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Abstract

Are there infinitely many prime pairs with given even difference? Most mathematicians think so. Using
a strong arithmetic hypothesis, Goldston, Pintz and Yildirim have recently shown that there are infinitely
many pairs of primes differing by at most sixteen.

There is extensive numerical support for the prime-pair conjecture (PPC) of Hardy and Littlewood [G.H.
Hardy, J.E. Littlewood, Some problems of ‘partitio numerorum’. III: On the expression of a number as a
sum of primes, Acta Math. 44 (1923) 1–70 (sec. 3)] on the asymptotic behavior of π2r (x), the number of
prime pairs (p, p+ 2r) with p ≤ x . Assuming Riemann’s Hypothesis (RH), Montgomery and others have
studied the pair-correlation of zeta’s complex zeros, indicating connections with the PPC. Using a Tauberian
approach, the author shows that the PPC is equivalent to specific boundary behavior of a function involving
zeta’s complex zeros. A certain hypothesis on equidistribution of prime pairs, or a speculative supplement
to Montgomery’s work on pair-correlation, would imply that there is an abundance of prime pairs.
c© 2008 Elsevier Inc. All rights reserved.
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Part I. Introductory survey

1. Prime pairs

The prime twins (p, p + 2) with p ≤ 100 are

(3, 5), (5, 7), (11, 13), (17, 19),

(29, 31), (41, 43), (59, 61), (71, 73).
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We also list the prime pairs (p, p + 6) with p ≤ 100:

(5, 11), (7, 13), (11, 17), (13, 19), (17, 23), (23, 29),

(31, 37), (37, 43), (41, 47), (47, 53), (53, 59), (61, 67),

(67, 73), (73, 79), (83, 89), (97, 103).

The reader should compare the totals, and may check that there are nine prime pairs (p, p + 4)
with p ≤ 100.

Are there infinitely many prime twins (p, p+2), and infinitely many prime pairs (p, p+2r)
for any given difference 2r ≥ 2? No proof is known, but one has found a prime twin for which p
has more than 58 000 digits! See Twin Prime Search [48]. Denoting the number of prime twins
(p, p + 2) with p ≤ x by π2(x), one has a good idea how π2(x) should grow as x → ∞; see
Section 3. Similarly for the counting function π2r (x), the number of prime pairs (p, p + 2r)
with p ≤ x .

Is it true that π6(x) ≈ 2π2(x) and that π4(x) ≈ π2(x) for all large x? Assuming π2(x)→∞,
does

π6(x)/π2(x) tend to 2 as x →∞?

We would then say that π6(x) is asymptotic to 2π2(x), in formula,

π6(x) ∼ 2π2(x) as x →∞.

2. Distribution of the primes

Legendre and Gauss already conjectured that π(x), the number of primes p ≤ x , is asymptotic
to x/ log x , where log x denotes the natural logarithm. The so-called prime number theorem
(PNT),

π(x) ∼
x

log x
as x →∞, (2.1)

was proved only in 1896, more or less independently by the French mathematician Hadamard
and the Belgian mathematician de la Vallée Poussin. (H’s product representation of entire analytic
functions played a big role in these first proofs of (2.1). A little later VP arrived at formula (2.4)
with a good remainder; cf. Landau [37].)

Denoting the n-th prime by pn , the formula π(pn) = n can be used to show that

pn ∼ n log n as n→∞,

a formula equivalent to the PNT. But how regular is the distribution of the primes? Suppose for
a moment that the primes are very evenly distributed, say

|pn − n log n| < (1/3) log n for all n > n0.

Then

|pn+1 − (n + 1) log(n + 1)| < (1/3) log(n + 1) for n ≥ n0,

and it would follow that

pn+1 − pn > (n + 2/3) log(n + 1)− (n + 1/3) log n > (1/3) log n

for all n ≥ n0. But this would imply that there could be only a limited number of prime twins or
prime pairs! Indeed, taking n0 > e6 as we may, one could not have pn+1− pn = 2 when n ≥ n0 !
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The conclusion is that the primes cannot be very regularly distributed. The PNT shows that in
an average sense,

pn+1 − pn ≈ log n.

However, it is known that the quotient

pn+1 − pn

log n

can become relatively small (and large) infinitely often. Erdős proved long ago that

c = lim inf
n→∞

pn+1 − pn

log n
< 1.

Over the years, the best estimate for c came down to about 1/4. Quite recently, Goldston, Pintz
and Yildirim [23] could show that

c = lim inf
n→∞

pn+1 − pn

log n
= 0. (2.2)

In the other direction, it has been known for some time that

lim sup
n→∞

pn+1 − pn

log n
= ∞.

For (2.2) GPY used a result of Bombieri [4] and A.I. Vinogradov [50] on (weighted)
equidistribution of primes in arithmetic progressions; see below. By assuming a strong hypothesis
of Elliott and Halberstam [12] on this kind of equidistribution, Goldston, Pintz and Yildirim could
actually prove that

lim inf
n→∞

(pn+1 − pn) ≤ 16; (2.3)

cf. also Goldston, Motohashi, Pintz and Yildirim [22] and the exposition by Soundararajan [45].
This conditional result would imply that there must be infinitely prime pairs (p, p+2r) for some
difference 2r ≤ 16 !

Remarks 2.1. A better approximation to π(x) than (2.1) is given by the so-called logarithmic
integral:

π(x) ∼ li(x) =
∫ x

2

dt

log t
=

x

log x
+

x

log2 x
+ · · · ; (2.4)

cf. (2.5) and the conjectured estimate (4.6).
For primes in arithmetic progressions

a, a + d, a + 2d, . . . , (a, d) = 1, a < d

the counting function π(x, d, a) satisfies the asymptotic relation

π(x, d, a) ∼
1

φ(d)
li(x),

where φ(d) is Euler’s function, the number of n ≤ d prime to d . A remainder estimate of de la
Vallée Poussin implies that for every constant R,

E(x, d) = max
a

∣∣∣∣π(x, d, a)−
li(x)
φ(d)

∣∣∣∣ ≤ C(R, d)
x

(log x)R . (2.5)
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Bombieri and Vinogradov proved a corresponding estimate that is uniform in d:∑
d≤xβ

max
y≤x

E(y, d) ≤ C(R, β)
x

(log x)R (2.6)

for any β ∈ (0, 1/2). This result sufficed for (2.2). Elliott and Halberstam conjectured that (2.5)
is valid for any number β ∈ (0, 1). For (2.3) GPY had to assume this conjecture for a value of β
close to 1.

3. The prime-pair conjecture of Hardy and Littlewood

How many prime twins (p, p + 2) should one expect with p ≤ x? Let us suppose for a
moment that the primes are distributed more or less at random. Since pn+1 − pn ≈ log n on
average, the ‘probability’ that a random n is prime would be about 1/ log n. Now, for most n ≤ x
one has log n ∼ log x . Indeed, if n > x1−ε then log n > (1 − ε) log x . Thus, the chance that
n ≤ x is prime would be about 1/ log x . Similarly, the chance that n + 2 ≤ x is prime would be
about 1/ log(n + 2) ≈ 1/ log x . Hence, the chance that a pair (n, n + 2) with n ≤ x is a prime
twin would be about

1/ log2 x .

There is of course something wrong with this argument. For one thing, an even n > 2 cannot be
prime. Also, for an odd n, the probabilities that n and n + 2 are both prime are not independent.
However, one can correct for these facts, cf. Remark 3.2, and it remains a reasonable conjecture
that π2(x), the number of prime twins (p, p + 2) with p ≤ x , is of the order x/ log2 x . Around
1920 Viggo Brun developed a sieve method which gave an upper bound: π2(x) = O(x/ log2 x).
Similar arguments apply to π2r (x), the number of prime pairs (p, p + 2r) with p ≤ x .

