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HE previous article has considered the observa-
tional and experimental facts and has concluded
that there is no substantial evidence to support the
belief that the coupling constants of the weak inter-
actions are independent of time or place. Consequently,
it is possible that the principle of equivalence may be
satisfied, if at all, only when the contributions to the
binding energy of a system having their origin in the
weak interactions are neglected. This article considers
a form which a theory of gravitation may take when
the principle of equivalence is satisfied in a weakened
form only.

Jordan has previously considered a similar problem,*
and Fierz has made a critical analysis of Jordan’s
theory.t

The great difficulty with constructing a theory of
gravitation is the paucity of experimental evidence.
After 40 years there are still only the four famous
observational checks of the theory of relativity. Of
these only two have any real accuracy. With so few
experimental facts to guide one, any number of ad hoc
theories can be constructed. To choose between them,
standards going beyond the observational evidence
must be introduced. The danger of judging a theory on
the basis of elegance, simplicity, or perfection is obvious.

While “elegance” may not be a valid criterion for
judging a theory, there are a few rules for the construc-
tion of a formalism which if followed should improve
the prospects for later agreement with observation.
First, it should be noted that there is much experimental
evidence on the validity of the Lorentz invariance of
the strong interactions and a theory of gravity should
reduce to the usual Lorentz invariant theory in the
absence of the gravitational field. Second, the theory
should introduce a minimum of new elements. Third,
on the assumption that nature is basically simple, the
simplest of several alternatives should be chosen. The
theory to be described accepts Mach’s principle, the
cosmological principle, and is generally covariant. Also
as much of the principle of equivalence as is supported
by the Eotvos experiment is accepted.

The general features of a theory of gravitation with-
out a principle of equivalence are easily outlined. The
motivation for introducing a Riemannian metric into
the geometry of space and time is now largely absent,
as there is no single universal gravitational acceleration
at a given space-time point. Simply by redefining units
of length and time as functions of space-time coordi-

* P, Jordan, Schwerkraft und Weltall (Vieweg, Braunschweig,

1955), second edition.
1 M. Fierz, Helv. Phys. Acta 29, 128 (1956).

nates, the curvatures of a space are modified. With a
proper redefinition of units making them dependent
upon coordinates and orientation of an infinitesimal
interval a curved space can be converted into a flat
one and vice versa. Rosen! has shown how to formulate
general relativity within the framework of a flat metric.

To illustrate the arbitrary character of the choice of
metric tensor, consider the following physical example.
Twelve identical rods can be normally assembled into a
hexagonal pattern with 6 rods joining at the center. If
this assembly is carried out in a suitable gravitational
field, the 6 rods no longer join at the center. There are
at least two geometrical explanations for this result. The
conventional one is that the rods have not changed but
are now in a curved space which “causes” a gap to open
at the center of the geometrical figure. Another possible
explanation is that the gravitational field has shortened
the radial rods relative to the circumferential ones. The
two explanations are equivalent in the sense that they
both agree as to the existence of the gap in the geo-
metrical figure constructed out of real atoms.

It has been argued? that space is “really’” curved and
that the rods do not change their “real” length. Without
splitting hairs over the meaning of the word ‘really”
this argument is based on the assumption that such
changes are presumably independent of the material
out of which the rods are constructed. However, all
rods are constructed from electrons, protons, and neu-
trons held together almost completely by the strong
interactions. They have a common structure and could
vary in length in a common way.

Two theories which differ only in the definition of the
units employed are equivalent. Nonetheless, there are
advantages to be obtained from the use of a flat metric.
In the conventional theory the Riemannian metric is
used to transform the gravitational force away. In a
flat metric the gravitational effects are to be regarded
as associated with a force field just as electromagnetic
or meson forces are related to a field. Because of this
common basis it becomes possible to make use of
analogy in constructing a theory of gravity.

By analogy with electromagnetic or meson force fields
it is reasonable to expect that when viewed sufficiently
closely the gravitational effects would be quantum in
nature. Stated more exactly, it might be expected that
the gravitational force acting on an elementary particle
would have its origin in a local interaction of the par-
ticle with virtual particles present in the vacuum.

