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It is noted that not only time but also the imaginary unit is absent from the Wheeler-DeWitt equation
(WDE), the basic equation of canonical quantum gravity. This leads to a severe problem in an attempt
to recover the time-dependent Schrédinger equation from the WDE. It is suggested that the problem
will be solved if the WDE is actually complex and not real, as in most models hitherto considered.
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I. INTRODUCTION: THE i PROBLEM

Both time and the imaginary i are absent from the
basic equation of quantum gravity, the Wheeler-DeWitt
equation (WDE). The absence of time 1s widely regarded
as a serious problem, but the absence of / does not seem
to cause any concern. It is clearly believed that quantum
gravity will be complex just like ordinary quantum theory
even if the WDE is real.

This may be complacent, since all specifically
quantum-mechanical uses of complex numbers (or struc-
tures equivalent to them) can be attributed to and assoCl-
ated with the use in quantum mechanics of an external
time (Sec. II). If, as in quantum gravity, there is no exter-
nal time, the rationale for complex numbers may have
disappeared too (Sec. I1I). However, they are certainly
needed to describe laboratory physics. The attempts to
recover ordinary quantum mechanics from the WDE are
examined (Secs. IV and V) and found to be unsatisfactory
precisely because i 1s not present in the WDE and has to
be introduced artificially at some stage. It is argued (Sec.
VI) that this is a serious problem and may suggest that
the true Wheeler-DeWitt equation of the Universe may
actually be complex for reasons that have not yet been
recognized. In a separate paper, Kiefer [1] has con-
sidered physical reasons that could force the wave func-
tion of the Universe to be complex.

II. TIME AND COMPLEX NUMBERS
IN STANDARD QUANTUM THEORY

Complex numbers, or mathematical structures
equivalent to them, occur in quantum mechanics for
several different reasons [2]: for mathematical conveni-
ence, in representations of the rotation group (spinors),
and in complex phases associated with local gauge trans-
formations. However, there appears to be one use of
complex numbers that represents an essential integral
part of quantum theory present under all circumstances.
It is manifested in one of two ways.

In the Schrodinger representation, it appears in the
form of the i that multiplies the time derivative in the
dynamical equation
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where H is the Hamiltonian of the system (I set
h/2w=1).

As Pauli [3] noted in response to a query of Ehrentest
[4], who had asked why the use of complex numbers I1s
unavoidable in quantum theory, Eq. (1) reveals that wave
mechanics has a very specific two-tier structure. The
deeper level is represented by the fact that W satisfies a
linear wave equation on the complete configuration space
Q of the system. Many of the most characteristic
features of quantum mechanics follow directly from this,
whatever the form of the wave equation (number of com-
ponents of the wave function, orders of the various
derivatives): the superposition principle, interference, the
possibility of forming wave packets, Bohr’s correspon-
dence principle (through the geometrical-optics limit),
and the association of energy with frequency and momen-
tum with wave number.

The higher level is expressed in the characteristic dou-
bling (compared with a real equation) of the number of
components of the complex equation (1) and the use of a
first time derivative multiplied by /. This has the impor-
tant consequence that from the wave function ¥ at a
given instant (i.e., without the use of its time derivative)
one can form the positive quantity WYW*, which can be in-
terpreted as a probability density whose space integral is
automatically conserved in time. As a consequence, the
dynamics is unitary. A further very characteristic prop-
erty is the complete uniformity (translational invariance)
of the probability density of a free particle in 2 momen-
tum eigenstate [5].

The essential thing here is that a real function such as
coswt coskx leads to nodes in its square cos’wt cos’kx,
but if W=e “e** then W*W¥=1. What the i in the
dynamical equation achieves is phase-matched pairing of
components: Any cos? term in the probability density is
automatically paired with a sin® term of the same argu-
ment, so that together they give 1.

The use of complex numbers brought in by Eq. (1) may
be called dynamic complexity. It is a very remarkable
property.

