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Introduction 
 
Thermodynamics is unique among physical and chemical descriptions of our 
surroundings in that it does not rely on a detailed knowledge of any interior structure of 
the systems1 to which it pertains but rather treats such systems as “black boxes” whose 
equilibrium states are determined by the surroundings with which they can coexist and 
which can be described by a few parameters. This feature assures that the theory holds 
true when the system is a collection of molecules, or a beaker of water, or a black hole. 
Einstein expressed this feature of thermodynamic theory in his classic quote: 

"Thermodynamics is the only physical theory of universal content which, within 
the framework of the applicability of its basic concepts, I am convinced will never 
be overthrown." — Albert Einstein 

Foremost among these basic concepts is the notion of equilibrium, the situation where the 
state of the system does not vary noticeably in time. The “noticeably” in the previous 
sentence has two complications. The first is that if this system were to be cut off from its 
surroundings the state would remain the same. This distinguishes equilibria from steady 
states. The second is the fact that the notion of equilibrium is associated with a particular 
time scale. Over larger periods of time, any system will eventually evolve until the final 
dead state of 56Fe is reached through nuclear transformations. 
                                                
1 In standard presentations of thermodynamics (see for example [2, 5]), the term 
thermodynamic system is universally used. In order not to deviate from this established 
usage we have retained the expression here in spite of the collision of meanings of the 
overloaded term system in this handbook. Every occurrence of the term system in this 
chapter is to be taken in the thermodynamic sense. 
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As an example, consider a carbon filament suspended in air. On a human timescale, that 
carbon filament will be in equilibrium thermally with the air surrounding it while 
retaining its chemical integrity as free carbon. On a much longer timescale, it would also 
achieve chemical equilibrium with the oxygen of the surroundings to form CO2. If we 
were to pass an electric current through the filament, it would heat up and glow and 
appear not to change over many minutes. While this would be a steady state on this 
timescale, it is not equilibrium since when we stop the current, the state changes to a 
lower temperature. 
 
 
A Historical Introduction to Thermodynamics 
 
Thermodynamics began with the development of early theories of heat and mechanics. 
The analysis was primarily motivated by an economic impetus: the newly invented steam 
engine. Carnot’s [1] great accomplishment was to show that the conversion of heat into 
work has limitations set by what we today view as a “no free lunch” principle: one cannot 
extract more work from an initial configuration of states of a collection of 
thermodynamic systems than it would take to restore those systems to such initial states 
after the work was extracted (see for instance [2]). This is often stated as the impossibility 
of a perpetual motion machine of the second kind [2] since it is the essence of what we 
today call the second law of thermodynamics. It predates the first law by about 25 years. 
 
The first law of thermodynamics also can be stated as a “no free lunch” principle: we 
cannot get more work out of a system than the change in its internal energy. More 
commonly however, the first law is stated as a conservation law which, historically, 
combined the two separate conservation laws for heat (caloric) and mechanical energy [3] 
into one conservation law for a quantity called internal energy whose change is defined 
by 
 
   QWU +=! ,      (1) 
 
where U is the internal energy, W is the work done on the system and Q is the heat added 
to the system. The fact that this defines a conserved quantity is a consequence of an 
empirical observation – a given amount of work turned into heat by friction always 
produces the same amount of heat. (Here as well as in the following we only consider the 
exchange of heat and work with the surroundings except where explicitly stated 
otherwise for simplicity.) Since heat and work are conserved in processes where no 
interconversion takes place, this means that internal energy U will be conserved even in 
processes including such conversions. The fact that U is a function of state is not obvious 
but requires an assumption to this effect. It is physically stated in terms of cyclic 
processes, i.e. processes in which a system starts and ends in the same state. For such 
processes, the work produced by the system to the surroundings must equal the heat 
withdrawn from the surroundings. A Carnot cycle, and a Stirling cycle [4] are examples 
of such cycles. 
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Energy has become firmly rooted in our language and intuition, and the conservation of 
this energy, as stated by the first law of thermodynamics, is so widely applied that the 
subtleties associated with it have faded from the collective consciousness. The second 
law on the other hand carries a great deal of subtlety. It is associated with a far lesser 
known quantity called entropy that most people, even many scientists, find difficult and 
abstruse. The deeper meaning of the second law is a unidirectionality associated with 
physical processes and as such occupies a unique and important position among physical 
laws. All other physical laws view a process and its time reversed version as equally 
acceptable or unacceptable on physical grounds. The second law of thermodynamics 
asserts that only one direction is physically possible – unless of course the process is 
reversible, which is only an ideal abstraction. The second law is associated with the 
increase of entropy whose changes are defined by 
 
   T/QS rev!! = .     (2) 
 
Here ΔS is the increase of entropy of a thermodynamic system at temperature T when the 
amount of heat ΔQrev is added reversibly. Intuitively, the construction of entropy (see [5]) 
expresses the unidirectionality of transport, notably of heat, between two systems, from 
higher to lower temperature. The mathematical theory of thermodynamic systems focuses 
on one such system, a thermodynamic system, and describes geometrically the set of 
equilibrium states it can have. The allowed modes of interaction with the surroundings 
define the equilibrium. Important for this perspective was a far subtler form of the second 
law introduced by Caratheodory [6], which asserts that arbitrarily close to any 
equilibrium state of a system there exist states that are not accessible without the 
transport of heat out of the system. Exchange of other quantities like work and mass can 
occur freely. 
 