I N. Rosen, Phys. Rev. 57, 147 (1940).

2H. P. Robertson, Albert Einstein, edited by Paul A. Schilpp
(Tudor, New York, 1951).
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Remembering the virtual electron-positron pairs re-
puted to be present in the vacuum as a result of zero
point fluctuations, it becomes interesting to inquire
whether the gravitational effect can be linked to these
particles already present. If so, it should be possible
eventually to construct a theory of particles and obtain
the gravitational interaction as a weak effect connected
with more primitive strong interactions. A less am-
bitious approach would be to start in the middle of the
problem, to ignore the quantum aspects of the inter-
action of a particle with a bath of virtual particles, and
to treat this interaction as a classical field.

The most striking effect of the presence of virtual
pairs in the vacuum is the polarizability of the vacuum.
This property suffers from divergence difficulties which
are usually ameliorated by “renormalization.” By de-
fining the velocity of light in empty space as ¢ and
“renormalizing,” the vacuum polarization effects are
made to disappear for a weak electromagnetic wave in
free space whereas they still contribute to the space
charge about a charged particle. This, however, is
arbitrary. The velocity of light in a “bare” space could
be greatly different from ¢ or even meaningless.

With a “cutoff” theory there are no divergences and
the vacuum polarization can be treated as physically
meaningful. It may be significant that a wavelength
cut off at the gravitational radius of a particle would
not be detectable in any presently known experiment.
It should be noted that with such a cutoff theory, the
velocity of light in “bare” space is not ¢. It is ¢ only
after including vacuum polarization effects.

It is helpful to remember that before Lorentz no
distinction was made between the polarization of a
vacuum and the polarization of a_dielectric medium.
Lorentz first clearly saw that the D term in Maxwell’s
first equation should, on physical grounds, be separated
into two parts with the 4rP term representing polariza-
tion currents in the dielectric medium. These polariza-
tion currents were to be treated like all other currents
in computing the magnetic field. The E term, on the
other hand, was commonly thought to be physically
quite different. In the early 20th Century, the vacuum
by definition contained no charges and currents. In
recent years vacuum polarization effects have been
recognized as existing and having physical importance.
It would appear to be reasonable to assume that the &
term represents the flow of virtual charged particles in
the vacuum and that the whole of D is to be interpreted
as a ‘“/displacement current.”

With the neglect of quantum effects the polarizability
of the vacuum can be described by classical field
quantities e and p.

From this point of view the vacuum is to be treated
like a dielectric medium. In free space far from par-
ticles, it is a medium without dispersion as there is no
mechanism which would lead to the absorption of a
single photon and the production of a pair.
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If the vacuum is thus considered to have a structure,
to be a dielectric medium which can be polarized by
electromagnetic fields, it becomes important to inquire
about the effect of motion relative to such a medium.
Could such a motion be measurable by electromagnetic
means? The motion of an ordinary dielectric medium
leads to measurable effects (Fizeau). That such mo-
tional effects should be absent for the vacuum is reason-
able on the basis of the following physical argument.

Consider an electron moving through a normal di-
electric medium such as helium gas. The electric field
about the electron can be expanded as a Fourier integral
in time. Up to a frequency of about 10 cycles/sec the
helium is equivalent to a moderately continuous me-
dium of constant dielectric constant e. There is a
Lorentz contraction in this part of the electric field by
a Lorentz factor computed by taking the velocity of
light to be the wave velocity in the medium. On the
other hand, the parts of the field associated with fre-
quencies which are very much higher (above the strong
absorption frequencies) are not greatly affected by the
helium gas and the field is contracted by a factor com-
puted for the velocity in free space. The energy stored
in the low-frequency part of the electromagnetic field
contributes in an anomalous way to the effective mass
of the electron but this contribution is small compared
with the total mass.

Consider the situation when there is no dispersion in
the medium. All frequency components are contracted
by a Lorentz factor computed with the velocity of light
equal to the wave velocity in the medium. It would be
reasonable to expect that the theory would be Lorentz
covariant using the wave velocity in the medium as the
velocity of light. It should not be possible to use an
electromagnetic effect to determine a velocity relative
to such a nondispersive medium.