In alternative, more abstract forms of quantum theory,
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complex numbers are not introduced in the first place
through a dynamical equation but rather through “kine-
matics,” i.e., through the use of a complex Hilbert space
in which analogs of the classical dynamical variables are
represented by operators [6]. An equivalent possibility
often employed is a real space but with, as an essential
element in the formalism, a complex structure [7], i.e., a

real linear operator J that satisfies J*= —1.
In this case one may say that kinematic complexity 1s
employed.

For the topics raised in this paper, it is important to
note that in all cases kinematic complexity appears to be
merely a convenient alternative to dynamic complexity.

Consider, for example, the quantum treatment of the
real Klein-Gordon equation [8]. The real vector space V
of its real solutions can be transformed into a complex
quantum Hilbert space by introducing a complex struc-
ture J. Although J is a real operator and maps real solu-
tions to real solutions, it is in essence complex and ex-
ploits dynamics since it is based on decomposition of a
real solution into positive- and negative-frequency parts.

Indeed, let

p=9"+y"

be the decomposition of the real ¥ into its positive- (Y™)
and negative- () frequency parts. Then one defines

Jo=iv"T+(—iN~ .
Thus, 1if, say,

P=e'“coskx +e Tiolaaskx =2 coswt coskx ,

then J¢Y= —2 sinwt coskx.

This J, which creates from one real solution another
with very special phase matching (as the cosw? and sinw?
above), is then used as an integral part in the construc-
tion of the inner product and norm of a solution. In fact,
if ¥, and ¥, are two real solutions, their inner product is
constructed (using the symplectic form in the classical
theory) from ¢, and Jv, (or, equivalently, from J¢, and
,), and the norm of any ¢ is constructed using ¢ and J.

As a consequence, the characteristic phase-matched
pairing of components that is enforced dynamically in the
Schrodinger representation can be implemented
“kinematically”’ in the Hilbert-space context.

Note that J is a nonlocal operator, and its use to make
the one-particle Klein-Gordon equation fit the standard
quantum pattern appears counterintuitive and without an
a priori justification. However, if one assumes that there
is a fundamental theory described by the functional
Schrodinger equation for the Klein-Gordon field, that
will of necessity introduce coupled components (and per-
fect phase matching in plane-wave situations) in the
single-particle limit of the theory represented by the
Klein-Gordon equation. This then explains why *“odd”
things must be done to make a proper quantum theory
out of the real Klein-Gordon equation.

Jackiw [9] has argued that the noncovariant functional
Schrodinger equation has not hitherto been widely used
since it was found to be much easier to perform many cal-
culations and carry out regularization procedures In a

Poincaré-invariant form. However, now that the tech-
niques are better understood, the reasons for not using
the Schrodinger representation largely disappear.

In fact, a very general argument indicates that the
essential “‘complexity” of quantum theory is most readily
understood in such a context. Any nonrelativistic
mechanical system or relativistic field theory [10], ex-
pressed in a given frame of reference, can be cast in the
parametrized form [11,12] in which the dynamical trajec-
tories are labeled, not by the time ¢, but by an arbitrary
label parameter A. Simultaneously, the time 7 is promot-
ed to the status of a dynamical variable. In such a form,
the theory is reparametrization invariant and in the
Hamiltonian formulation contains a constraint

7, +H=0, (2)

where 7, is the momentum conjugate to time and H 1s the
ordinary Hamiltonian.

To obtain a quantum theory, one simply turns the clas-
sical constraint (2) into a wave equation by the usual sub-
stitutions, in accordance with which, in particular, 7, be-
comes —id/0t. Then (2) becomes the time-dependent
Schrodinger equation (1). One then sees that the very
special form of (1) arises because 7, occurs linearly in (2)
and represents the energy. Moreover, the form of the
constraint (2) and the form of (1) must arise for all
theories (both nonrelativistic and relativistic) formulated
with respect to an external time.

To summarize, standard quantum theory is inherently
complex, and its specific universal complexity is insepa-
rably associated with translations and evolution in an
external time.