 
Definitions and Axioms 
 
A simple thermodynamic system is a homogeneous macroscopic collection of 
components. The system is treated as a black box and its state is describable by a small 
number of macroscopic parameters, typically its energy, entropy, volume, and particle 
number, dictated by the surroundings with which it coexists. However, not all of these are 
necessarily independent. A simple single phase system consisting of n–1 components has 
n independent parameters, called thermodynamic degrees of freedom. Parameters in 
excess of this will be interdependent. Simple thermodynamic systems may interact with 
one another to form a non-uniform thermodynamic system. 
 
Such interactions between systems and between systems and the surroundings occur 
through walls which are constructed to allow passage of certain quantities. All other 
exchange is blocked. An isolated system has no exchange with its surroundings, i.e. its 
volume, energy, particle number etc. are fixed. An adiabatic wall allows passage of only 
volume (e.g. by moving a piston i.e. exchanging work, but no particles). A diathermal 
wall allows in addition passage of heat. Similarly, a semipermeable wall further allows 
passage of specific types of particles. 
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By selecting a proper wall, desired standard processes are allowed. Thus an adiabatic 
wall between a system and its surroundings allows only adiabatic processes, i.e. 
processes where no heat is exchanged with the surroundings and production of work 
therefore must be accompanied by a decrease of the internal energy. A diathermal wall 
permits isothermal processes at the temperature of the surroundings. Here work produced 
is compensated by influx of heat, keeping the internal energy fixed. Semipermeable walls 
may allow e.g. passage of oxygen, sodium ions, water, and/or glucose. Inside a system 
coupled to its surroundings through such a wall, chemical reactions may proceed while 
exchanging reactants and products with the surroundings. 
 
Thermodynamic cycles are made up of sequences of such standard processes. For 
example, a Carnot cycle involves a system (called the working fluid) which undergoes a 
cyclic process by following a sequence of standard processes while connected to a 
corresponding sequence of surroundings. The sequence followed is: isothermal (hot) – 
adiabatic – isothermal (cold) – adiabatic. Systems with ongoing chemical reactions may 
steer such reactions through the permeability of the wall and by controlling the work and 
heat flows (isothermal, adiabatic, isobaric etc.). 
 
The Carnot cycle also illustrates another important version of the second law – the fact 
that the conversion of heat to work is a limited affair in which only a certain fraction of 
the heat can be captured as work. How large a fraction can be converted is the so-called 
Carnot efficiency which depends on the temperatures of heat sources and sinks available 
for contact during the isothermal branches of the cycle. Let’s look at a simple reversible 
Carnot heat engine operating between a hot heat reservoir at temperature TH and a cold 
reservoir at TL. The engine absorbs the amount of heat QH from the hot reservoir 
accompanied by the entropy influx SH=QH/TH. Since the engine operates in a cycle and 
thus cannot accumulate entropy, it must somehow dispose of this much entropy. The 
work produced does not carry any entropy, so the only available sink is the cold heat 
reservoir. However, entropy and heat are transported together, so discharging SH must be 
accompanied by a discharge of heat equal to QL=SH×TL. The fraction of heat turned into 
work in this reversible machine is thus (QH–QL)/QH = 1–TL/TH, the famous Carnot 
efficiency. A realistic irreversible engine will of course produce even less work. Note that 
the engine cannot convert all incoming heat into work, not for energetic reasons but due 
to entropy constraints. 
 
In all cases the quantities exchanged belong to a class of variables called extensive, i.e. 
variables which are additive when systems are merged (energy, entropy, volume, particle 
number). The corresponding intensive variables (temperature, pressure, chemical 
potential) are not additive over sub-systems but describe possible gradients. At 
equilibrium either between systems or between a system and its environment these 
intensive variables will be the same in all the connected systems. Thus extensive 
variables scale with the power 1 of the size of the system considered, the intensive 
variables with power 0. 
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Using the definitions above, we are in a position to state the axioms in their traditional 
geometrical form [7]. 
 
Axiom 1: For any thermodynamic system, there exists an extensive function of state U 
called the internal energy. 
 
Axiom 2: For any thermodynamic system, there exists an extensive function of state S 
called the entropy. The entropy is a concave function of any set of complete independent 
extensive parameters of the system ),,,,,,,,( 21 KK MPNNNVUfS k= , 
where the arguments are the internal energy U, volume V, particle numbers N of the k 
molecular species, polarization P, magnetization M, as well as any other relevant 
extensive quantity. 
 