In 1923 Hardy and Littlewood published a long paper [25] on the Goldbach problems and
prime pairs, prime triplets, etc. Using their new circle method and a strong hypothesis on the
zeros of Dirichlet L-functions, they proved that every sufficiently large odd number n is the sum
of three primes; later, I.M. Vinogradov [51] gave an unconditional proof. Using the circle method
heuristically, H and L also formulated conjectures on the number of representations of an even
number 2r as a sum of primes p + q or a difference p − q . For prime pairs (p, p + 2r), they
arrived at the following precise conjecture:

Conjecture 3.1 (Prime-Pair Conjecture, PPC). One has

π2r (x) ∼ 2C2r
x

log2 x
as x →∞. (3.1)

Here

C2 =
∏

p prime,p>2

{
1−

1

(p − 1)2

}
≈ 0.6601618, (3.2)

and

C2r = C2

∏
p|r, p>2

p − 1
p − 2

. (3.3)

Thus, for example, C4 = C8 = C2 and C6 = 2C2. There is a great deal of numerical support
for the PPC. On the Internet one finds counts of twin primes for p up to 5× 1015 by Nicely [42].
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Table 1
Counting prime pairs

2r x C2r /C2

103 104 105 106 107 108

2 35 205 1224 8 169 58 980 440 312 1
4 41 203 1216 8 144 58 622 440 258 1
6 74 411 2447 16 386 117 207 879 908 2
8 38 208 1260 8 242 58 595 439 908 1

10 51 270 1624 10 934 78 211 586 811 4/3
12 70 404 2421 16 378 117 486 880 196 2
14 48 245 1488 9 878 70 463 528 095 6/5
16 39 200 1233 8 210 58 606 441 055 1
18 74 417 2477 16 451 117 463 880 444 2
20 48 269 1645 10 972 78 218 586 267 4/3
22 41 226 1351 9 171 65 320 489 085 10/9
24 79 404 2475 16 343 117 342 880 927 2
30 99 536 3329 21 990 156 517 1 173 934 8/3

210 107 641 3928 26 178 187 731 1 409 150 16/5
L2(x): 46 214 1249 8 248 58 754 440 368

In Amsterdam, Fokko van de Bult [6] has recently counted the prime pairs (p, p + 2r) with
2r ≤ 103 and p ≤ x = 103, 104, . . . , 108. Table 1 is based on his work. The bottom line shows
(rounded) values L2(x) of the comparison function 2C2li2(x), where

li2(x) =
∫ x

2

dt

log2 t
∼

x

log2 x
. (3.4)

Remarks 3.2. For the Hardy–Littlewood circle method, see Vaughan [49].
There are ‘Goldbach representations’ 2r = p+ q for ‘most’ r ; cf. Hardy and Littlewood [26]

(who used a strong hypothesis on zeros of L-functions), and van der Corput [11] (who used
Vinogradov’s method and also considered 2r = p − q). For later work on ‘Goldbach’, see
Math. Reviews.

Bateman and Horn [2] formulated extensions of the Hardy–Littlewood conjectures and
supported them by probabilistic arguments; see also the survey paper by Hindry and Rivoal [29]
and cf. Soundararajan [45] for the special case of prime pairs.

4. Zeta function, Tauberian theory and PNT

Euler verified the infinity of primes by factoring the zeta function,

ζ(s) =
∞∑

n=1

1
ns =

∏
p prime

(
1+

1
ps +

1

p2s
+ · · ·

)
=

∏
p prime

1
1− 1/ps ,

and letting s ↘ 1. Comparison of ζ(s) with
∫
∞

1 t−sdt shows that ζ(s) ∼ 1/(s − 1) as s ↘ 1.
Following Riemann, we will use ζ(s) also for complex s = σ + iτ . Series and product are
absolutely convergent for σ > 1, and define ζ(s) as an analytic function of s for σ > 1. A basic
property is that the difference

ζ(s)−
1

s − 1
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can be extended to an analytic function on the whole complex s-plane. One can use Euler’s
product to derive that ζ(s) 6= 0 for σ ≥ 1. All nonreal zeros must lie in the strip {0 < σ < 1} and
there are infinitely many on the line {σ = 1/2}; cf. Titchmarsh [47]. According to Riemann’s
(famous, unproved) Hypothesis (RH), all nonreal zeros of ζ(s) should lie on that line.

One of the simplest proofs of the prime number theorem (PNT) uses the zeta function and
the Tauberian theorem of Wiener and Ikehara (1931–32). By a Tauberian theorem, one obtains
information about an unknown quantity from the behavior of a function involving that quantity.
The Wiener–Ikehara theorem reads as follows; see [30,53] and cf. [35]:

Theorem 4.1. Consider any Dirichlet series

f (s) =
∞∑

n=1

an

ns with an ≥ 0 (4.1)

that converges for σ = Re s > 1 (so that the sum function is analytic there). Suppose that for
some constant A, the difference

g(s) = f (s)−
A

s − 1
(4.2)

is analytic, or at least continuous, for σ ≥ 1. Then∑
n≤x

an ∼ Ax as x →∞. (4.3)

A simple example is provided by f (s) = ζ(s). Here an = 1, A = 1, and∑
n≤x

an = [x] ∼ x .

To derive the PNT, observe first that the product (s − 1)ζ(s) is analytic and zero-free for σ ≥ 1.
From this it follows that log{(s − 1)ζ(s)} is analytic for σ ≥ 1. Hence, the derivative

1
s − 1

+
ζ ′(s)

ζ(s)

is also analytic for σ ≥ 1. Now differentiate the logarithm of Euler’s product for ζ(s). This gives

−
ζ ′(s)

ζ(s)
=

∑
p
(log p)

(
1
ps +

1

p2s
+ · · ·

)
=

∑
p

log p

ps + g1(s),

with a function g1(s) that is analytic for σ > 1/2. Combining results, one finds that

f (s) =
∑

p

log p

ps =
1

s − 1
+ g2(s), (4.4)

where g2(s) is analytic for σ ≥ 1. By Wiener–Ikehara, the conclusion is that

θ(x) =
∑
p≤x

log p ∼ x . (4.5)

This is equivalent to the PNT. Indeed, log p ∼ log x for ‘most’ p ≤ x , so that

x ∼
∑
p≤x

log p ∼ (log x)
∑
p≤x

1 = (log x)π(x).
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Another simple proof of the PNT is due to Newman [41]; cf. [32,33]. One can show that the
following error estimate is equivalent to Riemann’s Hypothesis:

π(x)− li(x)� x (1/2)+ε for every ε > 0. (4.6)

Here the symbol� is shorthand for the O-notation. Table 1 supports the analogous conjecture
that for every r and ε > 0

π2r (x)− 2C2r li2(x)� x (1/2)+ε. (4.7)

Starting with Montgomery’s work [39] one has realized that there is a deep connection
between the prime-pair conjecture and the fine distribution of the complex zeros of the zeta
function. Many authors have investigated the relation, notably Goldston, see [17] and Section 16;
there are connections with random matrix theory. Following a lead of Arenstorf [1] we will use
a Wiener–Ikehara Tauberian theorem to study prime pairs. This will show that the PPC has
an equivalent formulation involving zeta’s complex zeros; see Sections 8–13. Furthermore, a
certain randomness of the primes would imply that prime pairs with increasing values of 2r are
equidistributed in some average sense. As a result there would be an abundance of prime pairs
for some differences 2r ; see Sections 14 and 15.

Part II. Prime pairs and zeta’s zeros

5. Preliminary observations

As before, let

π2r (x) = {# prime pairs (p, p + 2r) with p ≤ x}. (5.1)

For Tauberian treatment of the PPC, one may introduce the sum

θ2r (x) =
∑

p,p+2r prime;p≤x

log2 p. (5.2)

Since log p ∼ log x for most p ≤ x , the PPC (3.1) is equivalent to the asymptotic relation

θ2r (x) ∼ 2C2r x . (5.3)

By Wiener–Ikehara, this relation would follow if the function

D̃2r (s) =
∑

p,p+2r prime

log2 p

ps (5.4)

can be written as 2C2r/(s − 1)+ g2r (s), where g2r (s) is continuous for σ ≥ 1.
Following Brun’s early work, sieve methods have become an important part of prime-number

theory. Using an advanced sieve, Jie Wu [54] has shown that π2(x) < 6.8 C2 x/ log2 x for all
sufficiently large x . The best result in the other direction is Chen’s [10]: if N (x) denotes the
number of primes p ≤ x for which p+ 2 has at most two prime factors, then N (x) ≥ cx/ log2 x
for some c > 0. There are related results for prime pairs (p, p + 2r). In particular, there is a
number x0 independent of r such that

π2r (x) ≤ 9C2r x/ log2 x ≤ C(log log 3r)x/ log2 x for all x ≥ x0; (5.5)

see the book Sieve Methods by Halberstam and Richert [24].
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We will also use the important fact that the prime-pair constants C2r have average 1.
Recently, Tenenbaum [46] found an elegant proof by using an appropriate Dirichlet series and the
Wiener–Ikehara theorem. There is a strong estimate in the work of Bombieri and Davenport [5],
which was improved further by Friedlander and Goldston [13] to

Sm =

m∑
r=1

C2r = m − (1/2) log m +O{log2/3(m + 1)}. (5.6)

The following sections lead up to a statement of the principal results of the paper in Section 8.