II1I. DISAPPEARANCE OF TIME
AND COMPLEX NUMBERS IN QUANTUM GRAVITY

In striking contrast to (1), the equation that i1s obtained
if one attempts to quantize a closed universe contains no
reference to time and has the basic form

HY=Q, (3)

where the operator H, in virtually all cases considered
hitherto [13], is real. An equation of the form (3) (strict-
ly, an infinity of such equations) was obtained by De Witt
[14] in 1967 when he applied the standard Dirac rules for
the quantization of constrained systems [11] to general
relativity in the case of closed universes. In fact, an equa-
tion of such form must always be obtained if one at-
tempts to describe any universe without reference to an
external time [15]. An equation of the generic form (3) is
often called a Wheeler-DeWitt equation (WDE).

There already exists an extensive (but as yet incon-
clusive) literature [16-24] on the fact that (3) seems to
describe a completely static situation: the “wave func-
tion of the Universe,” ¥, depends on the possible three-
dimensional configurations of the Universe and nothing
else. There does not appear to be any evolution in time.
The absence of ¢ in (3) has not escaped notice.

However, the absence of i has attracted remarkably lit-
tle attention. I am not aware of any comment made in
the literature which would suggest that this is a potential-
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ly serious issue, i.c., that not only time, but also the
“complexity”’ of quantum theory has disappeared from
quantum gravity. It seems to be assumed that “‘complexi-
ty”’ is so deeply embedded in quantum theory that it sim-
ply cannot disappear.

However, the analysis of Sec. Il indicates that the
specific quantum complexity is inseparably associated
with time. Thus, if time goes, surely there must be at the
least uncertainty about the complexity? That such doubt
is justified follows from one of the few attempts [25] made
to take the reality of the Wheeler-DeWitt equation seri-
ously and treat it by analogy with the real Klein-Gordon
equation in the manner described in Sec. II.

The heart of the problem is to define a complex struc-
ture on the space of real solutions of the WDE by means
of which a proper Hilbert space with inner product and
standard statistical interpretation can be constructed.
Kuchaf [25] shows that the attempt must fail, and he
traces the failure to the nonexistence of a suitable symme-
try in quantum gravity. The fact is that the decomposi-
tion into positive and negative frequencies works iIn
Poincaré-invariant field theory because of time transla-
tional symmetry, as a result of which the decomposition
(and, hence, the associated complex structure) can be
uniquely defined. In the absence of symmetry, this is not
possible. Thus the most consistent attempt to solve the
Hilbert-space problem of quantum gravity directly at the
level of the exact theory fails.

In recent years, especially as a result of failures of at-
tempts made along more conventional lines, several au-
thors [16—24] have explored the possibility that time and
the standard form of quantum theory can be recovered
only in a certain limiting form of quantum gravity, name-
ly, in its semiclassical limit. I believe that this approach
is very promising and am keen to see it succeed, but have
long felt that it suffers from a potentially serious weak-
ness, which is this: Given that the WDE (3) is real, how
is the complexity of standard quantum theory to be
recovered?

The following review of the semiclassical program aims
to show that this is a serious and hitherto neglected prob-
lem.

1V. SEMICLASSICAL PROGRAM

The semiclassical approach to the interpretation of
quantum gravity has three main aims: to understand
how a classical world, evolution in time, and the need to
describe laboratory quantum physics by the (complex)
time-dependent Schrodinger equation (TDSE) (1) can
arise from the seemingly static world described by the
WDE (3). As there is already an extensive literature on
the semiclassical program, including a clear and relative-
ly full treatment by Vilenkin [21] and reviews by Kuchar
[23] and Isham [24], I shall merely consider the parts
relevant to the two above questions.