These two axioms are essentially the first and second laws expressed in terms of a single 
system. The geometrical picture that goes with this formulation is the concave surface 
S=f(U,V,…) in n+1 dimensions for the n degree of freedom system. The sections below 
present a modern differential geometrical alternative to this picture including a rigorous 
proof of Caratheodory’s principle. The presentation is perforce rather sketchy in that it 
provides the bare minimum of examples, although all the definitions are carefully stated 
and rigorous. More details can be found in any modern differential geometry book [8, 9]. 
 
 
Thermodynamic States, Coordinates, and Manifolds 
 
Roughly speaking, a manifold is a coordinatizable set. More correctly, it is a set equipped 
with real-valued coordinates which uniquely label the elements and whose values change 
in a “continuous” fashion. Historically, manifolds arose as a collection of variables 
subject to equations. Early examples were well studied by the founders of differential 
geometry as curves and surfaces [10]. Going to higher dimensions was an obvious and 
yet conceptually difficult leap that required a higher level of abstraction [11]. Spaces of 
states of dynamical systems were one strong impetus towards such abstraction. 
Mechanical systems, such as compound pendulums, provided ready examples. The set of 
equilibrium states of a thermodynamic system is yet another example. This is the 
example for the present chapter. The set of equilibrium states of a thermodynamic system 
was also conceptualized initially as a surface; James Clerk Maxwell had a plaster model 
of the equilibrium states of water constructed and sent it as a present to Josiah Willard 
Gibbs (see Figure 1), the pioneer responsible for the dramatic shift in point of view of 
thermodynamics from a theory of processes to a theory of equilibrium states [3]. 
 



 6 

 
 
Figure 1.  Plaster model of the equilibrium states of water constructed by James Clerk 
Maxwell and sent as a present to Josiah Willard Gibbs. (© The Cavendish Laboratory, 
University of Cambridge) 
 
As illustration, consider an ideal gas. There are many functions of state for the gas: 
pressure p, temperature T, volume V, energy U, entropy S, mass M, density ρ, heat 
capacity Cv, … The variables on this list are not independent in the sense that for a 
particular ideal gas, once we know two of them, the others are determined. In usual 
parlance, this means that the dimension of the manifold of equilibrium states is two2 . 
 
We now proceed on a more formal level. Recall that a topological space (M,T) is a set M 
and a collection T of subsets of M that are designated as open. All that is required here is 
that the collection T be closed under unions and intersections, the latter only over finite 
subcollections of T. We say that T defines a topological structure on the set M. Such 
structure is needed to be able to talk about the continuity of functions defined on M. In 
practice, the coordinates defined by our observables define this topology.  
                                                
2 This at least is the situation described in the early chapters of thermodynamics books 
and traditional physical chemistry books. In fact this list of functions of state gets 
expanded once the reader hits the chapters on the behavior of the entity in the presence of 
electric and magnetic fields. In that case the polarization D, and magnetization M, of the 
gas also play a role and the entity is said to have more degrees of freedom. The 
corresponding mathematical object, the manifold, has to have a higher dimension equal to 
this number of freedoms since it takes that many functions of state to uniquely specify a 
state. 
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A manifold (M, {ϕk, kεK}) is a topological space equipped with a collection of coordinate 
functions ϕk each of which establishes a topological isomorphism between an open set Ok 
in M and an open subset Uk of Rn, such that the open sets cover M, i.e., such that 
   

  

! 

U
k"K

O
k

= M . 

A topological isomorphism is an invertible function, which is continuous and has a 
continuous inverse. In simple terms this assumes that, at least locally, we can 
coordinatize the set M and that nearness in the sense of approximately equal coordinate 
values implies nearness in M. One final condition is needed: wherever there are two or 
more possible sets of coordinates, the transition between the two sets of coordinates must 
be well behaved. Formally, if for some j and k in K, 

! 

Oj "Ok #$, then the function 

  

! 

" j o"k

#1 is smooth on 

! 

"k (Oj #Ok )$ R
n . “Smooth” is a nebulous word and serves to 

define the type of manifold under consideration; for example, smooth can mean 
“continuous”, or “differentiable”, or “twice differentiable”, or “infinitely differentiable”, 
or “analytic”. The standard meaning of smooth for the manifold of equilibrium states of a 
thermodynamic system is piecewise analytic3. Note that if the manifold is a connected 
set, the overlap condition requires that the dimension of the images of all the coordinate 
charts be the same value n. This number is called the dimension of the manifold. 
 
The manifold that we concentrate on below is the manifold of equilibrium states of a 
thermodynamic system. The dimension of this manifold is what is known as the number 
of degrees of freedom of the system. This is the number of independent parameters that 
need to be specified in order to reproduce the experimental realization of the system. This 
often depends on the number of external (environmental) degrees of freedom we are able 
to vary. If we only vary pressure and temperature, we only get two degrees of freedom. If 
we also vary (say) the magnetic field surrounding the system, we get a third degree of 
freedom, the magnetization M. The number of degrees of freedom also depends on the 
time scale on which we desire to view the system. For example on a certain time scale we 
can take the amount of oxygen and iron in the system as independent variables. On 
another (slower) time scale we could assume this degree of freedom to be set by chemical 
equilibration to form iron oxide. On intermediate time scales comparable to the relaxation 
time of this degree of freedom, thermodynamic arguments, strictly speaking do not apply. 
This state of affairs is usually referred to as the assumption of separability of time scales 
[5]. 
 
