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MATH. SCAND. 14 (1964), 213—-219

TAUBERIAN THEOREMS
FOR THE STIELTJES TRANSFORM

TORD GANELIUS

1. Introduction.

Some years ago I published [1] a remainder theorem for the Laplace
transform applicable to remainders of arbitrary order of decrease. The
estimates afforded by that theorem are known to be best possible in most
interesting cases. I only gave an outline of the method of proof which
was a development of the well-known Karamata approximation tech-
nique.

In this paper I shall apply Fourier methods to obtain a similar result
for the Stieltjes transform. The idea of the proof was given in 1962 in a
paper on Wiener’s tauberian theorem [2] and the result for the Stieltjes
transform (Theorem 2) will in fact be obtained from a general result
(Theorem 1). Among the special cases covered I ought to mention the
results of Vuckovié [4, 5]. Theorem 2 is of interest as being applicable
to the estimation of spectral functions for certain differential operators,
and I have tried to formulate it in a way suitable for these applications.

For Fourier transforms and for convolutions we use the notations

f) = ff(x) exp (—ixt)dx and Kxp(x) = fK(x—y) p(y)dy.

2. The general result.

Theorem 1 may conveniently be stated for a class of kernels defined
in the following way.

E, is a sub-set of L(— oo, ) consisting of those functions K to which there
s an entire function g of exponential type such that

g(t) = K@)~
Jor real ¢.
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As will be seen in the proof it is not necessary for our purposes that g
is entire of exponential type. It is e.g. sufficient that there is a positive
b such that g is analytic and

lg@t)| = M exp(m|t]) for Imi¢ > —b.

THEOREM 1. Let @ be a positive increasing function to which there is a
constant q so that
(2.1) Q) = ¢Qx) for v =z+1.

Let ¢ be a bounded measurable function satisfying
(22)  p)-p@) 2 —c/Q@) for 7y S & S v < z+1/Q(@),
where xy and c are constants. Suppose that K € E,. Then
Kxg(x) = O(exp(—Q(x))), x>,
implies
(2.3) p(x) = O(I/Q(x)), X —> o0,
(Obviously the only interesting cases occur if @ tends to infinity with x.)

As mentioned in the introduction this theorem is proved by the method
introduced in [2] and thus the final estimate is obtained by the inequality

v
(2.4) suplu(z)| < 80 |— inf (u(y)—u(@)) + f [4(t)| dt] ,
x zsysz+1/V v

which holds for every u € L(— o0,) and every positive V.
This formula will be applied with u = kg, where k& denotes the auxiliary
function defined by

k(z) = k(z; y,0) = exp(—Hz—y)*w?),
80 that .
k(t) = w~Y(2n)t exp (— iyt — $20~?) .

If y=K=xg, then it is easy to see (cf. [2, p. 10]) that

(2.5 E) = (ph)" (@) = [ vla) B O da,
where -
B(w; §) = (2m) [ exp(—iat) h(E—1) g(t) dt .

In the following proof O(1) always denotes a constant independent of
z, ¥, w and £ According to the definition of the class £, the inequality
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|9(¢)] £ M exp(m|t]) holds for all complex ¢. Changing the variable by
putting ¢=£ — v+ ¢y and introducing the expression for &, we get

|R(x; &) = O(1) exp(y(z—y) + 3y~ +mly| + m|&|) feXP(miTI—%rzw’z) wtdT

and, after evaluation of the integral,
|B(x; &)] < O(1) exp(y(x —y) + $y20 -2+ mly| + tm2w? + m|&]) .

In this estimate y is at our disposal and will be chosen in suitable ways.

