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1.

The facts, properties etc. concerning conformal mappings mentioned in
this paper can be found in the book of Gaier, D. (1364), the references made

are indicated by (G, p. --}. In the theory of conformal mappings the integral
operator

v = Au
(1.1)
vis)

Yun§ctgals-tiult)dt

plays a central role. Here U is a 27-periodic function and § denotes the in-
tegral from O to 27 in the Cauchy-sense. We mention one application only:

The integral equation of Theodorsen {G., pp. 64, 65}

Let Q ¢ R? be a bounded domain with star-shaped boundary 8Q in the
complex w-plane with the representation g = g(8)in polar-coordinates.
Further let w = f(2) be the conformal mapping of the unit disc in the z-
plane onto Q normed by f(0) = 0, f (0) > 0 and let (r, @) denote the polar-
coordinates in the z-plane. Then f(z) is uniquely defined by the correspon-
dence @ = $(y} and the function & is the solution of the equation

(1.2) $p) = @ + Allogg(8(p)]
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The operator A has some remarkable properties. It is skew-symmetric in
the space L,(0, 271). Further A maps the space H = L,(0, 27 \ Risometri-
cally onto itself {G., p. 64}

(1.3) Il Au li = lul

If u = u(s) are the boundary values of a function U harmonic in the unit disc
then by (1.1) the boundary values v of the conjugate function V are given
{G., p. 63}. The Hilbert inverse relations may be written in the form

(1.4) A? = -]

This shows that the evaluation of v for given U resp. of U for given V is
more or less equivalent.

Subsequently we will consider besides H = H, the space H; consisting of
those functions W € Ho such that the derivative W is an element of Ho. The
space H_4 is the dual of Hy with respect to Hy. Parallel to these spaces we
will consider also the spaces C° resp. C°* (for 0 < A < 1) of periodic, con -
tinuous functions resp. functions fulfilling a Holder condition according
to the exponent A modulo R. The norms in these spaces are defined in the
natural way. The last property of the operator A to be mentioned is: Ais a
bijective mapping of C° onto itself - see §18, 13 in Muskhelishvili, N. I.
11953).

Much effort was given to the question of the solution of equation (1.2). In our
context the convergence of numerical procedures is of special interest.
Usually the spaces Ty of trigonometric polynomials of degree n are used in
order to get appropriate approximations. We mention - slightly simplifying
in mixing discrete and continuous norms - three typical results: Let e = g,
denote the error of the numerical method. Under the hypotheses ge C**
resp. § € C* the error estimates hold true (G., p. 95}

(15,) lel, < Blen? .
(154) lel,, < Blen™?® .
resp.

(1.6) el < BleR™"

Tal
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with some R > 1. In all these cases B(€) are numerical constants depending
on €, the deviation of g($) from 1in appropriate norms.

2.

Obviously the main step in order to get an approximation on the solution
of (1.2} is the numerical treatment of (1.1). In this section we discuss an ap-
proach based on the Ritz method using finite elements resp. in the present
case spline spaces. We will consider only the simplest cases of splines.
Forne Nleth=2n/n and X; = hi. The space Sy = S&'* with 0 <k <t consists
of the functions X with the properties

X € ¢~ ;
(2.1)
X[Xi, Xia1 € P

Moreover we will work with the spaces Sh= Sy N H. A finite element ap-
proximation Vy = RyV € Sp on the function Vin (1.1) may be defined by

2.2) o, X0 = (Au ¥ for x € Sy

If Py denotes the orthogonal projection of H onto Sy then the solution of (2.2}
may be written in the form

(2.3) Vh = Phv = PnAu

The orthogonal projection Py has norm 1in H. Since A is an isometry we
get at once from (2.3) the error estimate

(2.4) AU - v, I s inf{NAu-xI]|xeSn }

Corresponding error estimates in the norms of the Sobolev spaces Hy are
direct consequences. Sobolev space methods are not adequate in treating
the corresponding finite element counterpart of (1.2)

(2.5) S (y) = ¢ + PaA[log{o(Snleh}]

iteratively. Estimates in the norms of Holder spaces will be advantageous.
Haar, A. (1910} was the first to observe that the orthogonal projection in L,
onto step functions, i. e. onto the space S§ ! has bounded norm in L. The
boundedness of the L,-projection in L, also in higher dimensions was
proved by Douglas, J. et al. (1975), we refer also to Nitsche, J. (1969).
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For the solution of (2.3} we get (here and in the following ¢ denotes a gen-
eric numerical constant which may differ at different places)