 
Manifolds and Differential Forms 
 
The abstract formulation of differential geometry via the theory of manifolds [8, 9] gives 
an ideal tool for studying the structure of any theory and this has been one of its primary 
roles. Such structure is typically specified by additional properties beyond 

                                                
3 Recall that a function is analytic iff it has a convergent power series. Piecewise analytic 
is needed here since different analytic forms correspond to different phases (e.g., liquid, 
solid, gas) of the entity. 
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“coordinatizability”. To make this possible, we need a number of concepts, which 
comprise the standard baggage of the theory: tangent vectors, differential forms, wedge 
products and submanifolds. 
 
A path4 in a manifold is a differentiable one-parameter family of points defined by a 
continuous function γ that maps an interval in the real numbers to points in the manifold. 
In classical thermodynamics books, such paths are called quasistatic loci of states since 
every point on the path is an equilibrium state. Finite rate processes do not quite proceed 
along such paths since equilibrium is only approached asymptotically. Again the notion 
of separability of time scales comes to the rescue. A quasistatic locus is a good 
representation of a process that occurs on time scales that are slow compared to the 
equilibration time of the system. 
 
A tangent vector at a point is an equivalence class of paths that “go in the same direction 
at the same speed”. We may think of a tangent vector at a particular state as an n-tuple 
of time derivatives of the coordinate functions at the point. Thus a tangent vector 
represents any path that has the same instantaneous values of all these derivatives. The 
set of tangent vectors at a point is a vector space. This comes naturally through the 
identification with n-tuples of time derivatives. Note that by the chain rule a tangent 
vector assigns a time derivative to any function of state not just the coordinate functions. 
For example, if f is any function of state of a fixed quantity of some ideal gas, then the 
tangent vector (dp/dt, dT/dt) assigns to f the time derivative 
 

   
dt

dT

T

f

dt

dp

p

f

dt

df

!!

! !
+= .    (3) 

 
An equivalence class of paths corresponding to one tangent vector are exactly those paths 
along which a set of coordinate functions change at the given rates, e.g., (dp/dt, dT/dt) in 
the above example.  
 
A cotangent vector at a point (p,T) is an equivalence class of functions at the point where 
now two functions are deemed equivalent if their rates of change are the same along 
every tangent vector at the point. The coordinate expression of a cotangent vector is what 
we would normally associate with the gradient of any one of the functions in the 
equivalence class, i.e. each equivalence class is just the set of functions whose gradient 
vectors at the point are equal. There is good reason to identify this at a particular point 

),( 00 Tp  with the differential of any one of the function in the equivalence class and write  
 
  

! 

dF = fdp+ gdT       (4) 
 
for the cotangent vector corresponding to the function F. Such functions exist for every 
pair of numbers f and g, e.g. F=fp+gT. It follows that cotangent vectors also form a vector 
space of dimension n and in fact this vector space is the dual of the tangent space – hence 

                                                
4 Sometimes this is called a parameterized path. 
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the name. The duality means that each cotangent vector may be thought of as a linear 
map of tangent vectors to real numbers. In coordinate form, this means that each tangent 
vector is identified with a row n-tuple and each tangent vector with a column n-tuple. The 
assignment of a real number to a vector and a covector at a point is by means of the chain 
rule (3) where f is any function in the equivalence class represented by the cotangent 
vector and (dp/dt, dT/dt) is taken along any path in the equivalence class represented by 
the tangent vector. 
 
In summary, we have defined the tangent space and the cotangent space of a manifold at 
a point. The tangent space is the set of tangent vectors, which we may think of as 
infinitesimal displacements. Formally, we defined them as an equivalence class of curves 
that go in the same direction at the same speed. Dual to the tangent space we have the 
cotangent space, the set of all covectors at the point. These were defined as an 
equivalence class of functions whose differentials are equal at the point of tangency. 
 
With the definition of tangent and cotangent vectors come the notions of vector field and 
differential form. These are just smooth choices of a tangent vector or, respectively, a 
cotangent vector at each point on the manifold. We choose to follow the long standing 
tradition in thermodynamics which focuses the development on differential forms. 
Because of the duality, most things can be done with either differential forms or vector 
fields.  
 
The reader should pause here to note that our definition of a differential form is merely a 
modern statement of the traditional notion of a differential form. In coordinates, such 
forms all look like 
 
  

! 

" = f (p,T)dp + g(p,T)dT      (5) 
 
with f and g now functions of state. Examples of important differential forms in classical 
thermodynamics are heat Q and work W. Note that while the differential of a function is a 
differential form, not all differential forms are differentials of functions although any 
form may be written as a linear combinations of differentials of state functions5.  
 