6. Refinement of the Tauberian approach

It will be convenient to use a two-way extension of the Wiener–Ikehara theorem due to the
author [34]:

Theorem 6.1. Let
∑
∞

n=1 an/nw with an ≥ 0 converge to a sum function f (w) for w = u + iv
with u > 1. Then∑

n≤x
an ∼ Ax as x →∞ (6.1)

if and only if for u ↘ 1, the difference

f (u + iv)−
A

u + iv
= g(u + iv) (6.2)

has a distributional limit g(1 + iv), which on every finite interval (−B, B) coincides with a
pseudofunction (that may a priori depend on B).

The condition
∑

n≤x an = O(x) would ensure that f (u + iv) and g(u + iv) have a
distributional limit as u ↘ 1. A pseudofunction is the distributional Fourier transform of
a bounded function which tends to zero at ±∞; locally, such a distribution is given by
trigonometric series with coefficients that tend to zero. A pseudofunction cannot have pole-type
singularities. In the case an ≥ 0, local pseudofunction boundary behavior of g(w) in (6.2) implies
that

(w − w0)g(w)→ 0 (6.3)

for angular approach of w (from the right) to any point w0 on the line {u = 1}; cf. [31], or [32],
Theorem III.3.1.

To simplify the subsequent analysis, we replace the functions θ2r (x) and D̃2r (s) of Section 5
by functions with the same behavior that involve von Mangoldt’s function Λ(n). The latter is
generated by the Dirichlet series

∞∑
n=1

Λ(n)
ns = −

ζ ′(s)

ζ(s)
=

∑
p prime

(log p)

(
1
ps +

1

p2s
+ · · ·

)
;

cf. Section 4. One has Λ(k) = log p if k = pα with p prime, and Λ(k) = 0 if k is not a prime
power. Since there are only O(

√
x) prime powers pα ≤ x with α ≥ 2, the difference between

ψ2r (x)
def
=

∑
n≤x

Λ(n)Λ(n + 2r) (6.4)
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and θ2r (x) is not much larger than
√

x . Thus the PPC is also equivalent to the relation

ψ2r (x) ∼ 2C2r x as x →∞. (6.5)

Similarly, the function

D2r (s)
def
=

∞∑
n=1

Λ(n)Λ(n + 2r)

ns(n + 2r)s
(s = σ + iτ, σ > 1/2) (6.6)

behaves in the same way as D̃2r (2s) when σ is close to 1/2. Setting

D2r (s)−
C2r

s − 1/2
= G2r (s), (6.7)

Theorem 6.1 with w = 2s shows that the PPC as formulated in (6.5) is equivalent to good
boundary behavior of G2r (s) as σ ↘ 1/2.

Averages. The work on the Goldbach problems profited from knowledge of an average number
of representations. Could one also introduce averages in the case of the PPC? One might try to
study the average

2
λ

∑
2r≤λ

D2r (s) for large λ.

Under the PPC it should behave roughly like

2
λ

∑
2r≤λ

C2r

s − 1/2
≈

1
s − 1/2

for σ close to 1/2, because the constants C2r have average 1.

7. Auxiliary functions

Ordinary sums of functions D2r (s) do not handle well, but there are manageable combinations
V λ(s) of functions D2r (s) with nonnegative coefficients. They are derived from a certain
repeated complex integral T λ(s) which extends and modifies an integral of Arenstorf [1]; see
Section 10. It involves a parameter λ > 0 and a parametric function Eλ; the resulting formula
for V λ(s) is

V λ(s) = 2
∑

0<2r≤λ

Eλ(2r)D2r (s) = T λ(s)− D0(s)+ Hλ(s). (7.1)

Here, the function D2r (s) is given by (6.6), also when r = 0, and Hλ(s) is holomorphic
for σ > 0. The parametric function Eλ(ν) = E(ν/λ) acts as a sieving device. The basic
function E(ν) is taken even, of compact support, and decreasing on [0,∞) with derivative E ′(ν)
of bounded variation. For convenience, we normalize E(ν) so that its support is [−1, 1] and
E(0) = 1. A typical example is given by the Fourier transform of the Fejér kernel for R,

EλF (ν) =
1
π

∫
∞

0

sin2(λt/2)

λ(t/2)2
cos νt dt =

{
1− |ν|/λ for |ν| ≤ λ,
0 for |ν| ≥ λ.

(7.2)

One sometimes needs more smoothness, and then may use the Fourier transform of the Jackson
kernel for R,



78 J. Korevaar / Journal of Approximation Theory 158 (2009) 69–96

EλJ (ν) =
3

4π

∫
∞

0

sin4(λt/4)

λ3(t/4)4
cos νt dt

=

1− 6(ν/λ)2 + 6(|ν|/λ)3 for |ν| ≤ λ/2,
2(1− |ν|/λ)3 for λ/2 ≤ |ν| ≤ λ,
0 for |ν| ≥ λ.

(7.3)

The PPC and the average 1 of the constants C2r lead one to expect that V λ(s) has a first-order
pole at s = 1/2 with residue

2
∑

0<2r≤λ

E(2r/λ)C2r ∼ λ

∫ 1

0
E(ν)dν

def
= AEλ (7.4)

as λ→∞; cf. (6.7) and (5.6).
For the following, we need a Mellin transform associated with the kernel Eλ(ν) via its Fourier

transform:

Mλ(z)
def
=

1
π

∫
∞

0
Êλ(t)t−zdt =

1
π

∫
∞

0
t−zdt · 2

∫ λ

0
Eλ(ω)(cos tω)dω

=
2λ
π

∫ 1

0
E(ν)dν

∫
∞−

0
t−z(cos λνt)dt

=
2
π
λzΓ (1− z) sin(π z/2)

∫ 1

0
E(ν)νz−1dν

=
2
π
λzΓ (−1− z) sin(π z/2)

∫ 1+

0
νz+1dE ′(ν); (7.5)

cf. (9.1). In the case of (7.2) this works out to the meromorphic function

Mλ
F (z) =

2
π
λzΓ (−z − 1) sin(π z/2), (7.6)

with (first-order) poles at z = −1, 1, 3, . . . and residue −λ/π at the pole z = 1. For the kernel
in (7.3) one obtains

Mλ
J (z) =

3
4π

∫
∞

0

sin4(λt/4)

λ3(t/4)4
t−zdt

=
24
π
λz(1− 2−z−1)Γ (−z − 3) sin(π z/2). (7.7)

In the general case Mλ(z) turns out to be meromorphic for x > −1 with poles at z = 1, 3, . . ..
The residue at z = 1 then is −(2λ/π)

∫ 1
0 E(ν)dν. We need a good bound for Mλ(z) on vertical

lines: for fixed λ, one will have the majorization

Mλ(x + iy)� (|y| + 1)−x−3/2 when −1+ δ ≤ x ≤ C, |y| ≥ 1. (7.8)

This may be derived from the standard inequalities

Γ (z)� |y|x−1/2e−π |y|/2, sin(π z/2)� eπ |y|/2 (7.9)

that are valid for |x | ≤ C and |y| ≥ 1. The inequality for Γ (z) follows from asymptotic estimates
in Whittaker and Watson [52].
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The function Mλ
J (z) of (7.7) is holomorphic for x < 1 and it satisfies an inequality (7.8) with

−7/2 in the exponent instead of −3/2.

8. Results

Our results involve the complex zeros ρ of the zeta function. Taking multiplicities into
account, the zeros above the real axis will be arranged according to non-decreasing imaginary
part:

ρ = ρn = βn + iγn, 0 < γ1 ≈ 14 < γ2 ≈ 21 ≤ · · · , n = 1, 2, . . .

(with βn = 1/2 as far as zeros have been computed); we write ρn = ρ−n . In the theorem below
the zeros appear in double sums

Σλ
B(s)

def
=

∑
ρ,ρ′;|Im ρ|>B,|Im ρ′|>B

Γ (ρ − s)Γ (ρ′ − s)

×Mλ(ρ + ρ′ − 2s) cos{π(ρ − ρ′)/2}. (8.1)

Here, B may be any number ≥ 2 and Mλ(·) is given by (7.5). Under RH the double series is
absolutely convergent for 1/2 < σ < 1; cf. Lemma 9.2. Without RH the double sum may be
interpreted as a limit of sums over the zeros ρ, ρ′ with |Im ρ| and |Im ρ′| between B and R as
R→∞; cf. [36]. Here, R should ‘stay away’ from the numbers γn ; cf. Section 12.

