
the index 1 • We will need 

Then ror any a E R 

o 
LEMMA 3: Let Y.. E!:!l resp. Y.. e .en . Then for any a E R 

II?Y..II~ $ c{a(y",~-~) + 1IY..11~+1} 

The proof of Lemma 2 is straight-forward. Korn's inequality 

applied to ~ = ~-a/2y" and standard estimates give Lemma 3. 

( 17) 

By definition of ~ = ~l) we have for 

o 
for .x E ~ 

Now let ~ be an appropriate approximation on ~ 

according to Theorem 2 with error ~ = ~ = u - ~ • Then 
o 

we have e = E -i with -i = ~ - ~ E .en and 

o 
(18) a(!,X) = a(~,x) for ~ E .en 

o 
Using Lemma 3 we derive with a E Rand any .x e ~ 



(19) 
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IIV.lI1! :S c {a(.l'I-I-a!_~) - a(~,I-I-a.l_~) + a(~,u-a.l) + 

+ 1I.l!I!+l} 

$ c {IIV!.I'a + IIV~!lJ Ilu(l-I-o..l-.x)to. 

+ c I!V~I',.. 1!V(I-I-o..1) "_ .. + c Hli 2 1 
"" "" - a+ 

Application of 2/ab/ $ 6a2 + 6-1b2 in a proper way glves 

Since ! is piecewise linear we have by means of 
Theorem 2 with ~ properly chosen 

IIV(1-l-a~-X)1I :S c h IIV2 (g-o..1) 1I~0. - - .-0. 

(21) ~ c h (11!.11n.+2 + I' I' } 11 17.1 la+1 

$ c h p-l(il~llo.+l + IIv~11 -0. 

Now we impose the condition p ~ Y2h with 
such that the constant in (20) is less than 

get 

(22 ) 

Now let ~ E g2 be the solution of 

(23) -a- 1 ( ) 1-l !: -aik,k ~ 

) 

Y2 ~ Y1 and 
Y2 • Then we 
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o 
Then we have w1th an arb1trary ~ E ~ 

The last term may be estfmated by 

The funct10n X 1s now chosen to be an approx1mat1on on 

~ • Then 

11 17 (w-X) 11' $ c h 11'72WII 
- - -0. - -0. 

After standard est1mates and transformat1ons we come 

to 

Here 6 > 0 1s arb1trary. 

If 6 1s chosen such that w1th the constant in (22) ~c < 1 
then the comb1nation of (22), (24) g1ves 

From now we specialize ~ = 1 • Applying the Sh1ft 

theorem to the funct10ns x1~ and p~ g1ves after some 
computat1ons 
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LEMMA 4: Let ~ be the solution of (23) with Q. --- -- 1. 

Then 

I!v2~11:1 :S c {-2 2 p 1I!lb + IIV~112} 
(26) 

It remains to estimate the last term bYI!tll~ respective 
by 

If we define 

then we have with (26) 

In the appendix we will sketch the proof of 

be defined by (27). Then ---
-2 I Kp :S c p Iln p 

With the help of this estimate we get combining (28) with 
(25 ) 

1I!1I2 + IIV!I!1 :S c {11E!1I2 + IIVE!1I 1} 

+ c h~l Ilnp 11/ 2 1I!lb 

Ir we take p ~ YJ hlln hl with Y3 properly chosen the 
imposed conditions on p will hold and the coefficient of 

1!!1\2 in the last inequali ty is smaller than 1 • Remember­

ing the meaning of E! = ~ - ~ we get 
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LEMMA 6: If the parameter p in the weight-factor u is 
connected wi th h by 0 ~ Y2 h Iln h I 1/2 then 

(29) li1112 + 11'1111 1 S c inf {1I!;!-~li2 + ii'1(!;!-~)1I1} 
.xe§h 

5. Loo-error-estimates 

Let us now assu~e that the solution !;! of the bound­
ary value problem (1) has bounded second derivatives. Then 

5 c h Ilnhl l / 2 1I'72!;!liL = 
The point Xo in ~ is now chosen to be in a 

t:.. e f h with 

Then we have 

and therefore from (29) 

1I'1!IIL S c h Iln hl 1I'12!;!IIL = -00 

Because of !:. = E - t we have got 

THEOREM 4· If u E W2 _ -00 then 

In order to get an error estimate for !:. in ~ we 
consider a Ao e f h with 
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Since is linear in 1.-0 we find with 

(30) I' I' -2 JJ _~.2 dx II.! IL :5 c h 
= 

Now let ~ E g2 be the solution - compare with (23) - of 

(31 ) 
-2 

_ 'Jo(w) = Jh ! - 10 
in Kr 

else 

By arguments similar to those on pp. 8,9 we come to 

and using (29) 

:5 c h- 2 JJ !,!2 dx + 

Kr 

Using the counterparts of Lemmata 4 and 5 for the function 

w defined by (31) we get 

li,,2~II:l s c p~ h-4 JJ l- dx 

Kr 

and therefore we derive from (32) 
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In connection with (30) we have 

Theorem 5: If 2 u e Woo then 

6. Appendix: Proof of Lemma 5 

There exists (at least) one solution ~ e ~2 with 

For any ~ e ~2 the variational equations 

hold. Since 

and va(~) e.!!2 is arbitrary the function ~ satisfies 

with A = K- 1 • In order to estimate K we need a lower 
bound of the eigenvalues of (33). Multiplication of (33) 
with ~ and integration gives 

Because of Korn's inequality wehave 

and the right hand side is bounded up to a factor by 

(34 ) 
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The extremal function w of (34) is the solution of 

(35) 

with X" = R- 1 being the smalles eigenvalue. Because of 

the maximum principle w as well as -~ are not negativa. 

From tnis the monotony of K with respect to the domain 

follows: Let 01 , ~ be two domains and K1 , K2 be the 

corresponding 
1\ 

values (34). If 01 c O2 then K1 $K2 • 

Now let 0 be the 

~ = diam (0). Then 

circl~ with center Xo and radius 

o c 0 and it suffices to bound the 
- 1\ 

corresponding value of K. Since ~ depends only on 

Ix-xol and w ~ 0 there is a solution of (34) depending 

also only on Ix-x I (actually tne smalles eigenvalue is o 
simple). Therefore problem (35) can be handled as 

I-dimensional. By direct computation then we get the bound 
1\ 

for K and hence for K given in Lemma 5. 
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