FINITE ELEMENT APPROXIMATIONS FOR SOLVING
THE ELASTIC PROBLEM

Joachim Nitsche

Finite element approximations for the first boundary
value problem of elasticity are given which allow to use
subspaces of functions not vanishing on the boundary. L2
and Lm error estimates are derived.

1. The boundary value problem, variational formulation

Let Q c R2 be a bounded domain with boundary 3dQ
sufficiently smooth. We will work with vectors Vv = (Vl,VQ)
In case v, elL2 = Ly(n) we write v e L, = Ly x L, . The
meaning of ﬂa ete. is analggue. For simplicity we will

1 _ 2
also use the notation El = EQ s Eg = El n HQ . Correspond
ingly we define

(w,¥) = (ug,vy)  fup = (3,2)1/2 .

(The summation convention is used throughout the paper).
To a displacement-vector Vv are associated the two

tensors:
2ege(¥) = vy * Vg
oik(g) =2 (VJ,J) 6y + 2u & -
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Here # N denotes the partial derivatives, ﬂik is the
b

Kronecker symbol and ) 2 O , u > O are the Lame-

constants. The first boundary value problems of elasticity

is
given f ¢ L, , find u ¢ 32 such that

(1) -vgw) =f - og @ =f, in a .

We mention the shift theorem

THEOREM 1: For f ¢ L2 the solution u ¢ EQ exists
uniquely and
(@) il 5 < efffl, -

W =2

-2
Here and later c¢ 1is a numerical constant which may
differ at different places.

The solution of (1) is equivalently characterized by

(3) ueH = a(wy) = (£,v) for v eH
with
(#) ay(v,w) = (04, (v) , €, (w))

[

” {x(vi,i)(wk,k) + 2ueik(1)eik(z)}dx .
Q

The form ao is symmetric, bounded and because of Kornés
inequality coercive in H; . As long as we are in H, = yé
ag in (3) can be modified without influencing the solu-

tion u by - n is the normal vector of dQ -

a,(v,w) =a (v,w) - § ni{aik(z)wk + 04y (W) vk} ds ,
(5) Q .
a2(!,§) = al(!,ﬂ) + K h § VW, ds .
These terms are motivated because of

LEMMA 1: Let u be the solution of (1) and w ¢ ﬂé .
Then for 1 =1,2

(6) ay (w,w) = (£,w) .
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This relation is essential in deriving L2 and L,
estimates, it is not true for the form a, -

2. Finite elements

By I, & y-regular subdivision of Q with mesh-
seize h 1iInto generalized triangles will be denoted: For
any A € rh there ire two sg?eres K, K with radii g,?
such that K c AcK and y h=<r«<
details see CTARLET-RAVIART [1 ]).

r<h (for more

Besides the usual Sobolev-norms we will need certain
weighted norms. Let Xo €0 and P > 0 . We use the welght-
factor

Py (X) = u()™ with u(x) = [x-x,|° + o

and define for any Q' c o
' 1/2
| [T 2
vl .qr = {[] vy v* ax}
O‘
1/2

Wl = {5, o)

(7)

. The scalar-
products are denoted by (.,.)OL .If Tcq 1s a curve we

In case Q' = Q we simply write H.}a

use for the corresponding integrals the notation I"a T

resp. <., .> and drop T 1in case of T = 3Q .

a.T

The functions we work with will have a reduced regular
ity across the edges of r . Therefore we introduce the
spaces hw of functions v with vlA € w (A) for A€T,
and define

1/2
8) kv = { ¢ ko .
(8)  novig {M%uvwmg

For simplicity we will consider in this paper only
linear finite element spaces Sh , 1.e. any x ¢ Sh is
continuous in Q and piece-wise linear in A ¢ rh .
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o
S, € S, 1s the subspace of functions vanishing in the
nodes of Fh which are on 3Q . The standard properties of
Sh resp. gh used in the next sections are summarized
in

THEOREM 2: There 1s a constant Y; such that for any
y-regular subdivision Th and any p with p 2 Ylh the
propositions hold:

(1) To any vV € Wé n hwg (k=1,2)

there is a Yy ¢ Sh with

(9) =Xl + h e (v-x)1_ < c; (o) B wovi? .
a : a a

(1i1) For any X € Sp

-1
cola) R72 XN

A

(10) loxdl,

A

Jox] < exla) 072 LIl + lioxly} -

o
(1i1) PFor any X € Sy

(1) xS eyla) 272 (X + o} -

The bounds ci(a) depend only on a,Y,Y, and a bound of
the curvature of 3an .

o
Remark: If v ¢ H1 then the choice ¥ ¢ Sn is possible in
assertion (i). In addition x may be chosen according to

(12) X, = egla) nSP[ .