The formula for V λ(s) in (7.1) contains the function T λ(s) for which a repeated complex
integral is introduced in Section 10. Moving the paths of integration in this integral and using the
residue theorem one obtains

Theorem 8.1. For any λ > 0, any sieving function E as described in Section 7, any B > 2 and
for s = σ + iτ with 1/2 < σ < 1, |τ | < B there are holomorphic representations

V λ(s) = 2
∑

0<2r≤λ

E

(
2r

λ

)
D2r (s)

=
−1/4

(s − 1/2)2
+

AEλ

s − 1/2
+ Σλ

B(s)+ Hλ(s, B)

=
AE (λ− 1)

s − 1/2
+ Σλ

B(s)− Σ 1
B(s)+ Hλ(s, B), (8.2)

where AE
=
∫ 1

0 E(ν)dν and Σλ
B(s) is given by (8.1) (with proper interpretation of the double

sum); the various functions Hλ(s, B) are analytic for 1/2 ≤ σ < 1 (for 1/4 < σ < 1 under RH)
and |τ | < B. On the real interval {1/2 ≤ s ≤ 3/4} one has Hλ(s, B) = O(λ log λ) as λ→∞.

The (extended) Wiener–Ikehara theorem will now show that the Hardy–Littlewood conjecture
for prime pairs (p, p+2r) is true if and only if the sums Σλ

B(s) exhibit certain specific boundary
behavior as σ ↘ 1/2; cf. (6.7). For a precise result set

R(λ) = RE (λ) = 2
∑

0<2r≤λ

E

(
2r

λ

)
C2r − AE (λ− 1). (8.3)

By induction, Theorems 8.1 and 6.1 imply
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Corollary 8.2. Suppose that the prime-pair conjecture for pairs (p, p + 2r) is true for every
r < m. Then the PPC for prime pairs (p, p + 2m) is true if and only if, for some (or every)
number λ ∈ (2m, 2m + 2], some (or every) sieving function E and every B > 2, the function

Gλ(s) = Gλ
B(s)

def
= Σλ

B(s)− Σ 1
B(s)−

R(λ)

s − 1/2
(8.4)

has good (local pseudofunction) boundary behavior for σ ↘ 1/2 when |τ | < B.

Observe that the function Gλ(s) does have good boundary behavior when λ ≤ 2; under RH, it
will even be analytic for 1/4 < σ < 1 and |τ | < B. Indeed, V λ(s) = 0 for λ ≤ 2. This supports
the following

Conjecture 8.3. For every λ > 0, every sieving function E and every B > 2, the function Gλ
B(s)

in (8.4) has an analytic continuation to the domain given by 1/4 < σ < 1, |τ | < B.

If this is true, the counting functions π2r (x) all satisfy estimates of type (4.7).

Conditional abundance of prime pairs. We start with an important positivity property of certain
double sums Σλ

B(s) in (8.1):

Proposition 8.4. For a sieving function Eλ (such as EλF or EλJ ) for which Êλ(t) ≥ 0, one has
Σλ

B(s) ≥ 0 when 1/2 < s < 1.

This positivity and a certain equidistribution hypothesis for prime pairs with increasing values
of 2r would imply that there is an abundance of prime pairs for some difference 2r :

Theorem 8.5. Suppose that there are a positive integer m, a positive constant c and a sequence
S of integers µ → ∞, such that for µ ∈ S and sufficiently large x, say x ≥ x1 = x1(µ) with
log x1(µ) = o(µ), one has

1
m

m∑
r=1

π2r (x) ≥ c ·
1
µ

µ∑
r=1

π2r (x). (8.5)

Then

lim sup
x→∞

1
m

m∑
r=1

π2r (x)

x/ log2 x
≥ c. (8.6)

There is both heuristic and numerical support for the hypothesis in the theorem; see
Section 14.

Since the constants C2r have average 1, the function R(λ) in (8.3) is o(λ) as λ→∞; cf. (7.4).
(By (5.6) it will even be O(log λ).) A speculative supplement to Montgomery’s work [39] on the
pair-correlation of zeta’s complex zeros would imply that the differences Σλ

B(s)−Σ 1
B(s) indeed

have ‘upper residue’ o(λ) as s ↘ 1/2. This too would imply that there is an abundance of prime
pairs; see Section 16.

9. Complex representation for Eλ(α − β)

For the discussion of T λ(s) in Section 10 we need a complex integral for the sieving function
Eλ(α−β) in which α and β occur separately. It is obtained from the representation of Eλ(α−β)
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Fig. 1. The path L(c1, c2, B).

as an inverse Fourier (cosine) transform:

Eλ(α − β) =
1
π

∫
∞

0
Êλ(t) cos{(α − β)t}dt

and a repeated complex integral for

cos{(α − β)t} = cosαt cosβt + sinαt sinβt.

To set the stage, we start with a complex representation for cosα and sinα. Setting z = x+ iy we
write L(c) for the ‘vertical line’ {x = c}; the factor 1/(2π i) in complex integrals will be omitted.
Thus ∫

L(c)
f (z)dz

def
=

1
2π i

∫ c+i∞

c−i∞
f (z)dz.

Mellin inversion of the improper Euler integral∫
∞−

0
(cosα)αz−1dα = Γ (z) cos(π z/2) (0 < x < 1) (9.1)

now gives the improper complex integral

cosα =
∫
∗

L(c)
Γ (z)α−z cos(π z/2)dz = lim

A→∞

1
2π i

∫ c+iA

c−iA
· · · (0 < c < 1/2);

there is a similar representation for sinα. It is important for us to have absolutely convergent
integrals. We therefore replace the line L(c) by a path L(c, B) = L(c1, c2, B) with suitable
c1 < c2 and B > 0 (cf. Fig. 1):

L(c, B) =


the half-line {x = c1,−∞ < y ≤ −B}

+ the segment {c1 ≤ x ≤ c2, y = −B}
+ the segment {x = c2,−B ≤ y ≤ B}
+ the segment {c2 ≥ x ≥ c1, y = B}
+ the half-line {x = c1, B ≤ y <∞}.

(9.2)
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Taking c1 < −1/2 and c2 > 0, one thus obtains the absolutely convergent repeated integral

cos{(α − β)t} =
∫

L(c,B)
Γ (z)α−z t−zdz

∫
L(c,B)

Γ (w)β−wt−w cos{π(z − w)/2}dw.

One now multiplies both sides by Êλ(t), integrates over {0 < t < ∞}, inverts the order of
integration and uses (7.5). The result is

Proposition 9.1. Let α, β > 0, −1/2 < c1 < 0 < c2 < 1/2 and B > 0. Then for sieving
functions Eλ(·) as in Section 7 one has

Eλ(α − β) =
∫

L(c,B)
Γ (z)α−zdz

∫
L(c,B)

Γ (w)β−w

×Mλ(z + w) cos{π(z − w)/2} dw, (9.3)

where Mλ(·) is given by (7.5).

To justify the operations and verify the absolute convergence of the integral in (9.3) and
subsequent repeated integrals, one may use a simple lemma:

Lemma 9.2. For real constants a, b, c, the function

φ(y, v) = (|y| + 1)−a(|v| + 1)−b(|y + v| + 1)−c

is integrable over R2 if and only if a + b > 1, a + c > 1, b + c > 1 and a + b + c > 2. For
integrability over R2

+ the condition a + b > 1 may be dropped.

For verification let A > 0. On the subset of R2 where |y| ≤ A, the condition b + c > 1 is
necessary and sufficient for a finite v-integral. Similarly, for |v| ≤ A and the condition a+c > 1.
When |y + v| ≤ A one needs the condition a + b > 1 in the case of R2. For the fourth condition
one looks at the set where v ≥ y ≥ 1. Setting v = yr with new variable r ,

φ(y, v)dydv � y−a(yr)−b
{y(r + 1)}−c ydydr,

and the right-hand side is integrable over the set {1 < y < ∞, 1 < r < ∞} if and only if
b + c > 1 and a + b + c > 2. Similarly when y and v have opposite sign; one may of course
assume that |y + v| > 1 then.

We turn to Proposition 9.1. Setting z = x + iy, w = u+ iv, (7.9) and (7.8) give the following
majorant for the integrand in (9.3) on the remote parts of the paths L(c, B):

(|y| + 1)c1−1/2(|v| + 1)c1−1/2(|y + v| + 1)−2c1−3/2.

For integrability, one thus needs −1 < c1 < 0. The more stringent requirements in
Proposition 9.1 serve to keep the paths within the vertical strip {−1 < X < 1} where Mλ(Z)
is known to be regular. In the case of a relatively smooth sieving function as in (7.3) the
requirements can be relaxed.