GRAVITATION AN ELECTROMAGNETIC EFFECT?

The fact that many of the properties of gravitation
can be accounted for in terms of an interaction with a
polarizable medium is an old idea which has recurred
from time to time.® The physical idea is simply that a
space variation in the polarizabilities of the vacuum will
lead to a number of results familiar as typical gravita-
tion effects. For example, an increase of the index of
refraction of the vacuum in the vicinity of the sun will
cause a bending of light toward the sun.

The gravitational force on a charged particle is
interpreted as resulting from a change in its electro-
magnetic self-energy with position as a result of a
variation in the polarizability of the vacuum. A gradient
in the polarizability results in a force acting on the
charged particle. This force results in part from the
polarization charges induced in the vacuum by the
charged particle. For a medium having a nonvanishing

3H. A. Wilson, Phys. Rev. 17, 54 (1921) introduced many of
the physical concepts employed in this paper.
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gradient in its polarizabilities there is more induced
charge on one side of the particle than on the other and
the electrostatic interaction with the induced charges
leads to a force acting on the particle in the direction
of increasing gradient.

For a complex system such as a hydrogen atom there
is an added force having its origin in a variation of the
binding energy of the atom with position. The neutron
is to be regarded as a compound system containing
charged particles.

As a result of the change of binding energy with
position it would be expected that the energy or fre-
quency of a photon emitted by the atom would depend
upon the location of the atom in the field. This could
conceivably lead to the phenomenon of the gravitational
red shift.

Also, it would be expected that as a result of the
variation in the dielectric constant of the vacuum the
Bohr radius and other atomic lengths would be a func-
tion of position. This would lead to a shortening and
bending of meter sticks depending upon their location.
If such meter sticks are defined as unchanged, the re-
sulting metric of space-like surfaces is Riemannian.

Thus there is a possibility of accounting for all the
observed gravitational effects within the physical frame-
work outlined above. That gravitation should be electro-
magnetic in origin is not unreasonable. In the previous
paper it was shown that the strength of the gravita-
tional interaction appears to be related to the strength
of the electrical interaction and to the size of the
universe.

In order to find a functional relation between the
dielectric constant e and u, the permeability of the
vacuum, we consider quantitatively the effect of a
polarizable medium on the hydrogen atom. The binding
energy can be written as

M o2, (1)
where M, is the electron’s rest energy and
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is the fine structure constant. e is the “true” charge of
the electron and assuming the validity of Maxwell’s
equations (charge conservation), it is a constant. The
dielectric constant e is present in (2) because of the
effect of the dielectric medium in reducing the strength
of the electrostatic interaction between the electron and
proton. 7 is also a constant if angular momentum is to
be conserved. This can be seen by considering a circu-
larly polarized photon carrying an angular momentum
#. As it propagates through space # remains unchanged
if angular momentum is to be conserved.

The velocity of light in a polarizable medium can be
written with a suitable choice of units as

o= (en)™, ©)
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where u is the permeability of the medium. In the previ-
ous paper it was shown that there are experimental and
observational reasons for believing that the fine struc-
ture constant (2) varies, if at all, only slowly with
position and time. Hence, we shall assume that « is a
constant. In view of the fact that we are attempting to
associate the gravitational field with a gradient in e,
from (2) and (3), « can be constant only if

e=u. 4)

The variation in index of refraction about the sun
that is required to obtain a deflection of light of the
amount expected and observed (roughly) may be calcu-
lated using Maxwell’s equations. The result is

2GM
e=pl+—,\ 5)

r

where G is the gravitational constant based on an
energy measure of mass, M is the sun’s mass in energy
units, and 7 is the distance from the sun. The second
term on the right-hand side of (5) is clearly associated
with the presence of the sun.

What about the first term? Does it have its origin in
the remainder of the matter in the universe? To investi-
gate this possibility we form the integral

~E Ao
2G

dr=4xGoR?, (6)

0 7

where p is the density of matter in the universe and R
is the Hubble radius. Inserting the appropriate value
for G and assuming R=35.4X10% cm, p/c?=4X10"2
g/cm?, (6) is equal to unity. This density of matter is
compatible with astronomical observations which give
a value of p/c?=10"% g/cm? for galactic matter only.