Aside from the inevitable quantum interpretational
dilemma (collapse or many worlds), the first two aims of
the semiclassical program are achieved in a convincing
manner by exploiting the deep (and inescapable) connec-
tion between wave mechanics (which treats a wave func-
tion spread out over the complete configuration space Q)

i

and classical mechanics (which treats one-dimensional
trajectories in the same Q) that was established by Hamil-
ton and Schrodinger. Namely, in any regime in which
the amplitude A4 of a function that satisfies a linear wave
equation (which may have a very general form) varies
much more slowly than the phase S of the wave function,
this phase S must be a solution to the Hamilton-Jacobi
equation for a certain classical mechanical system whose
action principle is uniquely determined through the
eikonal approximation of the original wave equation
(geometrical-optics limit or WKB regime).

Thus each wave equation has associated with it, at
least formally, a certain classical mechanical system, the
dynamical trajectories of which are, as it were,
“highlighted” whenever the wave function of the original
system enters the WKB regime. They are the trajectories
perpendicular to the surfaces of constant S (light rays in
geometrical optics). These classical trajectories, which in
general appear in complete sets as extended congruences,
play a crucial role in the semiclassical program, and are
the basis of the claim that classical worlds can be
recovered, even though there is still much discussion of
why we observe just one classical world. It 1s certainly
the case that classical trajectories are potentially present
as mathematical constructs deeply embedded in the phys-
ical wave formalism.

Moreover, the classical trajectories permit the intro-
duction of ‘“time” in a very satisfactory manner. As
recovered from the formalism of quantum gravity, these
trajectories are in the first place merely curves in a time-
less configuration space Q. However, it turns out that
they are the curves in Q corresponding to zero-energy
trajectories in the standard formulation of dynamics with
an external time. This means that one can introduce on
any such trajectory a label parameter that exactly mimics
“time”’; i.e., with respect to this parameter, the curve in
Q is traversed at exactly the rate one would expect with
respect to a standard external time—there appears to be
classical evolution with respect to a conventional time.
This is, in fact, precisely the way in which astronomers
define ephemeris time [26]—1it is the time parameter in
accordance with which the celestial bodies pass through
their successive configurations at the rate required by
Newton’s laws (with the necessary small relativistic
corrections). This matter 1s discussed in more detail In
Refs. [15,27-29]; for the moment, I merely wish to note
that the second desideratum of the semiclassical
program-—a notion of time-—appears simultaneously
with the first, classical trajectories.

I have discussed the first two steps of the semiclassical
program in slightly more than customary detail to em-
phasize that they are achieved by dynamical necessity
once a WKB regime i1s allowed. In contrast, the third
aim—the recovery of the TDSE —is not achieved so con-

vincingly. The problem arises because there i1s no i/ in Eq.
(3).

V. RECOVERY OF THE TIME-DEPENDENT
SCHRODINGER EQUATION

Now it 1s obvious that if the TDSE is to be recovered,
complex numbers must be introduced at some stage. In
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the literature, this has been done in two ways. In the first
(e.g., in Refs. [17,21]), the solutions of the WDE are as-
sumed to be complex from the outset; in the second (e.g.,
in Refs. [18-20]), the solutions are assumed to be real,
but a decomposition into real and imaginary parts is then
made, and it is in the decomposed components that the
TDSE is recovered. Both approaches encounter the same
difficulty; for brevity, I shall consider only the first
method [17,21].

The first assumption in this approach is unproblematic;
it is that only some of the degrees of freedom of the
Universe enter the WKB regime. Let these be denoted
collectively by ¢ (for classical). Let the remainder, which
stay essentially quantum mechanical, be denoted by gq.
The next step, also unproblematic, is to assume that the
total wave function of the Universe has the form

V=y(c)dlc,q), (4)

where 1 has the form of a WKB solution for the c system
and the variation with respect to ¢ is much slower in ¢
than in ¥. I shall come to the precise form of the WKB
factor ¢, which is problematic, in a moment.

The ansatz (4) is substituted in (3), the basic equation of
the theory; if ¢ is regarded as a given function, an equa-
tion for the ‘“quantum” function ¢ results, which, for ap-
propriate boundary conditions, will determine it in the
region R of Q in which the WKB regime holds.