 
Pfaffian Equations 
 
The first law of thermodynamics in its familiar form asserts that there exists a function of 
state U = internal energy such that its differential is equal to 
 
  QWdU +=        (6) 

                                                
5 Note that while any given cotangent vector (necessarily at one point) is equal to the 
differential of many functions, a differential form specifies a cotangent vector at each 
point. Thus for a differential form to be the differential of a function is asking the same 
function to match a smoothly defined cotangent at all points and this in general is not 
possible.  
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When coordinate expressions for the differential forms of heat and work are included, 
this equation becomes a Pfaffian [6] partial differential equation in any coordinate 
system. The solutions of such a Pfaffian equation are submanifolds. Since we will be 
needing solutions of such equations, we sketch the main results concerning such 
equations: the theorems of Frobenius and Darboux. To motivate the machinery needed, 
consider the following.  
 
It turns out that once we require one equation among the differential forms on our 
(sub)manifold, other equations logically follow. In particular, taking the differential of 
both sides of such an equation must also hold. As an example, consider equation (6) with 
the usual elementary form of the coordinate expressions substituted in for heat Q and 
work W. Then it follows that  
 
 dVdpdSdTpdVTdSdQWddUd !"!="=+= )()()(   (7) 
 
In fact this equation, though hardly recognizable as such, is equivalent to the Maxwell 
relations [7]. To make sense of this equation, we need definitions of the exterior 
derivative operator d(.) and the wedge product ! . 
 
The product of differential forms is indispensable for multiple integration and the reader 
likely saw such products in a calculus course. Alas, these products are all too often 
handled without comment and by mere juxtaposition. This ignores the orientation implied 
by the order of the factors. We thus adopt the symbol 

! 

" (wedge) for the product and add 
the requirement of antisymmetry 
 
   dxdydydx !"=!      (8) 
 
The natural thing to do with a differential one-form is to integrate it along a path to get a 
number 
 

  W=

! 

" =
#

$ f (p(t),T(t))
dp

dt
+ g(p(t),T(t))

dT

dt

% 

& 
' 

( 

) 
* 

( p1 ,T1 )

( p2 ,T2 )

+ 

, 
- dt ,  (9) 

 
where ω is the 1-form in equation (5). Similarly, the natural thing to do with 2-forms is to 
integrate them along a two dimensional region and so on for higher forms. Note that the 
set of k-forms again forms a vector space at any point. The dimension of this vector space 

is 

! 

n

k

" 

# 
$ 
% 

& 
' . To get a feel for the concept just introduced, consider the first 2-form in equation 

(7) above. Expanding dT in the coordinates (S,V) results in 
 

 dSdV
V

T
dSdV
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T
dS

S

T
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(

(  (10) 
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where we have used one consequence of antisymmetry: 

! 

dS"dS = 0 . Performing a similar 
expansion of the second 2-form in equation (7) gives 

 dSdV
S

p

V

T
dVdpdSdTdUd

VS

!""
#

$
%%
&

'
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#

$
%
&

'

(

(
+"

#

$
%
&

'

(
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=!)!=)( .  (11) 

 
As a second illustration of what the mathematical machinery of differential forms and 
wedge products can do for us, consider the product of two differential forms du and dv 
where u and v are functions of x and y. It then follows that 
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x

v
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 (12) 
 
Note that the coefficient of 

! 

dx "dy  is exactly the Jacobian determinant of the coordinate 
change from (x,y) to (u,v). It follows that the usual change of variable formula for 
multiple integrals is just a consequence of the fact that we are really integrating a wedge 
product. The machinery of k-forms also gives a definition of functional independence. 
We say that k functions 

! 

f
1
, f

2
,..., fk  are independent in a region iff 

! 

df
1
"df

2
" ..."dfk # 0. 

 
Equipped with the wedge product, the set of differential forms on a manifold have an 
algebraic structure known as a ring. The interesting subsets in rings are ideals – subrings 
such that the product of any element in the ring with an element of the ideal is an element 
of the ideal. The standard elementary example of a ring is the set of integers. Ideals in 
this ring are of the form “all multiples of k” for some integer k. The notion of ideal turns 
out to be central to characterizing which differential forms can be solutions of systems of 
Pfaffian equations. By rearranging the equation so all terms are on one side, we may view 
each equation as a condition that a differential 1-form vanishes on the solution 
submanifold. For example, instead of writing the first law as in equation (6), we could 
write 
 
   0=!! QWdU      (13) 
 
The advantage of writing it this way comes about from the fact that zero times anything 
will still give zero. It follows that any forms that have a factor that should vanish on our 
solution must still vanish on our solution. In algebraic jargon, this means that the set of 
differential forms that vanish on a submanifold comprise an ideal. Not all ideals work 
however; we are missing the condition that these be differential ideals, i.e. that they be 
closed under the action of taking differentials. To make sense of this, we need the 
extension of the exterior derivative operator d(.) to higher forms. This is obtained by the 
following three requirements: 

A. for functions (0-forms) d gives precisely the 1-form which is the differential of 
the function. 

B. d(d(anything))=0 
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C. d obeys the product rule 
!"!"!" ddd

K #$+#=# )1()(    (14) 
where !  is any K-form and !  is any L-form. To illustrate this definition, we calculate 
the exterior derivative of a general differential 1-form in two variables 
 

.=                                       

)),(),(( 22

dydx
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f
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 (15) 

As a check, note that this automatically vanishes as required by condition A. if the form 
we start with happens to be exact. 
 