10. The complex integral for Tλ(s)

The function T λ(s) in (7.1) is defined by the integral below for σ > 1+ |c1|, while for s with
smaller real part it is defined by analytic continuation;
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T λ(s) =
∫

L(c,B)
Γ (z)

ζ ′(z + s)

ζ(z + s)
dz
∫

L(c,B)
Γ (w)

ζ ′(w + s)

ζ(w + s)

×Mλ(z + w) cos{π(z − w)/2}dw. (10.1)

Theorem 10.1. Let −1/2 < c1 < 0 < c2 < 1/2. Then the integral (10.1) defines T λ(s) as a
holomorphic function of s = σ + iτ for σ > 1 − c1. Assuming RH, the integral gives T λ(s) as
a holomorphic function for σ > max{(1/2)− c1, 1− c2} and |τ | < B.

The integral has an analytic continuation to the half-plane {σ > 1/2} given by the expansion

T λ(s) =
∑
k,l

Λ(k)Λ(l)k−sl−s Eλ(k − l). (10.2)

Proof (Discussion). For z ∈ L(c, B) and σ > 1−c1, the sum z+s will stay away from the poles
of ζ ′/ζ . Under RH the same holds when σ > max{(1/2) − c1, 1 − c2} and |τ | < B. Indeed, in
that case x + σ > 1/2 and also z + s 6= 1: if x + σ = 1, then z must lie on the part of L(c, B)
where |y| ≥ B, and then y + τ 6= 0. Similarly, for w = u + iv. The absolute convergence of the
repeated integral in (10.1) can be proved in the same way as that of (9.3). Indeed, the quotient
(ζ ′/ζ )(Z) grows at most logarithmically in Y for X ≥ 1, and for X ≥ (1/2) + η under RH;
cf. Titchmarsh [47]. The holomorphy of the integral for T λ(s) now follows from locally uniform
convergence in s.

For the second part we substitute the Dirichlet series for (ζ ′/ζ )(·) into (10.1), initially taking
σ > 1 − c1. Integrating term by term and applying Proposition 9.1 one obtains the expansion
(10.2). Because Eλ(k − l) 6= 0 only for finitely many values of k − l, the series represents
a holomorphic function for σ > 1/2; cf. the proof of Theorem 10.2. The sum of the series
provides an (the) analytic continuation of the integral to the half-plane {σ > 1/2}. �

We will now derive (7.1).

Theorem 10.2. For arbitrary λ > 0 and σ > 1/2,

T λ(s) = D0(s)+ 2
∑

0<2r≤λ

E(2r/λ)D2r (s)+ Hλ
1 (s), (10.3)

where Hλ
1 (s) is holomorphic for σ > 0. On the interval {1/2 ≤ s ≤ 3/4} one has Hλ

1 (s) = O(λ)
as λ→∞.

Proof. Taking k = l in (10.2) one obtains the term D0(s) in (10.3). For |k − l| = 2r one obtains
a constant multiple of D2r (s). The coefficient is different from 0 only if 2r < λ and in fact equal
to 2E(2r/λ). If |k − l| = 2r − 1, one can have Λ(k)Λ(l) 6= 0 only if either k or l is of the form
2α for some α > 0. The resulting functions, for which 2r − 1 must be < λ, are holomorphic for
σ > 0. Analyzing these functions one finds that for real s ≥ 1/2, the sum Hλ

1 (s) of their values
will be O(λ) as λ→∞. �

It remains to determine the analytic character of D0(s):

Lemma 10.3. One has

D0(s) =
∞∑

k=1

Λ2(k)

k2s
=

1/4

(s − 1/2)2
+ H0(s), (10.4)

where H0(s) is analytic for σ ≥ 1/2, and for σ > 1/4 under RH.
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Fig. 2. The path L(d1, d2, B).

Indeed, for x = Re z > 1∑
k

Λ2(k)k−z
=

∑
p
(log2 p)p−z

+ H1(z) = −
d
dz

∑
p
(log p)p−z

+ H1(z)

= −
d
dz

∑
k

Λ(k)k−z
+ H2(z) =

d
dz

ζ ′(z)

ζ(z)
+ H2(z)

=
1

(z − 1)2
+ H3(z),

where H1(z) and H2(z) define holomorphic functions for x > 1/2, while H3(z) is holomorphic
for x ≥ 1, and for x > 1/2 under RH. Finally take z = 2s.

11. From Tλ(s) to a new integral Tλ1 (s)

In our transformations of the integral for T λ(s) it will be convenient to assume RH. With RH
the process is simpler than without; cf. [36]. Another advantage is that a significant constituent
of the function T λ(s) will appear right away.

Taking c1, c2 and s as in the first part of Theorem 10.1 we will move the paths of integration
in the integral for T λ(s), but first change variables. Replacing z by z′ − s and w by w′ − s (and
subsequently dropping the primes), one obtains

T λ(s) =
∫

L(c′,B′)
Γ (z − s)

ζ ′(z)

ζ(z)
dz
∫

L(c′,B′)
Γ (w − s)

ζ ′(w)

ζ(w)

×Mλ(z + w − 2s) cos{π(z − w)/2}dw. (11.1)

Here, the paths of integration initially depend on s, with horizontal segments that may be at
different distances from the real axis. However, by our standard estimates and Cauchy’s theorem,
one may choose c′1 = (1/2) + η, c′2 = 1 + η (with 0 < η ≤ 1/2), use a constant B ′, and take
(1/2)+ η < σ < 1+ η. Henceforth, the point s will be to the left of the paths.

We now move the new paths, one by one, across the poles w = 1 and z = 1 to new paths
L(d, B), where d1 = c′1 and d2 = 1 − η′ > σ ; see Fig. 2. First, moving the w-path, the residue
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theorem gives

T λ(s) =
∫

L(c′,B)
· · · dz

∫
L(d,B)

· · · dw +Uλ
1 (s), (11.2)

where

Uλ
1 (s) = −

∫
L(c′,B)

Γ (z − s)
ζ ′(z)

ζ(z)
Γ (1− s)Mλ(z + 1− 2s) sin(π z/2)dz. (11.3)

In the latter integral, we move the path L(c′, B) across the pole z = 1 to the line L(d2) = {x =
d2}. This provides the important residue

V λ
1 (s)

def
= Γ 2(1− s)Mλ(2− 2s). (11.4)

By the definition of Mλ(·) in (7.5), the function V λ
1 (s) is meromorphic for 0 < σ < 1, with just

one pole, a first-order pole at s = 1/2. Since Mλ(z) has residue −(2λ/π)
∫ 1

0 E(ν)dν at z = 1,
the function V λ

1 (s) reveals the following essential constituent of T λ(s):

AEλ

s − 1/2
, with AE

=

∫ 1

0
E(ν)dν. (11.5)

What remains of V λ
1 (s) is holomorphic for 0 < σ < 1. There is also a new integral along

L(d2) corresponding to (11.3). Varying d2 > d1 and d1 > 1/2 without letting L(d2) cross any
singularities, this integral defines a function Hλ

2 (s) which is holomorphic for 1/4 < σ < 1.
Returning to the repeated integral in (11.2), we move its z-path (after inverting order of

integration) to L(d, B) where d1 = (1/2) + η, d2 = 1 − η′. Besides a residue, this gives a
new repeated integral which (after another inversion) takes the form

T λ1 (s)
def
=

∫
L(d,B)

Γ (z − s)
ζ ′(z)

ζ(z)
dz
∫

L(d,B)
Γ (w − s)

ζ ′(w)

ζ(w)

×Mλ(z + w − 2s) cos{π(z − w)/2}dw. (11.6)

Here, one has to take (1/2)+ η < σ < 1− η′ and |τ | < B, but η and η′ can be taken small and
B large. The accompanying residue turns out to be equal to Hλ

2 (s). Summarizing we obtain

Proposition 11.1. Assuming RH, there is a holomorphic decomposition

T λ(s) = T λ1 (s)+
AEλ

s − 1/2
+ Hλ

3 (s) (1/2 < σ < 1), (11.7)

where Hλ
3 (s) has an analytic continuation to the strip {1/4 < σ < 1}.

Analysis shows that for 1/2 ≤ s ≤ 3/4, one has Hλ
3 (s) � λ log λ as λ → ∞. The factor

log λ is due to the difference between (11.4) and (11.5).

12. From Tλ1 (s) to sums Σλ
B(s)

We continue under RH, so that the complex zeros ρ of ζ(z) become

ρ = ρn = (1/2)+ iγn, 0 < γ1 ≈ 14 < γ2 ≈ 21 ≤ · · · , γ−n = −γn .
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The paths L(d, B) of the integral in (11.6) will be moved one by one across the poles z = ρ,
w = ρ′ of the quotients (ζ ′/ζ )(·) on the line L(1/2) with |γ |, |γ ′| > B. Taking B different from
all γn , the new paths of integration will have the form L(d ′, B) with d ′1 < 1/2 and d ′2 = d2 < 1.