(26) Twal_ < clvi_
resp.
2.7) IPl_q_ s ¢

A consequence is

Assume U € C** with T < t-1and 0 < A < 1. Then the error estimate is
valid

(28) IPw-Aull_ < ch™ Hulgr

Now spline spaces admit in case of k 2 1the following direct and inverse
properties:

(D) Let w € C°* be given. There exists an element W € Sh according to

Iw-wlp_ < chliwigex .
(2.9)
fwliger < clwligor

(ID) For X € S, the inverse relation holds true
(2.10) Ixlges < ch™ixi_

We get using the argument in Nitsche, J. (1370) at once from (2.6)
(2.11) fvp o> < clvige?
or since the norm of v is bounded by that of U

(212) vy lice> < cliulige

Now we go back to the iterative solution of (2.5). Due to limitations in space
we cannot give a detailed analysis. For short we introduce the parameter €
by

(213) € isabound of g - 1 = g{8) - 1in the norm of gl
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In order to simplify the presentation we omit the subscript "C°*"in the
norms for the rest of this section.

For any two functions $(p), $(p) € C°* we have

Il log g(§) - log g(3) I
(2.14) o
< cel§-31

Now let us consider the iteration procedure

87(p) = 9 ’
(2.15)
el = + PhA[log{o(8qteN}] forvzo

Because of (2.12), {2.14) we get

216) NSy 1-8¥ Nl < celSy-8¢t

Applying the Banach fixpoint theorem we see: For € < g < c™! - with c be-
ing the constant in (2.16) - the iterates $5 converge in the norm of C°* to the
solution $y of (2.5). Corresponding error estimates for the difference e =

3 - 84 follow from the representation

$ - 8, = PnA[log{g(8)} - log{g(84)}] +
(2.17)
(I - PnA[log{a($)}]

The counterpart of (1.5,) is

(2.18) fenll_ < Blah

Of course for spline approximations an estimate of the type (1.6} is not
valid.

Let Q ¢ R? be a simple connected bounded domain with boundary 8Q suf -
ficiently smooth and - for simplicity - normed such that the arc length of
3Q equals 27. The boundary value problem
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AU = 0 in Q
(3.1)

U v on 8Q

may be solved using a simple layer potential. Without loss of generality we
assume at least v € H. Let z, | denote complex variables and let T(s) be the
complex parametrization of df). Further let ['z) be the fundamental solu-
tion of the Laplacian defined by

(3.2) rz)

~Yslog 1zl

The function

(3.3) u(z)

"

$Tz-TiNultidt

is harmonic in Q. In order that Uis the solution of the boundary value
problem (3.1} the function U has to be the solution of

v = Bu
(3.4)
vis} = 5F3(s—t)u(tldt
with
(3.5) ¥(s-1) = I"(T(s)-T{N

The Ritz method applied to (3.4) using spline spaces sometimes is called
boundary finite element methed.

In Plemelj, J. (1911) it was suggested to replace (3.4) by
(3.6) v(s) = §yls-tidult)

The argument of Plemelj (§8 of the paper cited) is

Bisher war es iiblich, fiir das Potential die Form (3.4) zu nehmen.
Eine solche Annahme erweist sich aber als eine derart folgen -
schwere Einschrankung, daf dadurch dem Potentiale der grifite
Teil seiner Leistungsfihigkeit hinweg genommen wird. Fur tiefer-
gehende Untersuchungen erweist sich das Potential nur in der
Form (3.6) verwendbar.
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By partial integration we may rewrite (3.6) in the form

(3.7) vis) = «$dpyls-tult)dt

For boundaries 8Q smooth we get
(3.8) -Aryls-t) = Vmctglls-t) +  gls, t)

with gl-, -) corresponding regular. Thus the integral equation (3.7) has the
structure

(3.9) v = Au + Au

with A being an operator compact in H resp. in C°*. In view of (1.4) the
solution U of (3.9) solves

(3.10) u = -Av  + AAu

The procedure discussed in section 2 leads to the finite element approxi-
mation defined by

(3.11) Uy = -PhAv  + PrA A Up

Since (3.6) possesses an unique solution also (3.11) is uniquely solvable for h
small enough, see Schatz, A. (1374). It is worthwhile to mention that U, de-

fined by (3.11) may be considered as the least squares approximation on U
according to (3.9),

The error estimates concerning the approximation on the solution of (3.11)
are obvious and not discussed in detail here.