From the standpoint of Mach’s principle this is a
highly satisfactory result. In this interpretation, the
polarizability of the vacuum at any point depends upon
the distribution of the distant galactic matter. As the
inertial properties of matter are associated with these
polarizabilities, the inertial properties are, as suggested
by Mach, determined by the remainder of the matter
of the universe.

COORDINATES AND UNITS

Of necessity the preceding discussion has been some-
what inexact, with the physical quantities not carefully
defined. By basing the discussion upon a flat space-
time, the question of how physical units are to be
defined has been left somewhat vague. Atomic units of
length and time are no longer suitable local standards
as these lead to a Riemannian metric. While it is con-
ceivable that units of length and time might be intro-
duced simply by requiring that the resulting space be
flat, the resulting definition would be generally not
unique. For example, a stereographic projection may
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be used to map a Cartesian coordinate system of a plane
upon a sphere and with a suitable definition of a local
unit of length the metric of the sphere (with the
singular point excluded) is flat, but the choice of the
singular point on the sphere is arbitrary and the result-
ing definition of the unit of length is not unique.

What is needed is a prescription for correcting local
atomic units of length, time, etc., so that they give a
“true” measure. Most of the problem is already solved.
The assumptions that e and % are constant means that
these two quantities can serve as ‘“true” local units.
However, a third unit is needed. In view of the assump-
tion that e affects atomic lengths and times, what is
needed is a local measure of e. It will appear as a derived
result of the theory that e is in principle locally measur-
able by determining locally the ratio of electrical to
gravitational forces. Thus, a flat metric is obtained if
local units of length and time are assumed to be given
by local atomic units corrected by a function of e.

The system of units used with a flat metric will be
called “Newtonian.” Local atomic units will be called
“atomic” or sometimes ‘“proper.” As explained later a
characteristic atomic length expressed in Newtonian

units varies with € as
L=Lo/é, (M

also a characteristic atomic frequency varies as
w=wo/€, ©)

with Lo and w constants.

In addition to the problem of defining local measures
of physical quantities it is necessary to discuss coordi-
nate systems. In view of the flat space-time it is always
possible to choose Cartesian systems of coordinates.
Furthermore with the assumption of the Cosmological
principle it is possible to define for every point a unique
time direction (cosmic time). It is assumed that this
time direction is everywhere parallel to the time axis
of a particular Cartesian coordinate system. This Car-
tesian coordinate system, which for obvious reasons will
be called “Newtonian,” can be characterized by saying
that along the world line of any fixed position point the
universe appears uniform.

Because of this high degree of symmetry, the vacuum
should appear isotropic in this coordinate system and
the vacuum polarizabilities should be scalars. Local
inhomogeneities would destroy this symmetry and it is
conceivable that the polarizability about a body such
as the sun would be a tensor quantity. On the other
hand, the simplest assumption to make is that the
polarizability is a scalar even in the presence of local
irregularities in the mass distribution, and this assump-
tion will be made here.

Although a special coordinate system has been intro-
duced, it has been done within the framework of
Mach’s principle. Namely this special coordinate system
is determined by the distribution of matter in the
universe. Furthermore, the equations of motion can be
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written in a generally covariant manner. The equations
do, however, take on a particularly simple physically
understandable form for the Newtonian coordinate
system.

Units are so chosen that the metric tensor of the
Newtonian coordinate system with Newtonian units
is Yiji

Yu=vye=v3=—1, i#5. (9)
Although the physical significance of the equations is
more transparent when expressed in Newtonian units
it is always possible to choose proper or local atomic
units if desired. In this case assuming for the moment
the wvalidity of (7) and (8) the metric tensor for this
particular coordinate frame is g;;

Y= 17 'Yij=0;

gu=gu=gu=—¢ gu=1/¢, g;=0, i¥j. (10)

Whether g;; is taken to be an ordinary tensor or the
metric tensor, the infinitesimal invariant

(11)

is a useful quantity representing an infinitesimal in-
terval measured in local atomic units.

dst=g;dxdy,

POSTULATE OF LOCAL LORENTZ COVARIANCE

Before proceeding further we shall summarize the
assumptions which are being made.