We assume that w>1.
By putting y =w*y—m —z) we find, if x<y—m, that

|B@; £)] < O(1) exp(— by —m— o) + fmiw? + mig]) .
Another upper bound is obtained by taking y= —y,<0,
|R(x; §)| < O(1) exp(—yo(x —y —m) + tmw? +m|&]) .
Introducing these results in (2.5) we find that
|(pk)" () lexp (—m|§| — dmPw?)

y—2m~yo oo
< o(1) [ vl exp(~ dotly—m—af) dot [ Ip(@)| exp(~rala—y—m) dx]
—00 Yy—2m—yo

s 0(1)[f Iw(y—M~u)leXP(—%wZuz)du+eXP(-Q(y—2m—yo)+yo(3m+yo))]-

m+yo

To get a bound for the integral on the right we recall that y is bounded
by our assumptions. Since, for fixed positive a, it holds that

(2.6) f exp(— }o?*u?) du £ a w2 exp(— ta’w?),

a

we get by aid of (2.1) that
(pk)~ (£)] < O(1) exp(m|é|)[exp(—myow?) +exp(Im?w?—Q(y)g " )]

Choosing w?=m~2g""*">""1Q(y) we infer that there is a positive 6 depend-
ing on m, ¢ and y, such that

(2.7) (k)™ (&) < O(1) exp(m|é| —6Q(y)) -

We next turn to the first term on the right side of (2.4). We observe
that
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k()] £ 1, |k (zx)) <o forallz,
|k(z)| = exp(—}0?), [K(x)] <1 for |x—y|21.
Obviously

inf (p(v) k(v) — @(*) k(z)) 2 inf (k(x)(p(v) — p(x))) +inf (p(v) (k(v) — k(z))) .

A lower estimate of the first term on the right is obtained by taking the
sum of the (non-positive) infima for |[x—y| <1 and for |[t—y|=1. In the
second term we proceed in a similar way after application of the mean-
value theorem to the difference k(v) — k(x), but we consider the two cases
lv—y|£2 and |[v—y|=2. Assuming that 0<h <1, we find that |v—y|=2
and xSv=z+h imply |xr—y|=1. Application of the inequalities for k
and %’ just given, shows that

(2.8) inf (p(v)k(v)— (@) k()

rsvsa+h
2 inf (p(v)—g(x))—O0(1) exp(—}w?) —hw sup |p(v)|—O(h) .
xﬁgﬁg—lh lv—yl=2

Observing that
le@)! = @) k(y)| = sup|p(@) k)|,

and combining (2.4), (2.7) and (2.8) we obtain

(2.9) ley) = 0(1)[— inf  (p(v) - @)+ V" sup |p(v)] +
el s

+exp(—3w?) + V-1+exp(mV — éQ(y))l .

Let us now choose V=46(2m)-1Q(y) and recall (2.2) and that w? is a
multiple of @(y). Then (2.9) reduces to

(2.10) lpy)l = O(1)1Q(y)*+Q(y)~* sup ltp(v)l}
fv—yl=2

for all sufficiently large y. Remembering that ¢ is bounded we get

lp®)l = 0(Qw)).
Introducing this preliminary estimate in (2.10) we get by aid of (2.1) that

le®)] = 0(1/Q(y)) for y » oo,

and hence we have obtained (2.3). Our first theorem is proved,
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3. A remainder theorem for the Stieltjes transform.

We shall now derive a similar result for a fairly general Stieltjes trans-
form.

THEOREM 2. Let ¢ and v be real numbers o >v=0, and let r be an in-
creasing function such that @ defined by Q(x)=r(e*) fulfils (2.1). Let o be
of locally bounded variation, a(0)=0 and suppose that

(3.1) f (A+w)= do(3) = O(w—) exp(—r(®)), © > o,
and ’
Q
(3.2) sup f do() £ O(w’[r(w)), @ —oo.
WS Q< wtolr(w) o
Then
(3.3) o(w) = O(e’[r(w)), ©—> .

The first part of the proof is the transformation of the problem to a
form similar to that treated in section 2.

After an integration by parts in (3.1) we put A=expy and w=expx
and obtain

f (1+exp(y— x))=e~1 exp((v+ 1)(y —)) o(expy) exp(—vy) dy = O (exp( - Q(x))) .