However, this is more than is needed. Through the
first two steps described above, we know that i defines a
congruence of classical zero-energy trajectories of the ¢
system in R, which, moreover, can each be parametrized
by a ‘“time” variable . One may therefore ask how ¢
varies with respect to this ¢z as one moves through R
along one of the classical trajectories. The claim of the
semiclassical approach is that the equation satisfied by ¢
has, to a good approximation, the form of a TDSE.

This an be illustrated by the simplest of systems: a
nonrelativistic particle in two dimensions in an external
potential F described by the time-independent
Schrodinger equation (TISE)

2 2
oW O kW —V(x,pW=0, (5)
ax* dy*

where k >>1 is a constant, Since (5) contains neither
time nor an i, it is like a WDE. Now suppose that (5) has

an exact solution of the form
Y= d(x,y) . (6)

The first factor here is an exact WKB-type solution of the
TISE obtained by retaining in (5) only the first and third
terms. Substitution of (6) in (5) yields the exact equation

., O ’¢p 0%
kK—— = Ve . 7
2i I & & ¢ (7)

This can be regarded as a TDSE if (1) x is regarded as
“time”’; (2) the first term on the right-hand side is
sufficiently small to be ignored. In essence, there is noth-
ing more to the recovery of a TDSE from a WDE than
this [30], except that in the multidimensional case the
time variable is not obtained directly but by finding the
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distinguished parameter along the trajectories orthogonal
to the surfaces of constant phase § (in the above model,
kx plays the role of S, and x, of course, already increases
orthogonally to the level surfaces of kx).

There are, however, two problems with the above re-
sult. One, to which I shall return in a separate paper
[31], concerns the permissibility of ignoring the second
“time” derivative 8%¢/9x* in Eq. (7). The other is the is-
sue with which I am concerned in this paper: At the gen-
eral level, what is the justification for choosing complex
solutions to a real equation such as (5) or (3)7 The
justification that we have in the Klein-Gordon case—
that it is really only the limiting case of a field theory de-
scribed by a complex functional Schrodinger equation—
is not available here [32]. At the level of specifics, why,
even if complex solutions are reasonable, 1s the WKB
part taken in the particular form e'** [for Eq. (5)] and
e ™€) (for general multidimensional cases)?

The specific question is serious, because the claimed
recovery of the TDSE is not, unlike the first two steps of
the WKB program, dynamic and generic but very special
and an artifact of finely tuned boundary conditions. For,
as pointed out [33], a %encral complex ansatz in (6) for
the WKB part, say, ae'™ + be ~ikx where a and b are ar-
bitrary constants, wreaks havoc in the end result—the
coefficient 2ik in (7) becomes

2ik (ae ** — be ~k*) /(ae ** + be ~**) | (8)

and the crucial specific form of the TDSE is lost. Indeed,
if a=b=1, then the coefficient (8) becomes real and
equal to — 2k tankx.

Thus, only if the semiclassical factor i has real and
imaginary garts exactly matched in phase by 17 /2, as in
the pure e** or e ~***, does one obtain (approximately) a
TDSE. But how can this striking phase matching arise?
There is no dynamical reason for it. Moreover, in the
multidimensional case the solution S of the classical
Hamilton-Jacobi equation can be quite different in the
real and imaginary parts and correspond to entirely
different congruences of classical trajectories. This
makes attempted recovery of the TDSE even more hope-
less.

It is clear that the claimed recovery of the TDSE is a
product of nondynamical phase matching. Since phase
matching is the very essence of the TDSE—it is just
what the id/9r term enforces—it is evident that an an-

- satz of the form e” for a real equation simply imposes a

TDSE-type structure on all solutions by brute force.
Once the phase matching has been put in, it stays there,
mimicking “recovery” of the TDSE.