1. The theory is based upon a flat metric.

2. Mach’s principle is assumed.

3. The Cosmological principle is assumed.

4. A special Cartesian coordinate system (“New-
tonian”) determined by the distribution of matter in
the universe is introduced such that the universe as a
whole appears isotropic from any fixed position point.
While generally covariant equations can and will be
written, the Newtonian coordinate system because of
the cosmological principle has a special physical
significance.

5. The vacuum is polarizable and Maxwell’s equa-
tions for a polarizable medium are valid in the New-
tonian coordinate system. The electric and magnetic
specific inductive capacities of the vacuum e, u are
scalars.

6. A variation in ¢, u affect the self-energy of a
particle. Characteristic atomic lengths, frequencies and
energies are affected by a variation in e and u.

7. e and 7 are constant. (Conservation of charge and
angular momentum.)

8. Neglecting the small contribution to the binding
energy of a complex system having an origin in the weak
interactions, the self-energy of a particle, whether ele-
mentary or complex, varies with € as

M= M()G_;',

It is shown later that assumption 8 can be obtained
from a limited principle of equivalence. Also the fact
that all atoms obey the same functional relation is

M= constant.
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justified directly by the E6tvds experiment (see the
preceding paper).

From the above assumptions several important re-
sults are obtained.

9. The fine structure constant

o2
a=-—

ehc

is constant (independent of e and u). Also all other
development parameters of strong interactions are
constant. This follows if both the self-energies of the
elementary particles and complex atoms are to obey
No. 8.

10. From 9 it follows that e=u.

11. From 8, 9, and 10 it follows that all characteristic
atomic lengths vary together as

L=Loe% Ly=constant.

{For example compute the Bohr radius as

e2
(lo=—0£_2.

M,
12. From 8 and 7 all atomic frequencies vary as
w=woe_'§

(since % is constant and M~7w).

The above list of assumptions by itself would consti-
tute a weak scaffolding upon which to construct a
theory of gravity. Presumably a large number of ad koc
theories could be constructed within this framework to
account for the very few observational facts. However,
there is a strong assumption still to be made which
greatly limits the number of possibilities.

Physical arguments were given earlier to support the
assumption that an atom moving relative to the New-
tonian frame would experience a time dilatation and
Lorentz contraction in accordance with the local ve-
locity of light. This suggests that equations be written
in a way which we define as local-Lorentz covariant.
Stated exactly the Lagrangian or Lagrangian density of
a field theory should be written in its usual Lorentz
invariant form but with ¢ no longer constant but equal
to the reciprocal of e.

Since this Lagrangian density reduces for constant e
to the usual Lorentz invariant density, all the observa-
tional experience concerning special relativity can be
brought to bear on the problem of choosing the correct
Lagrangian density.

EQUATIONS OF MOTION

Rather than consider immediately the formulation of
the general equations we first limit ourselves to a simple
problem: Find the motion of a test particle in a given
gravitational field. The scalar e is assumed known and
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given. Following the prescription outlined above the
Lagrangian is written for the Newtonian coordinate
system as a local Lorentz invariant.

L=—M(1—eé)i=—Meet(l—e)h  (12)

Remember that the velocity of light c=€"1. M is the
rest energy of the particle. The equations of motion are
obtained from the variational principle

Sftz Ldt=0, dt=dx". (13)
t
This gives for Euler equations
df Mev 14€ex? 1
= ]=%M[ ]_ve. (14)
dil (1— e¥?)? (1—ex?)i]e
The momentum of the particle is
oL Mev
D=;v—=—*“—(1_62v2)§, (15)
and the Hamiltonian is
H=p-v—L= — (16)

(1—ew?)t

It is a constant of the motion, (the energy of the
particle) if € is time independent. For a time dependent
¢ the rate of change of the energy of the particle is

aH oL 1

a o

2 (1—ex?)}

1 de
(1+€x?)-—. (16a)
€ 0t
Note that from Eq. (23) the gravitational force F is

1
(1+ €% -Ve. (17)
€

S
2 (1— )}

The force acting on the particle is proportional to the
particle’s energy (e time independent), but it contains
the added factor (14 €%?). This added factor serves to
double the gravitational force for a rapidly moving
particle. This leads to double the transverse gravita-
tional acceleration for a photon and twice the New-
tonian deflection of light by the sun. This result is in
agreement with observations.