For more deteils see NATTERER [ } ], NITSCHE [1], [2 ] .
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3. Finite element approximations, Hl- and L2- error

estimates

The solution u of the boundary value problem (1)
will be approximated by an element w € §h = Sh X Sh .
Though the functions in Sh are not exactly zerooon 3l
the forms a_, a_, a are positive definite in Sh . The

(o} 1 2
finite element approximations géi) are defined by
o
ngi)e : 1_11.(,1) = (£,x) for x € 5, (1=0,1)
(13)
2
u?(f)e 5 : gr(l ) = (£,X) for x eSS, .

For K - see (5) - sufficiently large az(l,l)l/g is in 8
a norm equivalent to

+ -1/2
Hx!lwl h

—2

Xl

(2)

therefore also Uﬁ is well-defined.

By standard arguments we get immediately for the
S _ ()
h 1-

errors

THEOREM 3: Assume f ¢ L2 resp. u € H
the energy norm are bounded by

o - The errors in

(1) ety [ =enpgl (1=o0,1,2)

I l =<
Wo

in the L2—norm the bounds differ

(0),‘| < n? e

(15)

A

le(i,) ¢ n° nen (1 =1,2) .
llep ™l £
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The approximation uél) seems to be of most interest. In
this case we have in addition

2

(16) 121(11)’ <ec h” yfy .

4, Error-estimates in weighted norms

In this and the next section we restrict ourselves to

the bilinear form a, and drop here as well as in Ehl

the index 1 . We will need
o
LEMMA 2: Let v,w € H, U S, . Then for any o €R

la(v,w)| < cllvv] flowl_q -

loul? < efa(wu®) + el )

o
LEMMA 3: Let V € §1 resp. V € §h . Then for any ¢q € R

The proof of Lemma 2 is straight-forward. Korn's inequality
applied to w = u-a/2z and standard estimates give Lemma3.

By definition of u = gél) we have for e = gél)

(17) a(e,x) =0 for x € 8

Now let gh be an appropriate approximation on

u
according to Theorem 2 with error E = Eh =u - U_ . Then
we have e = E -3 with -3 = gh -u € §h and

(18) a(s,y) = a(E,x) for X €S,

Using Lemma 3 we derive with o € R and any X €

&UJO
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vaui <c {a(g,u-agfl) - a(E,u"%-X) + a(E,u %) +

2
+ gt}

e {nvan, + wEI} o ex)

(19)

A

- 2
+ ¢ WEN |lv(u g_)u_cL *eNgl Ly -

2

Application of 2|ab| < sa” + 5-1b2 in a proper way gives

(20) vzl = e {IvEIZ + 102, + w0 R )

Since § 1s plecewise linear we have by means of
Theorem 2 with X properly chosen

O S I i

(21)

A

cn (18lly,p + l9&li,}

A

cn e (el yy + llvall) -

Now we impose the condition o 2 Yoh with Y2 > Yl and

such that the constant in (20) is less than Y, . Then we
get

2l |9E! .
(22) lven =< {hvg,la + ”2”,1+1}
Now let w € H, be the solution of

(23) - VU(E) = u*a'li : _cik,k(ﬂ) = um‘lcpi .
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o)
Then we have with an arbitrary X € §h

2
NEN g = a(g,w)

a(gﬂ_’-l) - a(E;‘j_-l) + a(E_’!_V_) .

The last term may be estimated by

a(E.w) = (E.u™s)

1]

A

II'e il
”E”a+1 H§”u+1

The function X 1s now chosen to be an approximation on
w . Then

l9(w=)ji < c h ng2wn .
- = o - ~a

After standard estimates and transformations we come

to

(24) ngn < 8 nygn +c 5-1 {HE‘I + WWEI + th2w||
=atl T ='a =llg+1 =a o =T-alt
Here & > 0 1is arbitrary.

If & 1s chosen such that with the constant in (22) sc < 1
then the combination of (22), (24) gives

2
(25) g 3o+ [val, < {uEN ., + wwEN + nfe%w|_} .

From now we specialize g5 = 1 . Applying the shift
theorem to the functions X4W and ow gives after some

computations
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LEMMA 4: Let w be the solution of (23) with o = 1.
Then '

A

%) < e {072 Y23 + lown®}
(26)

-2 2
<ec {p ngly + a(ﬂ,g)} .