4.

Although in the present context there is no need for discussing the con-
vergence of the Galerkin method for equations of the type (1.1) this question
is still of interest. Let the Galerkin approximation @ = Gou € Spon the so-
lution U of (1 .1) be defined by

(4.1) X, A®) = (y, Au forxe &, .

In order to apply the theory developed by Babuska, I. (1971) the two proper-
ties have to hold:



JAN FEM and conformal mappings

Proposition 4.1: For Y € Sythe condition holds true with a constant m:

(4.2) Tyl < msup{lx, Ay) | xeSn A Txl<c1} .

Proposition 4.2: Y = 0 is the consequence of iy eSpand

(4.3) o, Aw) = 0 for xeSn

At least for spline spaces subordinate to uniform subdivisions these condi-
tions are valid. This leads to the boundedness of the Galerkin approxima-
tion in the norm of the space H:

(4.4) ol < m-tull

By the argument analogue to that used in section 2 we get for spline
spaces of the type Sk'' with k 2 1the boundedness in H; and because of
duality also in H-4:

m-flull

[ 1a%

ol
(4.5)

m-Hul,

[T

ol

with a constant M independent, of h. It is of interest and will be needed
below that

Proposition 4.3: For y € Spthe condition holds true

(4.6) Tyl < m-sup{lx, Aw) | xe5nh A HxILy=1)

is equivalent to (4.5). This may be regarded as generalization of a condition
given by Polskii, J (1955). (4.4), (4.5) guarantee almost best convergence of
the Galerkin approximations in the norms of H.4, H, and H;.

With respect to Lo~ error estimates two results are to be mentioned. Stiller,
S. (1979} treats the boundary value problem (3.1) using a double layer poten-
tial. The integral operator entering the corresponding singular integral
equation of the second kind has properties similar to A in (1.1). Stiller uses
step functions as approximations. The essential point in her work is a
carefull analysis of the structure of the corresponding linear equations.
In Rannacher, R. and Wendland, W. (1985) operator equations and the



JAN

FEM and conformal mappings

convergence in L., of corresponding Galerkin approximations are dis-
cussed. In their terminology the operator A (1.1) is of order zero. Unfor-

tunately the theory developed in the paper mentioned is based on the as-
sumption that the underlying operator is positive definite or that at least a
Garding type inequality will hold.

Analogue to the analysis in case of boundary value problems we will work
with weighted norms (For details see e. g. Nitsche, J. and Wheeler, M.
(1981)). Let the weight factor P = p(s-S,) be defined by

(4.7 Y = K + sinis-so)

with S, € [0, 27) to be fixed later and let for @ € R the weighted scalar

products resp. norms be defined by
(v, w)q $p%vwds

flivily

(4.8)

v, v)a'?

Actually we will work with @ = 1. In order to avoid any confusion with the
norms in H; resp. H.; we will still use the subscripts @ resp. -@. The con-
nection of weighted norms and the L.-norm is given by the inequality (for
a=1

(4.9) Mvlla < eh™2ivi_
for any v € C° on the one hand and by

(4.10) Ixh_ <  ch'?sup{ lixlls| so €0, 2m }

for X € 5, on the other hand. Therefore it suffices to get a bound for @ = Gpu
€ 5, in the @-norm. Let us introduce an auxiliary function W by

(4.11) Aw = e
and let W = Gyw €5, be its Galerkin approximation defined by:
(4.12) X, Awd = [y, pto)

Using (4.1) we get
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ol (p, Aw)

(413)

lp, Aw) = (u, Aw)

(u, Alw-w)) + (u, 9)q

Therefore we derive

(4.14) oz

1A

Mulla-llollc + Wulla-ll Alw - wll-a
and further (with 6 > 0 arbitrary small)

(4.15) ollz2 < collullz + 6llAIwW-wIl%

In order to analyze the second term on the right hand side of (4.15) we may
rewrite it in the form