Although a rapidly moving particle has double the
normal weight, this does not contribute anomalously
to the weight of a bound system. Consider a photon
confined to a box with perfectly reflecting walls. The
photon is too heavy by a factor of 2. However, a small
displacement of the box upward results in a change in
volume of the box because of expansion of the walls.
The photon gas does work on the walls as they expand
and the resulting work done by the photon is just
sufficient to reduce its effective weight to the normal
value.
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Equation (12) can be written in generally covariant
form by introducing the tensor g;; (not the metric
tensor) defined by (10) and the infinitesimal invariant
of (11). In this notation (12) becomes

ds
L=—My .
di

(18)

The variational principle takes on the invariant form

82
6f ds=0,
81

since M is a constant.

Equation (19) is identical with the corresponding
equation from the Einstein formalism where the orbit
appears as a geodesic. Thus, the only differences be-
tween the two theories concern the form of the tensor
gi; and not the equations of motion with a given g,;.

(19)

HOMOGENEOUS FIELD EQUATION

From the physical picture which has been constructed
it is reasonable to expect that the scalar field e should
exhibit retardation effects with gravitational waves
traveling with the local velocity of light. Consequently,
it is assumed that an invariant Lagrangian density for
the gravitational field alone can be constructed by
writing the usual Lagrangian density for a scalar field,
an invariant quadratic in gradients of e

1
L=—Ph%e ;. (20)
o
Here 4% is the reciprocal of the tensor g;;, i.e.,
gikhk'j =487, (203)
and
de
€i=—, (21)
ox*

k is a constant. This is the same form as the standard
Lorentz invariant Lagrangian density of a zero mass
scalar field and appears to be the simplest invariant
Lagrangian density which will yield gravitational waves
of the appropriate velocity. While (20) could be multi-
plied by an arbitrary function of the scalar e without
destroying its invariance, this is not done, and the
physical reason for omitting such a factor is discussed
later.

The gravitational wave equation for matter free space
is obtained from the variational principle

0=5fL\/——'yd4x. (22)

Here as usual o/ —+d* is the invariant volume element.
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The wave equation is obtained as the Euler equation

a oL aL
(== )-v=r===0.
dx? de ; de
Conservation laws for the gravitational field alone are
obtained by defining the energy momentum tensor G, as

AL
sz: € ;—

€

(23)

—57L. (24)

The covariant divergence (y is the metric tensor) of
the energy momentum tensor vanishes. The proof of
this is simple. For the Newtonian-Cartesian coordinate
system the Christoffe]l symbols all vanish and the co-
variant divergence and ordinary divergence are equal

Gj, =Gy, (25)

However, for this coordinate system 4/—y=1 and
making use of (23) it is found that

Gj,i=0. (26)

The vanishing of the covariant divergence for this co-
ordinate system implies its vanishing in all coordinate
systems since

Gj;ii=0 (27)
is a tensor equation.

The vanishing of the ordinary divergence (26) for
the Newtonian coordinate system can be interpreted in
the usual way as representing the conservation of
energy and momentum of the field. Equation (27)
represents the same conservation laws expressed in
general curvilinear coordinates.

In the Einstein theory the vanishing of the covariant
divergence of an energy-momentum tensor does not
represent a conservation relation as (26) does not exist
in this formalism. In the present theory, however, the
existence of at least one coordinate system for which the
covariant divergence equals the ordinary divergence
and vanishes is sufficient to define conservation rela-
tions which can be expressed in any arbitrary coordinate
system.

The components of the tensor G;* are obtained from

(24) as
(27a)

. . V.
Gji= -*hlke, k€ j—0;'—h"e e 1.
2k

Written out for the Newtonian coordinate system the
energy density (positive definite) is

1 de\? 1
G44=——[e(—-—) +-(Ve) 2].
2k ot €

The three components of momentum density are

1 1 /0e e
__Ga4=__e€'4e'a=——~e<—)(——), (27C)
k k \ ot Ox®

a=1, 2, 3.