It is obvious from examination of the literature that
the proponents of the semiclassical program have not felt
this to be a problem. The reason is also rather obvious.
Complexity is so deeply rooted in standard quantum
theory that the adoption of complex solutions appears en-
tirely natural. Indeed, the nondynamical phase matching
described above (which would have seemed utterly
artificial to theoretical physicists in the prequantum era)
has exactly the same nature and effect as the decomposi-
tion into positive and negative frequencies as 1s habitually
used in the quantization of classical fields.
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However, as I pointed out in Sec. II, in that context a
natural dynamical Justlﬁcatmn for phase matching
through comptex ‘structures. 1s.. always avallablc in the

T e ---n-_.-r—-l-l"""-"'h

form of the corrESpondmg tlme-dependent functional
Schrodinger equation. Since that, in its turn, arises solely
because a classical external time is present, there must be
doubt about the use of *‘*kinematic complexity’ in a situa-
tion in which the dynamical origin of the complexity —
the external time-—has disappeared.

Moreover, we have already noted that the direct at-
tempt [25] to introduce ‘kinematic complexity” by
means of a complex structure at the level of the exact
solutions of the WDE fails because of the absence of a
suitable symmetry permitting unique definition of posi-
tive and negative frequencies. I shall now show that a
somewhat similar problem arises in the semiclassical ap-
proach.

The approach we have been considering assumes the
existence of a complex solution of the WDE that has the
form

where the WKB prefactor 4 may be assumed to be real.

Now since the WDE is a real equation, the real and
imaginary parts of (9) must be solutions quite indepen-
dently of each other. Thus postulating the existence of
(9) is equivalent to requiring the existence of rwo real
solutions that have the special form

A pg.cosS — A ¢y, SInS (10)
and

A pg.sinS + A ¢y, co8S . (11)
Note that the natural WK B form for a real equation 1s

V= A(c)pl(c,q)cosS(c) , (12)

with all functions on the right-hand side of (12) real.

In comparison with (12), we see that (10) and (11) form
an extremely special solution pair, since each consists of
two rapidly oscillating components in which the dom-
inant oscillations are produced by the perfectly phase-
matched factors cosS(c) and sinS(c). There is a triple
“miracle” here. First, in each of (10) and (11) the func-
tion S is the same in both trigonometric factors. Second,
the phases of the two factors differ by exactly 7/2.
Third, there is not just one such solution but two. It is
hard to see why any of these three things should be found
in the solutions of a real equation, even allowing that the
wave function of the Universe does get into a WKB re-
gime.

There is yet another problem. Do solution pairs of the
form (10) and (11) even exist? If, as is often conjectured,
the WDE is like a TISE, we must expect extremely strong
restrictions on its admissible solutions (such as
Schrodinger had to impose to obtain the discrete spec-
trum of the hydrogen atom). Thus, even if one solution
of the form (10) exists, what guarantee do we have that
another of the form (11) exists [34]?

Once the problem is posed explicitly in terms of the ex-
istence of paired real solutions of the WDE of the form
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(10) and (11), the implausibility and incongruity of the ex-
ercise becomes manifest. One takes four WKB-like terms
that in the pairs (10) and (11) are actual exact solutions
and then adds the two pairs with relative weight /. It is
all very delicate. Is this really the way our most funda-
mental physical law, the TDSE, comes into existence?

It may also be noted that many authors introduce com-
plex numbers into quantum gravity by means of Feynman
path integrals. However, since such integrals are, in con-
ventional theory, equivalent to standard Schrodinger
theory, it is obvious that the / in the Feynman exponent
expiS is the same i as appears in Eq. (1). It is, at the least,
a major assumption to presume the Feynman i will still
be present in the timeless context.,

Finally, on the question of whether decoherence can
ease this problem [35,36], I would say this, The generic
solution to the WDE can hardly be a unique WKB solu-
tion: One must expect it to be a superposition of such
solutions. Therefore, to understand why nevertheless
only one classical world is observed, we shall probably
have to appeal to a decoherence-type argument (like the
majority of quantum cosmologists, I am here accepting
some kind of many-worlds [37] interpretation of quantum
gravity), though I would like to propose a slightly more
explicit account of how decoherence works in practice
(see Ref. [31]). But on the question of how classical
worlds, time, and the TDSE arise, that I think must first
happen cleanly and honestly within one WKB com-
ponent. I do not see how that can ever be achieved if we
start from a real WDE and simply attempt to impose *‘ki-
nematic complexity’ by brute force.