Il Atw - w) %4 (ppty - Aw), Alw - W)

(4.16)

(@ - pAw, Alw - )

Because of the defining relation for W we can replace ¢ in (4.16) by any
element Y € Sp. In this way we get
MAw-wllZa = {w-pAuw, Alw - w)
(4.17)
< NAw-wll-g-llpAw-ywils

From the last inequality we get at once an estimate for the second term on
the right hand side in (4.15)

(4.18) MAW-wlle < inf{ lpAw-ylls | weSn}

In view of extensions to higher dimensions to be published elsewhere we
denote the derivative W of a function W = W(s) subsequently by vw. By stan-
dard estimates we get from (4.18)

(4.19) MAw-wll.a < chll vipAwlla
Our aim is to prove the inequality
(4.20) l ol < cliulle

which leads because of (4.9), (4.10) to the final estimate

10
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(4.21) BGul_ < cllu I

Because of (4.15), (4.19) it is sufficient to prove

(4.22) llv(pAwWl, < ch™llells
Itis
(4.23) Vi(pAw) = (VpAw + p-vi(Aw)

Therefore we get - remembering @ = 1

Il v (pAwlq < clAwll  + clivAwl_q

fa

(4.24)

< 4 + P

d1may be estimated in the way

H < cl Awll = cllwl
(4.25) < clwl = cllAwl
< clploll < ch'llol,

Next we write }, in the form (with the abbreviation 0 = g(s) = sinls-sy))

pt; = chlvAW IP + cll ov(Aw) I?
(4.26)

- B+ 3

Parallel to (1.3) for any function z € H,

(4.27) It v(Az) Il = lAvzl = vzl
holds true. Thus we get
(4.28) 43 = chlvwl = chllwl,

and using inverse properties of the approximation spaces Sy
(4.29) 43 < cllwl
Thus {3 can be estimated like },. Because of

(4.30) ovi(Aw) = vigAw) - cosl- - splAw

we get
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34 cll vicAw Il + 1 Awll

[ TaY

(4.31)
pS s + e

The second term 3¢ is bounded like }4, 3. Since

(4.32) [o, A] = UA-Aog

is a bounded operator in L, and thus ll[g, Alwllis bounded like }; it remains
to analyze

¥ cll v(Aow) I

(4.33)
cll ow Iy

At this place one remark is worthwhile to be made. Besides the estimate
(4.10) all the derivations, estimates etc. of this section are independent of
the structure of the underlying approximation spaces. In order to esti-
mate §s we will make use of a certain super-approximability property

typically for splines resp. finite elements (see Nitsche, J. and Schatz, A
(1972)).

Toany @ eShthere exists an element Y € Sh according to

(4.34) oy - @l < chllyl for k=-1,0,1

Now let W be an approximation on OW according to (4.34). Then we get

cll ow Il < clwly + chiwly
(4.35)

s & + ds

The term }sis bounded like ;. Now we make use of Proposition 4.3. Let ye€
Sh be such that

(4.38) clhw il < oly, Aw)

and normed by ll @ IL; = 1. We may replace W on the right hand side leading
to
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cll l:J "1

A

cly, Aow} + chilwly
(4.37)

- ds + dio
d10 corresponds }s. Next we rewrite ¢s in the form

(y, Aow) = oy, Aw} - (y,[o, Alw)
(4.38)

= 411 + 412

412 may be estimated like };. With W chosen according to (4.34) we get
because of (4.12)

(oy, Aw) oy -y, Aw) + (@, Aw)

(4.39) oy -y, Aw) + (@, Aw)

(OW-y,Aw) - (oy-y, pie) + (oy, pe) .
Thus }s is bounded by

(4.40) 49 chlwly +chlip™ ol + I sptol,.

[

The first term on the right hand side is covered by ¢3. Because of

(4.41) v(p™t ol s Plivgl + 2p7%2 |
we get

Il iJ_I-.p lly & |I|Vq)m.;+1 + 2|||t.p|"u+2
(4.42)

chll o lla

1A

The last term in }5 can be estimated in the same way. Putting together the
above estimates we have proven (4.22) and hence (4.21).

By the argument given in section 2 we have the final result:
The Galerkin operator G, defined by (4.1) is bounded in the
norm of C°,
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