Fixing s = σ + iτ with (1/2) + η < σ < 1 − η′ and |τ | < B, we first move the w-path in
(11.6) and use the residue theorem to obtain

T λ1 (s) =
∫

L(d,B)
Γ (z − s)

ζ ′(z)

ζ(z)
dz
∫

L(d ′,B)
Γ (w − s)

ζ ′(w)

ζ(w)

×Mλ(z + w − 2s) cos{π(z − w)/2}dw + V λ
2 (s, B)

= Hλ
2 (s, B)+ V λ

2 (s, B), (12.1)

say. Here

V λ
2 (s, B) =

∫
L(d,B)

Γ (z − s)
ζ ′(z)

ζ(z)
Σλ

B(z, s)dz, (12.2)

where

Σλ
B(z, s) =

∑
|Im ρ|>B

Γ (ρ − s)Mλ(z + ρ − 2s) cos{π(z − ρ)/2}. (12.3)

We list the conditions that the paths and s = σ + iτ must satisfy so that singular points of the
integrand in the integral for Hλ

2 (s, B) are avoided. For z and w on the paths of integration we
require z 6= s, w 6= s and

− 1 < d1 + d ′1 − 2σ ≤ x + u − 2σ ≤ d2 + d ′2 − 2σ < 1, |τ | < B. (12.4)

Additional conditions follow from the requirement that the repeated integral be absolutely
convergent. For |y|, |v| > B, its integrand is majorized by

|y|d1−σ−1/2(log |y|)|v|d
′

1−σ−1/2(log |v|)(|y + v| + 1)−d1−d ′1+2σ−3/2
; (12.5)

cf. (7.9) and (7.8) and the fact that (ζ ′/ζ )(W ) grows at most logarithmically also for 0 ≤ U ≤
(1/2)− η. By Lemma 9.2 the additional conditions are

− d1 − d ′1 + 2σ + 1 > 1, d ′1 − σ + 2 > 1, d1 − σ + 2 > 1. (12.6)

From this we will derive

Proposition 12.1. Formula (12.1) gives a holomorphic decomposition of T λ1 (s) which is valid
for s = σ + iτ with (1/2) + η < σ < 1 − η and |τ | < B. Varying the paths one finds that
Hλ

2 (s, B) is holomorphic for 1/4 < σ < 1 (or 1/2 ≤ σ < 1 without RH) and |τ | < B.

Proof. Part (i), the function Hλ
2 (s, B). By the preceding Hλ

2 (s, B) is analytic for d1 + d ′1 <
2σ < d1 + d ′1 + 1. When one makes d ′1 small, so that σ can get close to 1/4, one can no longer
allow σ to get close to 1. However, one may take d ′1 = 2η and gradually reduce η.

Part (ii). The integral for V λ
2 (s, B) represents a holomorphic function for (1 + η)/2 < σ <

1 − η and |τ | < B. Indeed, under the conditions on s and the z-path, the general term in the
series for Σλ

B(z, s) is majorized, uniformly in ρ and z, by

|ρ|−σ (|y + ρ| + 1)−x+2σ−2eπ(|y−ρ|−|ρ|)/2. (12.7)
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Fig. 3. Upper half of WR .

Since |ρn| ∼ 2πn/ log n as n → ∞, the series will be absolutely convergent for z ∈ L(d, B).
For |y| > B, the integrand in the integral for V λ

2 (s, B) in (12.2) will be majorized by∑
|Im ρ|>B

|y|η−σ (log |y|)|ρ|−σ (|y + ρ| + 1)−η+2σ−5/2.

Hence, by the analog of Lemma 9.2 for the integral of a sum, the integral is absolutely convergent.
Part (iii). The application of the residue theorem may be justified by starting with w-

integrals over a sequence of closed contours WR , B < R = Rk → ∞, which are obtained
from L(d, B) − L(d ′, B) as follows. The parts where |v| > R are deleted and replaced by
the horizontal segments from d1 + iR to d ′1 + iR and d ′1 − iR to d1 − iR. Observe that
L(d, B) − L(d ′, B) thus reduces to two rectangular paths, extending from the level v = B
to v = R, and the level v = −R to v = −B, respectively; see Fig. 3. Here the numbers R are
chosen ‘away from the numbers γn’, in the sense that on the horizontal segments {v = ±R} one
has ζ ′(w)/ζ(w) � log2

|v|; cf. [47]. One can now use the standard estimates to verify that the
double integrals associated with the segments {v = ±R} tend to zero when σ > d1. �

Next, the function V λ
2 (s, B) of (12.2) is transformed by moving the z-path L(d, B) to

L(d ′, B). Again using the residue theorem, one finds

V λ
2 (s, B) =

∫
L(d ′,B)

Γ (z − s)
ζ ′(z)

ζ(z)
Σλ

B(z, s)dz

+

∑
|Im ρ′|>B

Γ (ρ′ − s)Σλ
B(ρ
′, s) = Hλ

3 (s, B)+ Σλ
B(s), (12.8)

say. Here, the summation extends over the zeros ρ′ of ζ(·) with |Im ρ′| > B. The method used
above for Hλ

2 (s, B) shows that the integral for Hλ
3 (s, B) defines a holomorphic function for

(1/4) + η < σ < 1, |τ | < B. Indeed, for z ∈ L(d ′, B) and |y| > B, it follows from (12.7) that
the integrand is majorized by∑

|Im ρ|>B

|y|2η−σ−1/2(log |y|)|ρ|−σ (|y + ρ| + 1)−2η+2σ−2.

The result now follows from an appropriate form of Lemma 9.2.
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Using (12.3), Σλ
B(s) may be written as the sum of a double series:

Σλ
B(s) =

∑
|Im ρ|>B,|Im ρ′|>B

Γ (ρ − s)Γ (ρ′ − s)

×Mλ(ρ + ρ′ − 2s) cos{π(ρ − ρ′)/2}. (12.9)

Here ρ and ρ′ run over the complex zeros (1/2) + iγn of ζ(·) with |γn| > B. By the standard
considerations, the sum represents a holomorphic function for 1/2 < σ < 1 and |τ | < B.
Moreover, by the R2

+ part of Lemma 9.2, the corresponding sum in which γ = Im ρ and
γ ′ = Im ρ′ have the same sign represents an analytic function Hλ

4 (s, B) for 0 < σ < 1 and
|τ | < B. Thus, the important part of Σλ(s, B) is the part Σλ

−(s, B) where Im ρ and Im ρ′ have
opposite sign:

Σλ
−(s, B)

def
=

∑
|Im ρ|>B,|Im ρ′|>B;Im ρ·Im ρ′<0

Γ (ρ − s)Γ (ρ′ − s)

×Mλ(ρ + ρ′ − 2s) cos{π(ρ − ρ′)/2}. (12.10)

Combining the present results with Proposition 11.1 and checking the behavior of the functions
Hλ

j (s, B) for real s one obtains

Theorem 12.2. Assume RH. Then for s = σ + iτ and any B > 0 there is a holomorphic
decomposition

T λ(s) =
AEλ

s − 1/2
+ Σλ

B(s)+ Hλ
5 (s, B) (1/2 < σ < 1), (12.11)

where Σλ
B(s) is given by (12.9) and Hλ

5 (s, B) has an analytic continuation to the domain given
by 1/4 < σ < 1, |τ | < B. Here, Σλ

B(s) may be replaced by Σλ
−(s, B). On the interval

{1/2 ≤ s ≤ 3/4} one has Hλ
5 (s, B) = O(λ log λ) as λ→∞.

There is a corresponding result without RH; see [36]. In that case one has to define the sum
of the double series in (12.9) as a suitable limit; one may use certain square partial sums. The
function Hλ

5 (s, B) will still be analytic for 1/2 ≤ σ < 1, |τ | < B, and O(λ log λ) for real
s ↘ 1/2.

13. Proof of Theorem 8.1 and Corollary 8.2

Proof of Theorem 8.1. The proof is obtained by combining Theorem 10.2, Lemma 10.3 and
Theorem 12.2. For 1/2 < σ < 1 these results give the following holomorphic representations
for the sum V λ(s) in (7.1):

V λ(s) = 2
∑

0<2r≤λ

E(2r/λ)D2r (s) = T λ(s)− D0(s)− Hλ
1 (s)

= T λ(s)−
1/4

(s − 1/2)2
+ Hλ

6 (s)

= −
1/4

(s − 1/2)2
+

AEλ

s − 1/2
+ Σλ

B(s)+ Hλ
7 (s, B). (13.1)
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Here, AE
=
∫ 1

0 E(ν)dν and Σλ
B(s) is given by (8.1) with suitable interpretation of the double

sum. The functions Hλ
j (·) are holomorphic for 1/2 ≤ σ < 1 (for 1/4 < σ < 1 under RH) and

|τ | < B. For the final line of (8.2) one applies (13.1) to V 1(s) = 0 and subtracts the result from
(13.1) for V λ(s).