This leads me to the following suggestion.

VI. IS THE TRUE
WHEELER-DeWITT EQUATION COMPLEX?

Since all the problems described above stem from the
fact that the WDE is real, should we not consider the
possibility that the basic equation of quantum gravity 1s
not, after all, real but complex? There 1s, in fact, a large
body of opinion (for reviews, see Refs. [23,25]) which
holds that a complex dynamical equation should be ob-
tained in quantum gravity by solving (before quantiza-
tion) the basic quadratic constraint in the conjugate mo-
menta that leads to the WDE for one of the dynamical
degrees of freedom (say, the volume of the Universe or
the trace of the extrinsic curvature), which is then de-
clared to be a distinguished variable that plays the role of
“time”’ (“internal time”’). In such an approach, the
“time’’ variable then appears in the quantum form of the
theory exactly like the ordinary time in the TDSE (1). [
am not thinking of such a resolution to the i problem.
Kuchar [23] has identified many problems with this ap-
proach, and I believe there are several arguments that
can be added to his [15,29].

My suggestion, which I advanced in Ref. [38], is that
all the forms of the WDE that have so far been con-
sidered may be physically incomplete. This would be the
case if the true wave equation of the Universe contains
not only second functional derivatives (as in existing
WDE’s) but also first derivatives, which would then ap-
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pear multiplied by an i. This does, of course, happen in
ordinary nonrelativistic quantum mechanics for a
charged particle in an external field, which, as I noted 1n
Ref. [38], contains among others the interaction term

. oV
2ie A . 13
i€ Ay axk (13)

where e is the electric charge and 4, is the vector poten-
tial at the position x ¥ at which the particle is situated.
This, of course, is in the first-quantized theory, and the !
that appears in (13) is not the “quantum /” but the i asso-
ciated with the gauge group of quantum electrodynamics;
in the more fundamental second-quantized theory this i
does not appear in the wave function but only in the
transformations of the classical fields on which the wave
functional is defined.

However, a priori there is reason why the WDE should
not contain linear derivatives (not with respect to an
external time but with respect to some or all of the
dynamical variables) multiplied by .

The attraction of a term such as (13) is that if ever a
WKB regime for the corresponding WDE is established
(and the term with i that produces the dynamical cou-
pling between the real and imaginary parts is involved in
the generation of the regime; 1.e., the term is sufficiently
large), then it must have a pure phase-matched form of
the type e or e ~S alone, just as does happen for the
TDSE.

In the presence of such a WKB regime, an approxi-
mate TDSE for the non-WKB variables would indeed
arise as a dynamical necessity, and the third and final
part of the semiclassical program would have been real-
ized in as convincing a manner as the first two parts.

Indeed, consider the very simple model described by

2 2
O | i w4 wix,y)=0, (14)

Jx 2 ox ay ‘

in which, compared with (5), the term with the / has been
added. If we now seek a WKB solution of the equation
obtained by omitting the last two terms, this must have
the phase-matched form Ae'"*. Indeed, e'™ 1s an exact
such solution if "*+av—k?=0. Substitution of
e *(x,y) into (17) then leads to the exact equation

. d¢ 3¢ 3% e
i(2v—+a) N 3l oy’ ¢ (15)

which again has the form of an approximate time-
dependent Schrodinger equation, though now obtained
by dynamical necessity once a WKB solution for the x
system has been assumed. It is interesting to note that in
this case there is no need to assume the presence of the
6rst term in (14) with the second derivative. The second
term with the i is sufficient, in the presence of the poten-
tial term k2W¥, to enforce the phase matching. Then in
(15) the first term on the right-hand side is absent (the
coefficient on the left-hand side is also changed but that 1s
immaterial); since this term rather spoils the recovery of
the TDSE (especially in view of the fact that higher
derivatives can completely change the qualitative
behavior of solutions even though they may be small),
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this could represent an attractive possibility.