As a second illustration, we note that applying condition B. above in equation (11) 
implies one of the Maxwell relations  

  
VS S

p

V

T
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'       (16) 

Note that this followed from equation (7) by expanding all the terms in the coordinates dS 
and dV. Similar expansions of equation (7) in other coordinates give the other Maxwell 
relations, establishing our claim that equation (7) is really all of the Maxwell relations 
combined into one coordinate-free expression!  
 
At last we are in a position to state the definitive theorem concerning the solution of 
Pfaffian systems: Frobenius’s theorem. The theorem says that associated with any given 
system of Pfaffian equations  
  Jjj K,1,0 ==! , 
where each j

!  a differential 1-form on a manifold M, there is a differential ideal of 
forms generated by the j

!  which must vanish on any solution of this Pfaffian system.  
Specifically, it is an ideal in which the exterior derivative of any form in the ideal is still 
in the ideal.  
 
The computational implications for a single Pfaffian equation 

! 

" = 0 are the following. 
Examine the sequence  

! 

",

d",

"#d",

d"#d",

"#d"#d",

d"#d"#d",

"#d"#d"#d",

...

    (17) 

On any solution of 

! 

" = 0, every one of these differential forms must vanish. Some of 
them are identically zero on the entire manifold. Once one is identically zero all 
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subsequent terms are identically zero. Suppose that the first identically zero term occurs 
at position r. The number r expresses something fundamental about the form ω: r is the 
minimum number of variables that can be used to express ω. This is the classic theorem 
of Darboux. To state it carefully, we need to distinguish the cases where r is even and 
where r is odd. The theorem states that there exist smooth independent functions 

! 

x
1
,x

2
,...,xm,y1,y2,...ym,z  such that for r =2 m +1, 

! 

" = dz + yidxi
i=1

m

#       (18) 

while for r = 2 m, 

   

! 

" = yidxi
i=1

m

# .      (19) 

Furthermore, the dimension of the maximal solutions of 

! 

" = 0 is m.  
 
We do not here present proofs of the theorems of Frobenius and Darboux but make use of 
them to understand the implications for theory building. We hope that the development 
above makes their validity easy to accept. Our purpose here is to present the 
mathematical structure of thermodynamic theory and this is best understood with these 
facts in hand. The proofs can be found in standard texts on differential geometry [8, 9] 
and occasionally even in books on theoretical physics [6]. 
 
 
Thermodynamics – The First Law 
 
Let us examine the structure of thermodynamic theory with the machinery above. The 
first law, as usual, is the Pfaffian differential equation (10) 
 
   0=!! QWdU      (20) 
 
Let us calculate the parameter r for this form in the case when pdVW !=  and 

! 

Q = TdS . 
Viewing for the moment p and T as independent variables, the sequence above becomes 
 

! 

dU + pdV "TdS

dp#dV " dT #dS

"TdS#dp#dV " pdV #dT #dS

"2dp#dV #dT #dS

0

  (21) 

 
We thus conclude that r = 5 and thus the maximal solutions of (20) will be two 
dimensional. Robert Hermann turned these facts into a mathematical definition [12]. 
Hermann defined an n-degree of freedom thermodynamic system as a maximal 
submanifold of a 2n+1 dimensional manifold equipped with a differential form Ω such 
that r(Ω) = 2n+1, i.e. such that 

! 

"# (d")
n
$ 0 .  
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A 2n+1 dimensional manifold equipped with a differential form Ω such that 

! 

"# (d")
n
$ 0  is called a contact manifold and the form 

! 

" the contact form. Hermann’s 
definition can be restated in the following form: a thermodynamic system is a maximal 
solution of 

! 

" = 0 , where 

! 

" is a contact form. The name “contact” has some significance; 
contact forms arose in mechanics to deal with surfaces rolling on each other [13]. Also in 
thermodynamics we can interpret the form 

! 

" as coming from the coexistence of a system 
with its environment. By Darboux’s theorem, there exist coordinates that make 

! 

" assume 

the canonical form 

! 

" = dz + yidxi
i=1

m

# . For simplicity we will carry out our discussion for 

the explicit two dimensional case 

! 

" = dU + pdV #TdS . The parameters (p,T) can be 
thought of as parameters describing the environment of the system. At equilibrium, the 
system chooses its state to coexist with this (p,T). In the geometrical picture introduced 
by Gibbs wherein we view the system as the surface of the function U=U(V,S), the 
normal vector describing the tangent plane to the surface is (–1, –p, T). As p and T are 
changed, this tangent plane rolls on the surface in much the same way that mechanical 
cogs roll on each other. Moving our perspective to the space of the five variables 
(U,p,V,T,S) reveals the essential nature of this coexistence.  
 
The functions (U,p,V,T,S) are by no means the only contact coordinates, i.e., the only 
coordinates which make 

! 