This formula can be written

(3.4) H * p(x) = O(exp(—Q(2))) ,
if
H(x) = (1+exp(—=z))texp(—(v+1)z)
and
(3.5) ¢(x) = o(expzx) exp(—rx) .

We now investigate H in order to see that H e E,. If B denotes the
eulerian function we find

H(t) = Bw+1+it,o—v—it) = I'w+1+it) I'e—v—it)/T(o) ,

and since 1/I" is entire an application of Stirling’s formula reveals that
Hek,

The other conditions of theorem 1 are not satisfied, since we do not
know if ¢ is bounded. That ¢ is bounded for positive values of the argu-
ment is clear from well-known pure tauberian results, e.g. that
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J. (A+w)?do(d) = O(w*) implies o(w) = O(w’),
0

even under weaker tauberian assumptions than (3.2). In fact it is not
necessary to invoke these results, since o(w)=O(w*) may be shown to be
a consequence of (3.1) and (3.2) by quite elementary but tedious calcula-
tions. I will not insist on this point.

For negative x the immediate estimate is not better than ¢(x)=
O(exp (v||)) which, however, turns out to be sufficient for our purposes.
The derivation of formula (2.5) still holds, since H and R decrease suffi-
ciently rapidly to make the integral

| [ ow) H@-y) Bw; & dwdy

absolutely convergent.
Instead of a bounded y we now have to consider a function satisfying

lp(x)] < O(1)+0(exp(—x)) .

A glance at the derivation of formula (2.7) reveals that it holds also
under this weaker condition. The only change is that (2.6) has to be
replaced by

(=]

f exp (vu — jw?u?)du < (aw?—»)! exp(va — ta’w?),

a
true for » <aw?.

There remains to check the estimates connected with the tauberian

condition, and we reconsider (2.8). According to (3.5) we have

(3.6)  @(v)—@p(x) = (1—expy(v—=z)) exp(—w) o(expv)+
+exp(—»z)(o(expv) — o(expx)) .
If xysxsv=x+1/Q(x) we get by (3.2) that
p(v)—p@) = — (exp(¥/Q(x)) 1) —0(1/Q(x)) = 0(1/@(=)) .
If <z, and x<v=<z+c, then (3.6) shows that
@(v) — () 2 O(exp(—w)),

since ¢ is bounded for arguments less than some fixed number. Return-
ing to (2.8) we have to consider the terms inf [k(z)(tp(v) —¢p(x))] for
lz—y|2 1 and inf[g(v)(k(v) - k(x))] for [v—y| 2 2.

Bince  gup [k(e) exp(—m)| S exp(—jwt—s(y—1),
le—yl=1
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we get exactly the same inequality as before, that is

le)l = 0(1/Q(y)) .

Introducing the form of ¢ given in (3.5) we find
o(w) = O(a'/r(w)),

and hence formula (3.3) is proved.
We add two remarks concerning more complicated results which can
be obtained by the same method.

REMARK 1. Under the assumptions of theorem 2
(3.7) f (1= Aw)m-1 do(3) = O(crr(e)-m)
0
for any natural m. This follows if we apply the formula

v
sup, |u(z)| < C (—V‘m inf  (w™(v) —u")(x))+ J. |4(t)| dt)
-y

rsvsz+1/V

instead of (2.4). For this formula see Ganelius [3].

REMARK 2. Standard arguments may be invoked to prove that theo-
rem 2 holds also if w”L(w) is substituted for w” on the right side of (3.1),
(3.2) and (3.7), L being a slowly oscillating function.

ADpDED IN PROOF. I have observed that results overlapping with my
previous results but also with those of Section 3 have been obtained by
M. A. Subhankulov, Trudy Mat. Inst. Steklov 64 (1961), 239-266. (Review
no. 3305 in Math. Rev. 25 (1963)).
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