I believe that this issue warrants a thorough reexam-
ination in the light of the disappearance of both time and
i in quantum gravity. Surely this must prompt as serious
a review of the status of complex numbers in quantum
theory as has been made for time? In such a review,
which should update Pauli’s response [3] to Ehrenfest to
take into account all the many developments in the last
60 years, it will be important to distinguish the
specifically quantum-mechanical use of i from the other
uses of complex numbers, e.g., to represent charged
fields, spinors, etc.

VII. CONCLUSIONS

If it turns out that the Wheeler-DeWitt equation is
complex (or, alternatively, that there is some independent
physical mechanism which forces its solutions to be com-
plex and phase matched), this must have far reaching im-
plications for quantum gravity. For one of the great
problems of quantum gravity is the seeming remoteness
of any possibility of experimental verification. All the in-
teresting effects are held to occur at utterly unattainable
Planck scales. But we are talking here about things all
around us, for the TDSE governs all laboratory phenom-
ena. If the emergence of the TDSE is a genuine physical
consequence of specific terms in the WDE, this should be
reflected in observational relationships, say, between the
dimensionless numbers of physics.

The need to resolve the i problem could also serve as a
guide to new physics. Is it altogether too fanciful to see a
possible repetition of history, in which resolution of the ¢
problem (in which the complex TDSE of laboratory phys-
ics stands opposed to the timeless real WDE) could have
as dramatic consequences as Dirac’s reconciliation of spe-
cial relativity with the needs of quantum mechanics? In
fact, the protagonists are the same in both cases: time
and complex numbers.

Successful recovery of the TDSE within the semiclassi-
cal approach could show that the problem of quantizing
general relativity is much simpler than has hitherto been
assumed. Indeed, according to two recent reviews
[13,39], the conditions that have to be met before one can
say that general relativity has been quantized are extraor-
dinarily severe. The reason for this severity is that a con-
servative attitude to the problem is adopted: Quantized
general relativity is expected 1o fit the mold of existing
quantum theory and have a well-defined Hilbert-space
structure, inner product, self-adjoint operators, etc. It is
an understatement to say that the task of finding all these
things is daunting.

In fact, I suspect that the full quantum framework that
Dirac [6] formulated with such lucidity is fine for micro-
scopic systems in the background of a laboratory an-
chored in a classical world, but a Procrustean bed into
which a theory of the Universe such as general relativity
just will not go.

This is where the issue of convincing recovery of the
TDSE is so relevant. If this can only be done by making
the WDE complex by some physical element (rather than
by assumed ‘‘kinematic complexity™), it will then be obvi-
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ous that much of what is currently taken to be essential
formal structure of the quantum mechanics of the world
is nothing of the sort. The essence of quantum gravity
would be simply a wave equation on the configuration
space of the Universe. The rest would then be an
effective theory that results from a potentially very com-
plicated amalgam: other physics (which would make the
WDE complex), the fact that we consider microscopic
systems in a WKB regime of the Universe, and our inabil-
ity to interpret quantum mechanics satisfactorily.

If this view is correct, general relativity has already
been quantized. That happened in 1967 when DeWitt
[14] turned the Hamiltonian and momentum constraints
of general relativity into wave equations on the timeless
configuration space of the Universe. According to this
view, the part of canonical quantum gravity that 1s
currently regarded as supremely difficult—the introduc-
tion of a complex Hilbert space with proper conserved
inner product and statistical interpretation—would sim-
ply fall away as premature. That structure need only ap-

pear in a WKB regime—where it will happen automati-
cally if a genuine dynamical recovery of the time-
dependent Schrodinger equation is once achieved.

I hope this paper will stimulate work in this direction.
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