" assume the form in equation (18). For example, the classical 
Legendre transformation always result in contact coordinates  
 
 

! 

" = dH #Vdp#TdS = dG #Vdp + SdT = dF + pdV + SdT   (22) 
 
where H, G, and F are the enthalpy, the Gibbs free energy, and the Helmholtz free 
energy. Their usefulness derives from exactly those situations when the environment 
specifies the coefficients in front of the differentials, i.e., the ‘y’ variables from 
Darboux’s theorem. This further justifies the view that the ‘y’s describe the environment, 
the ‘x’s describe the system, and ‘z’ characterizes the contact. 
 
Requiring a coordinate change to preserve the appearance of 

! 

" shown in equation (18) 
allows many more coordinate changes. These are generalized Legendre transforms [14] 
and form an infinite dimensional group known as the contact group [15]. Its use to date 
has been limited by the paucity of exotic environments. Its use has been demonstrated for 
a system inside a balloon whose pressure and volume obey a definite relationship 
although neither pressure nor volume are constant. It is potentially useful for biological 
systems with complex constraints.  
 
Besides possible uses of these generalized Legendre transforms, the first law of 
thermodynamics in the form 

! 

" = 0  gives a deeper perspective regarding the 
thermodynamic method. It shows us that this method may be thought of as a theory for 
“viewing” the inside of black box systems [14]. We manipulate n parameters y in the 
environment and observe the changes in our black box system as it moves to states of 
coexistence. In this way we find a thermodynamic theory of the black box. The form 

! 

" 
chooses the particular x and z that must go with the y’s describing the system’s 
surroundings. 
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Thermodynamics – The Second Law 
 
In the context of differential forms, the natural choice for the second law of 
thermodynamics is Caratheodory’s form: the heat form Q has an integrating factor. In 
terms of the machinery above, this is most naturally stated as 

! 

Q"dQ = 0 [16] which, 
according to equation (19) with m=1 says that Q must be of the form TdS.  
 
This way of stating the second law completely omits the phenomenology. Caratheodory’s 
original statement is that any state of an equilibrium thermodynamic system has 
arbitrarily close states that cannot be reached by adiabatic processes, i.e. along states with 
Q=0. Physically, these inaccessible states correspond to the states that we would reach by 
removing a little bit of heat from our system. Such states cannot be reached by relaxing 
internal degrees of freedom or adding or extracting work; these mechanisms could only 
add heat (through friction). Caratheodory’s work on Pfaffian equations shows that this 
condition is equivalent to the condition of the existence of an integrating factor. For 
completeness, we now present a direct proof of this fact following Pauli [6]. We begin by 
making use of Darboux’s theorem to chose coordinates which make the differential form 

for heat take its simplest guise !
=

+=
m

i

iidxydzQ
1

, or !
=

=
m

i

iidxyQ
1

 where the functions 

! 

x
1
,x

2
,...,xm,y1,y2,...ym,z  ( respectively 

mm
yyyxxx ,...,,,...,,

2121
 ) are independent. For 

convenience in the present proof, we combine the two cases by setting  

  
1

1
1

1

+=

=

=

+

+

mk

y

xz

m

m

       (23) 

in the first case and mk =  in the second case, making 

  !
=

=
k

i

iidxyQ
1

.       (24) 

 Now consider any equilibrium state 0
s with coordinates 

),,,,,,,,( 000

2

0

1

00

2

0

1 wyyyxxx kk KK , where w represents any additional independent 
coordinates which do not appear in Q . Consider any nearby state 1

s  with coordinates 
),,,,,,,,( 111

2

1

1

11

2

1

1 wyyyxxx kk KK  and let  
  ),,,()( 010

1

1

1

0

1

1

1

01

kk
xxxxxxxxx !!!=!=" K .  (25) 

As we will show below, there exists an adiabatic path, i.e., a path !  such that 0=!" Q  , 

from 0
s  to 1

s  provided there exists a non-zero k-tuple *),*,*,(* 21 kyyyy K=  which is 
orthogonal to x! . This is indeed the case for any x!  unless 1=k , i.e., unless Q  is of 
the form 

11
dxy  in which case Q  has an integrating factor 

1
/1 y . 

 To see the existence of an adiabatic path for the case where a non-zero y* exists, 
we splice together three partial paths (see Figure 2) 
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!
"

!
#

$

%<

%%

<%

=

13/2)(

3/23/1)(

3/10)(

)(

3

2

1

tt

tt

tt

t

&

&

&

&     (26) 

with 
 ))(),*(3,()( 010000

1 wwtwyytyxt !+!+=" , 
 ))(*,),)(3/1(3()( 010010

2 wwtwyxxtxt !+!!+=" ,  (27) 
 ))(*),)(3/2(3*,()( 01011

3 wwtwyytyxt !+!!+=" . 
Portions 

1
!  and 

3
!  are adiabatic since kidx

i
K,1,0 == , while 

2
!  is adiabatic, since 

along 
2
! ,  

( ) 0*)(**
1

01

1

=!"=#
$

%
&
'

(
)== **

==

dtxydtxxydt
dt

dx
yQ

k

i

iii

k

i

i
i .  (28) 

 

 
 
Riemannian Structure 
 
In addition to the contact structure 

! 