It remains to estimate the last term by Hi”g respective
by ‘

2

oo 1% = [T 12 5 Jogec@1®

If we define
(27) X = X, = sup {a(z,v_v) | llve(W_, = 1} ,
then we have with (26)

2

(28) ”VQE”_l <c(p™® + K,) ”gng .

In the appendix we will sketch the proof of

LEMMA 5: Let Kp be defined by (27). Then

K, <c p‘2 [in p] .

With the help of this estimate we get combining (28) with
(25)

e, + voen, =< e {|El, + IvEll, }
+en’t PRGN

If we take p 2 Y3 h|ln h| with y3 properly chosen the
imposed conditions on p will hold and the coefficient of
”2"2 in the last inequality is smaller than 1 . Remember-

ing the meaning of E =u - U, we get
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IEMMA 6: 1If the parameter p in the weight-factor u 1is
connected with h by o 2y, h|in nlt/2 then

(29)  fiziy + lvgly s c ot {lu-xi, + v}
X€8,,

5. Lm;error—estimates

Let us now assune that the solution u of the bound-
ary value problem (1) has bounded second derivatives. Then

inf  Ajlu-xl, + llv(u-x)l
xeS,, { 2 l}

The point x in g 1is now chosen to be in a

o
L€ Ph with

IVQ! = vé(x
ll ”_.ch I ( O)I
Then we have

| B gs!
logly = o 3 losly

=0

and therefore from (29)

2
logl, =cn [inn] efuly
=00 =00

Because of e = E - 3§ we have got

THEOREM 4: If u € W5 then

, 2
lo(u-y)lip <ecn [1nn] |5l
00

in

Lo
e we

In order to get an error estimate for Lo

conslider a Ao € rh with
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”.“L = !M”L (/\ ) .
oo =o'\ ‘o

Since & 1s linear in Ao we find with Krcab - ;zn'lh -

(30) iz, =ecn? [ 8® ax
r

Now let w € H, be the solution - compare with (23) - of

-2
(31) - vo(w) = {g 2 elsin “r

By arguments similar to those on pp. 8,9 we come to

07 [ &% ax
KI‘

- c n? J
K

a(3,w-x) - a(E,w-X) + a(E,w)

]

EZ ax +

A
B

S 2
ch {nvznl + h‘v}_i_ul} lo"wii_,

+

and using (29)

- c 2 2
(32) 0% [[ 4% ax s ¢ n® |1n n| /2 HVQEMLOo v wll_; -
K
r

Using the counterparts of Lemmata 4 and 5 for the function
w defined by (31) we get

livgﬂﬂ?l <c o n7t | &
fr

and therefore we derive from (32)

n=? ff 22 dx < c n* |1n h]2 Hvagﬂi .
K, -
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In connection with (30) we have
Theorem 5: If u € wi then

lz-wgll, s en® finn] ofull, .

6. Appendix: Proof of Lemma 5
There exists (at least) one solution w € H, witn
I 2
a(_v_q_’_"‘_f) =K Iava(‘ﬁ)”__g .

For any v € 52 the variational eguations

kK [ ¥ (o) (v0(x)) ax

a(w,v)

hold. Since

- H w(ve(v) ax

a(w,v)

and vo(v) € L, is arbitrary the function uw satisfies

(33) —vo(w) = Au"2 w

with A = K'1 . In order to estimate K we need a lower

bound of the eigenvalues of (33). Multiplication of (33)
with w and integration gives

K="= fwl®, /atww) .

Because of Korn's inequality we have

A

1

and the right hand side is bounded up to a factor by

K <c sup {Iull®, | fiowl

7 [T o i |
(34) K = sup {HWH%Q | w e wé A llow]] = 1} .
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The extremal function w of (34) is the solution of

(35) -t o= X ulw

with X = f’l being the smalles eigenvalue. Because of

the maximum principle w as well as -Aw are not‘negatﬂa.
From this the monotony of K with respect to the domain
follows: Let Ql s 02 be two domains and Kl’ Ké be the
corresponding values (34). If Q, € q, then Kl S'fg .
Now let Q Dbe the circle with center X5 and radius

£ = diam (Q). Then Qc § and it suffices to bound the
corresponding value of K . Since n depends only on
Ix-xol and w 2 O there is a solution of (34) depending
also only on |x-xol (actually the smalles eigenvalue is
simple). Therefore problem (35) can be handled as
l-dimensional. By direct computation then we get the bound
for ﬁ and hence for K given in Lemma 5.
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