Results for Hλ
1 in Theorem 10.2 and Hλ

5 in Theorem 12.2 show that on the interval {1/2 ≤
s ≤ 3/4} one has Hλ

7 (s, B) = O(λ log λ) as λ→∞. �

Proof of Corollary 8.2. The proof uses induction with respect to m ≥ 1. The induction
hypothesis is that the PPC for pairs (p, p + 2r) is known to hold for every r < m.

(i) Suppose that the PPC is also true for r = m. Then, if λ is any number in (2m, 2m + 2], the
PPC is true for every r < λ/2. Hence for any E , cf. (6.7), the function

W λ(s)
def
= 2

∑
0<2r<λ

E(2r/λ)

(
D2r (s)−

C2r

s − 1/2

)
(13.2)

has good (local pseudofunction) boundary behavior as σ ↘ 1/2. Now by (8.2)–(8.4), for any B,

Gλ
B(s) = W λ(s)− Hλ(s, B),

where Hλ(s, B) is holomorphic for 1/2 ≤ σ < 1 and |τ | < B. Hence Gλ
B(s) will also have good

boundary behavior for |τ | < B.
(ii) Conversely, suppose that for some E , some λ ∈ (2m, 2m + 2] and every B, the function

Gλ
B(s) has good boundary behavior as σ ↘ 1/2 when |τ | < B. Then, with this λ, the sum W λ(s)

in (13.2) has good boundary behavior. But we know from the induction hypothesis that

2
∑

0<2r<2m

E(2r/λ)

(
D2r (s)−

C2r

s − 1/2

)
has good boundary behavior, hence, so does the difference

2E(2m/λ)

(
D2m(s)−

C2m

s − 1/2

)
.

Since E(2m/λ) 6= 0 this implies the PPC for pairs (p, p + 2m). �

14. Introduction to Theorem 8.5

We first prove the positivity result in Proposition 8.4, taking B = 2.

Proof. Considering the double sum Σλ
2 (s) of (8.1) with 1/2 < s < 1 it will be convenient to

replace ρ′ by ρ′. Set ΩR(t, s) = Ω ′R(t, s)+ Ω ′′R(t, s), where

Ω ′R(t, s) =
∑

|Im ρ|,|Im ρ′|<R

Γ (ρ − s)Γ (ρ′ − s)t2s−ρ−ρ′ cos(πρ/2) cos(πρ′/2),

and Ω ′′R(t, s) is the corresponding function with sin instead of cos. Then

Ω ′R(t, s) =

∣∣∣∣∣ ∑
|Im ρ|<R

Γ (ρ − s)t s−ρ cos(πρ/2)

∣∣∣∣∣
2

≥ 0,

and similarly for Ω ′′R(t, s). Hence, ΩR(t, s) ≥ 0, and by (8.1) and (7.5)

Σλ
2 (s) =

1
π

lim
R→∞

∫
∞

0
Êλ(t)ΩR(t, s)dt ≥ 0. �
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For the discussion of Theorem 8.5 it is convenient to consider the function

D̃2r (s) =
∑

p,p+2r prime

log2 p

p2s
=

∫
∞

2

dθ2r (x)

x2s
=

∫
∞

2

log2 x

x2s
dπ2r (x), (14.1)

which is obtained from (5.4) when we replace s by 2s. It differs from D2r (s) in (6.6) only by a
function that is analytic for σ > 1/4. We also have to deal with the difference on the interval
{1/2 < s < 3/4}:

Lemma 14.1. For 1/2 < s < 3/4, one has the estimate

D̃2r (s)− D2r (s) = O(log2 2r),

which holds uniformly in r .

Proof. We may restrict ourselves to the main part of D2r (s),

D∗2r (s) =
∑

p,p+2r prime

log p log(p + 2r)

ps(p + 2r)s
. (14.2)

Indeed, analysis of the other terms Λ(n)Λ(n + 2r)n−s(n + 2r)−s in the series for D2r (s) shows
that for s ≥ 1/2, their sum is O(log 2r) uniformly in r . The critical part consists of the terms in
which n is a prime and n + 2r the square of a prime.

For the comparison of D∗2r (s) with D̃2r (s) we use the majorizations

π2r (x) ≤ π(x)�
x

log x
, π2r (x) ≤

9C2r x

log2 x
�
(log 2r)x

log2 x
. (14.3)

The second inequality holds uniformly in r when x ≥ x0; cf. (5.5). Our comparison may be
carried out in two steps, first considering∫

∞

2

log x log(x + 2r)− log2 x

x s(x + 2r)s
dπ2r (x).

Here, one may estimate as follows:∫ 2r

2
· · · �

∫ 2r

e

log x log(1+ r)

x
dπ(x)� log2 2r,∫

∞

2r
· · · �

∫
∞

2r

(log x)(2r/x)

x
dπ(x) = O(1).

In the second step one has to deal with∫
∞

2

log2 x

x s

(
1
x s −

1
(x + 2r)s

)
dπ2r (x).

If 2r ≥ x0 one will split at 2r and use the second majorant for π2r (x) on (2r,∞); in the case
2r < x0 one splits at x0. �

By (14.1) and (5.5) the ‘upper residue’ of D̃2r (s) for s ↘ 1/2,

ω2r = lim sup
δ↘0

δ D̃2r {(1/2)+ δ}, (14.4)

is finite. But how can we prove that ω2r > 0 for some r?
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Take Eλ(ν) = EλF (ν) as in (7.2), so that Êλ(t) ≥ 0 and AE
= 1/2. Then Theorem 8.1 with

B = 2, Lemma 14.1 and Proposition 8.4 imply the following inequality for 1/2 < s < 3/4 and
λ = 2µ ≥ 2:

2
∑
r≤µ

E(r/µ)D̃2r (s) ≥ −
1/4

(s − 1/2)2
+

µ

s − 1/2
−O(µ log2 2µ).

Here 0 ≤ E(r/µ) ≤ 1. Setting s − 1/2 = δ and multiplying by δ/(2µ), it follows that

1
µ

∑
r≤µ

δ D̃2r {(1/2)+ δ} ≥
1
2
−

1
8µδ
−O(δ log2 2µ). (14.5)

This, however, is not enough to conclude that ω2r > 0 for some fixed r , since we have to take
µδ ≥ γ > 1/4 to ensure positivity of the right-hand side of (14.5) as δ ↘ 0.

A convenient hypothesis on the distribution of prime pairs will enable us to overcome the
difficulty. For µ ∈ N set

A(x, µ) =
1
µ

µ∑
r=1

π2r (x). (14.6)

If the Prime-Pair Conjecture is true, the averages A(x, µ) with not too small µ will all grow at
about the same rate as x →∞; indeed, the constants C2r have average 1. However, leaving aside
the PPC, there is both heuristic and numerical support for such a growth hypothesis.

Heuristics. Let π(x) as usual denote the number of primes≤ x . For any odd prime p, the number
of prime pairs (p, p+ 2r) with r ≤ µ is equal to π(p+ 2µ)− π(p). For the sum

∑
r≤µ π2r (x)

we let p run over the odd primes ≤ x , hence

µ∑
r=1

π2r (x) =
∑

3≤p≤x

{π(p + 2µ)− π(p)}.

Now, consider the corresponding sum over all integers n ∈ (0, x]. It may be telescoped as
follows:∑

n≤x
{π(n + 2µ)− π(n)} = π(x + 1)+ · · · + π(x + 2µ) ≈

2µx

log x

as x → ∞. Hence, if the primes are ‘randomly distributed’ among the positive integers n ≤ x ,
with ‘density’ approximately 1/ log x , one would expect that for not too small µ and x →∞,

A(x, µ) =
1
µ

∑
3≤p≤x

{π(p + 2µ)− π(p)} ≈
2x

log2 x
.

Numerics. Table 2 is based on computations by Fokko van de Bult [6]. It lists the sums∑
km<r≤(k+1)m

π2r (x) and
∑

0<r≤10m

π2r (x)

for m = 50 , k = 0, . . . , 9 and x = 103, . . . , 106. For large x the final totals are comparable to
ten times the preceding sums.