" and the heat form Q, thermodynamic systems 
possess another structure that can be attributed to the specialness of extensive 
coordinates, i.e. coordinates that scale with the size of the system. In all such coordinates 
the second derivative matrix of the entropy S with respect to a set of independent 
extensive variables (say, U,V) defines a Riemannian structure on our manifold. This 
follows purely from the fact that entropy is a maximum at equilibrium and thus its second 
derivative is a positive definite symmetric matrix. For our simple two degree of freedom 
system this matrix is 
 

γ1 

γ2 

γ3 

s0 

s1 

y0 

y* 

y1 

Figure 2: The adiabatic path connecting nearby points. 
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!
!

"

#

$
$

%

&

'

'
=

2

22

0

0

V/R

U/C

)V,U(

S v

(

( ,   (29) 

 
where R is the gas constant and Cv is the constant volume heat capacity of the system. 
Such Riemannian structure associates lengths to processes. This thermodynamic length 
has been shown to be the relevant quantity in a covariant improvement to Einsteinian 
fluctuation theory [17, 18]. It can be interpreted as the “number of fluctuations” 
traversed. The statistical mechanical expression for this distance shows it to be 
mathematically identical to Fisher’s genetic distance introduced to measure genetic drift 
[19]. For thermodynamic processes in finite time, the square of the distance is 
proportional to the minimum entropy produced by traversing the process [20, 21]. 
 
 
Conclusions for Systems Biology 
 
Our presentation was an attempt to present thermodynamics in a way that starts as a 
theory about a set for which we can measure certain parameters – a manifold. The first 
law was revealed to be a statement that the theory was really applicable in any context 
where the system will choose a state once its environment is specified. For this context, 
the theory gives a constructive prescription through the postulate that the energy 
deficiency form WQdU !!=" be a contact form. The prescription defines the 
corresponding variables of the system and the coexistence function – a generalized 
thermodynamic potential. From this perspective, we see thermodynamics as a theory of 
black box systems that are characterized by the surroundings to which they equilibrate. 
 
 
References 
 
1. Carnot S, Reflexions sur la puissance motrice du feu et sur les machines propres a 

developper cette puissance, Bachelier, Paris, 1824. 
2. Pippard, AB, Elements of classical thermodynamics for advanced students of 

physics, Cambridge University Press, 1957. 
3. Tisza L, Generalized thermodynamics, Cambridge, Mass: M.I.T. Press, 1966. 
4. Keenan JH, Thermodynamics, John Wiley, 1941. 
5. Salamon P, Salamon A, Konopka AK. Chapter 1, Thermostatics: A poster child of 

systems thinking. In Konopka, AK, ed. Handbook of Systems Biology, New York: 
Kluwer, 2005. 

6. Pauli W, Lectures on Physics: Vol. 3, Thermodynamics and the Kinetic Theory of 
Gases, Cambridge, MA: MIT Press, 1973. 

7. Callen, H. Thermodynamics. New York: John Wiley and Sons, 1960. 
8. Warner, F. Foundations of Differentiable Manifolds and Lie Groups. New York: 

Springer, 1983. 



 18 

9. Bishop RL, Goldberg SI, Tensor analysis on manifolds, New York: Dover 
Publications, 1980. 

10. Eisenhart LP, A treatise on the differential geometry of curves and surfaces, Ginn 
and Company, Boston, 1909. 

11. Poincare H, Les methodes nouvelles de la mecanique celeste, Gauthier Villars, Paris 
(1892) 

12. Hermann R. Geometry, Physics, and Systems, New York: M. Dekker, 1973. 
13. Ball RS. Treatise on the Theory of Screws, Cambridge, UK: Cambridge UP, 1900. 
14. Salamon P. The Thermodynamic Legendre Transformation or How to Observe the 

Inside of a Black Box, PhD Thesis, Department of Chemistry, University of Chicago, 
1978. 

15. Salamon P, Ihrig E, Berry RS, A Group of Coordinate Transformations Preserving 
the Metric of Weinhold. J. Math. Phys. 1983; 24: 2515. 

16. Edelen, D. The College Station lectures on thermodynamics, College Station, TX: 
Texas A & M University, 1993. 

17. Diosi L, Lukacs B, Covariant evolution equation for the thermodynamic fluctuations. 
Phys. Rev. A, 1985; 31: 3415-3418. 

18. Ruppeiner G, Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. 
Phys. 1995, 67: 605–659. 

19. Salamon P, Nulton JD, Berry RS, Length in Statistical Thermodynamics. J. Chem. 
Phys. 1985; 82: 2433-2436. 

20. Salamon P, Berry RS, Thermodynamic Length and Dissipated Availability. Phys. 
Rev. Lett. 1983; 51: 1127-1130. 

21. Nulton J, Salamon P, Andresen B, Anmin Q, Quasistatic processes as step 
equilibrations. J. Chem. Phys, 1985; 83: 334-338. 