In view of all this, it appears reasonable to propose
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Table 2
Adding numbers of prime pairs

k x

103 104 105 106

0 2 698 14 885 90 550 605 087
1 2 621 15 078 93 010 621 580
2 2 550 15 090 93 501 624 766
3 2 453 14 754 91 679 614 148
4 2 424 14 848 92 735 621 114
5 2 409 14 917 93 268 627 333
6 2 354 14 545 91 490 614 479
7 2 334 14 666 92 820 623 366
8 2 318 14 615 92 547 622 323
9 2 244 14 366 91 216 614 764
Sum 24 405 147 764 922 816 6 188 960

Hypothesis 14.2. There are a positive integer m, a positive constant c and a sequence S of
integers µ → ∞, such that for µ ∈ S and sufficiently large x , say x ≥ x1 = x1(µ) with
log x1(µ) = o(µ), one has

A(x,m) =
1
m

m∑
r=1

π2r (x) ≥ c ·
1
µ

µ∑
r=1

π2r (x). (14.7)

15. Conditional abundance of prime pairs

We restate Theorem 8.5:

Theorem 15.1. Let m and c be as in Hypothesis 14.2. Then

lim sup
x→∞

1
m

m∑
r=1

θ2r (x)

x
≥ c. (15.1)

As a result, there must be an abundance of prime pairs:

lim sup
x→∞

1
m

m∑
r=1

π2r (x)

x/ log2 x
≥ c. (15.2)

Proof. The function

Φ(x, δ) =
log2 x

x2s
with s = sδ = (1/2)+ δ, δ ∈ (0, 1/4) (15.3)

is decreasing for x ≥ e2. We may assume that x1 = x1(µ) ≥ e2. By (14.1), using integration by
parts in the integral over [x1,∞),

D̃2r (sδ) ≥ −Φ(x1, δ)π2r (x1)−

∫
∞

x1

π2r (x)dΦ(x, δ).

To bound the first term on the right one may use the inequality π2r (x) ≤ 9C2r x/ log2 x which
by (5.5) is valid for every r when x ≥ x0; we may of course assume x1 ≥ x0 ≥ e2. Thus

−Φ(x1, δ)π2r (x1) ≥ −9C2r .
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Hence, by (14.1) and (14.7), taking µ in S,

δ

m

∑
r≤m

{
D̃2r (sδ)+ 9C2r

}
≥ −

∫
∞

x1

δ

m

∑
r≤m

π2r (x)dΦ(x, δ)

≥ c
δ

µ

∑
r≤µ

[
D̃2r (sδ)+

∫ x1

2
π2r (x)dΦ(x, δ)

]
. (15.4)

Using a separate estimate for
∫ x0

2 based on the inequality π2r (x) ≤ π(x) and recalling that the
numbers C2r have average 1, the final integral leads to an error term on the right-hand side that
is

≥ −Cδ{log2 x0 + log x1(µ)}.

Combining (15.4) and (14.5) one now finds that

δ

m

∑
r≤m

D̃2r (sδ) ≥ c

(
1
2
−

1
8µδ

)
−O[δ{log2 2µ+ log x1(µ)}]. (15.5)

For given ε ∈ (0, 1/2) we choose µ→∞ in S and δ ↘ 0 in (0, 1/4) such that 1/(8µδ) = ε/2.
Since log x1(µ) = o(µ) we may then conclude that

lim sup
δ↘0

δ

m

∑
r≤m

D̃2r (sδ) ≥ (1− ε)c/2. (15.6)

We will show that this implies (15.1). Suppose to the contrary that one would have
(xm)−1∑

r≤m θ2r (x) ≤ c1 < c for all x ≥ x2 ≥ 2. Majorizing θ2r (x) by (log2 x)π(x) on
the interval 2 ≤ x ≤ x2, we then find

1
m

∑
r≤m

D̃2r {(1/2)+ δ} =
1
m

∑
r≤m

∫
∞

x2

x−1−2δdθ2r (x)+O(1)

≤ (1+ 2δ)
∫
∞

x2

x−2−2δ 1
m

∑
r≤m

θ2r (x)dx +O(1) ≤ (1+ 2δ)c1/(2δ)+O(1).

As a result the left-hand side of (15.6) would be ≤ c1/2 < c/2. For small ε this gives a
contradiction, which proves (15.1).

For (15.2) one may still use integration by parts:

θ2r (x) =
∫ x

2
(log2 t)dπ2r (t) ≤ (log2 x)π2r (x). �

16. Pair-correlation of zeta’s zeros and conditional abundance of prime pairs

Details on the results in this section may be found in the manuscript [36].
The analog of Lemma 9.2 for series can be used to show the following about the double sum

Σλ
2 (s) in (8.1). The part in which Im ρ and Im ρ′ have the same sign defines a meromorphic

function for 1/2 ≤ σ < 1 whose only poles occur at complex zeros of ζ(·). Thus, for a study of
its pole-type behavior near the point s = 1/2, the double sum Σλ

2 (s) may be reduced to the sum
Σλ
−(s, 2) in which Im ρ and Im ρ′ have opposite sign. Hence in the study of the PPC under RH,

the differences of zeta’s zeros on the same side of the real axis play a key role. Careful asymptotic
analysis gives
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Theorem 16.1. Assume RH. Then the pole-type behavior of Σλ
−(s, 2) and Σλ

2 (s) as s ↘ 1/2 is
the same as that of the reduced sum

Σλ
∗ (s) = 2π

∑
γ,γ ′;|γ ′−γ |<γ 1/2

γ−2s+i(γ−γ ′)Mλ
{1− 2s + i(γ − γ ′)}, (16.1)

where γ and γ ′ run over the imaginary parts of the zeros of ζ(·) in the upper half-plane and
Mλ(·) is given by (7.5).

The expression in (16.1) is reminiscent of the pair-correlation function of zeta’s complex
zeros which was first studied by Montgomery [39]. See also Gallagher and Mueller [15],
Heath-Brown [27], Gallagher [14], Goldston and Montgomery [21], Goldston [16,17], Goldston
and Gonek [18,19], Hejhal [28], Rudnick and Sarnak [43,44], Goldston, Gonek, Özlük and
Snyder [20], Bogomolny and Keating [3], Chan [7–9], Montgomery and Soundararajan [40],
and LMS Lecture Notes vol. 322 [38].

Since the constants C2r have average 1, the function R(λ) in (8.3) is o(λ) as λ→∞; cf. (7.4).
The corresponding hypothesis below regarding Σλ

2 (s) − Σ 1
2 (s) would follow from a plausible

counterpart to the pair-correlation work.

Hypothesis 16.2. For smooth E the ‘upper residue’

ω(λ) = ωE (λ) = lim sup
s↘1/2

(s − 1/2){Σλ
2 (s)− Σ 1

2 (s)} (16.2)

is o(λ) as λ→∞.

If Hypothesis 16.2 is true, there will be an abundance of prime pairs:

Theorem 16.3. Assume Hypothesis 16.2. Then for every ε > 0, there is a positive integer m,
depending on ω(·) and ε, such that

lim sup
x→∞

1
m

∑
r≤m

π2r (x)

x/ log2 x
> 2− ε. (16.3)

Here the constant 2 would be optimal.
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[11] J.G. van der Corput, Sur l’hypothèse de Goldbach pour presque tous les nombres pairs, Acta Arith. 2 (1937)

266–290 (sec. 3).
[12] P.D.T.A. Elliott, H. Halberstam, A conjecture in prime number theory, in: Symposia Mathematica (INDAM, Rome

1968/69), vol. 4, Academic Press, London, 1970, pp. 59–72 (sec. 2).
[13] J.B. Friedlander, D.A. Goldston, Some singular series averages and the distribution of Goldbach numbers in short

intervals, Illinois J. Math. 39 (1995) 158–180 (sec. 5).
[14] P.X. Gallagher, Pair correlation of zeros of the zeta function, J. Reine Angew. Math. 362 (1985) 72–86 (sec. 16).
[15] P.X. Gallagher, J.H. Mueller, Primes and zeros in short intervals, J. Reine Angew. Math. 303–304 (1978) 205–220

(sec. 16).
[16] D.A. Goldston, On the pair correlation conjecture for zeros of the Riemann zeta-function, J. Reine Angew. Math.

385 (1988) 24–40 (sec. 16).
[17] D.A. Goldston, Notes on pair correlation of zeros and prime numbers, in: Recent Perspectives in Random Matrix

Theory and Number Theory, in: London Math. Soc. Lecture Note Ser., vol. 322, Cambridge Univ. Press, 2005,
pp. 79–110 (sec. 4, 16).

[18] D.A. Goldston, S.M. Gonek, A note on the number of primes in short intervals, Proc. Amer. Math. Soc. 108 (1990)
613–620 (sec. 16).

[19] D.A. Goldston, S.M. Gonek, Mean value theorems for long Dirichlet polynomials and tails of Dirichlet series, Acta
Arith. 84 (1998) 155–192 (sec. 16).
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