(27b)
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The three components of the energy flux density are

1 /0e Jde 1
Gﬁz__(_>(m_)=__cﬁ (27d)
ke\ 9t/ \ 9x= €2

The remaining elements of G;¢ constitute the stress
tensor of the field.

THE INHOMOGENEOUS FIELD EQUATION

By adding to the Lagrangian density (20) terms of
the type of (12) a Lagrangian density representing
particles, the gravitational field and their interaction
is obtained. This may be written for the Newtonian
frame as

1
L=— Z M-b(l - 62211'2)%5 (r—ri)"i—ﬁhﬁé, 7€, j+ (28)

Here r represents the three position components of the
field point. r; refers to the position of the ith particle
and v; to its velocity.

The variational principle (22) gives as the Euler

equation for
0 0L 9L

— =0,

dx' de; e

(29)

which becomes, when written out in detail for the
Newtonian coordinate system,

9% 1 de\? 1
V2e— 62—=—[6(—) +——(Ve)2]
az 2 at €
k_ Mi(1+¢e2)

27 (1—ewd)t

§(r—r;). (30)

The first term on the right is easily seen from (27b) to
be kG4* and represents % times the gravitational energy
density. The material particles and gravitational energy
serve as sources of gravitational waves.

That a particle should be a source of a gradient of ¢
is understandable when it is recalled that a gradient
of e leads to a force acting on the particle. It would be
expected on grounds of Newton’s third law that the
particle would be a source of the field which acts
upon it.

MECHANICS OF CONTINUOUS MATTER

The dynamics of point particles moving under the
influence of gravitational forces as described by (14)
and (30) is not completely satisfactory. It is necessary
to subtract the self-gravitational field of a particle
before computing the force on a particle or the total
gravitational energy of the field. If this is not done,
divergent results are obtained. The difficulty is of
essentially the same type as the self-field problem en-
countered in the Lorentz-Maxwell theory. There is one
important difference, however; the gravitational field
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(30) is nonlinear and the subtraction cannot be carried
out in a consistent fashion. On the other hand the non-
linearities become important only at a distance from a
particle of the order of the gravitational radius.

From a formal viewpoint matter is best considered to
be a continuous medium, as the self-field problem then
disappears. This of course is nothing but a way of
ignoring the particle-structure problem which cannot
be solved in any case.

The field equations for a continuous medium moving
under the influence of gravity only are conveniently
written in terms of energy momentum tensors. Inas-
much as the equations of motion of a particle in a given
gravitational field (g;;) are identical with the equations
of motion of the Einstein theory, these equations can
be obtained from the latter theory in the form of the
vanishing of the covariant divergence of the energy
momentum tensor of matter with zero stresses. Owing
to the difference in the units employed with the metric
tensors v and gi;, the matter tensor of the Einstein
theory must, for the Newtonian frame, be multiplied
by 4/—g to obtain the energy momentum tensor for
matter in the electromagnetic theory M,*. Hence, the
Einstein equations of motion are

1
———~M’°) =0, (31)
ik

vV —g

where the covariant divergence is computed with g;;
as the metric tensor.

(32)

where p is the matter energy density in a coordinate
frame for which the matter is locally at rest.* #¢ is the
four velocity dx?/ds. Making use of a standard formula
the covariant divergence (31) can be written as

M *=pgiuiuk,

1 1 aglm
0=\/—g(——Mi") =Myt —
V=g ik 2 ot
Making use of (10), (11), and (20a) the last term in
(42) can be evaluated for the Newtonian frame to give

hlnMn\m‘

(33)

1 9gim 1 o 1dew 1
A Y - e
2 9yt 2 (1—ex?)t (1— )t e

(34)

Because of the Lorentz contraction the matter density
is increased by a Lorentz contraction factor. Comparing
(34) with (17) it is apparent that (34) represents the
gravitational force density for =1, 2, 3. For i=4 it
represents the negative of the rate per unit volume that
work is being done on matter by gravitational forces
[see (16a)].

The first term on the right of (33) represents, for the
Newtonian frame, the total derivative (i.e., co-moving)

‘L. Landau and E. Lifshitz, The Classical Theory of Fields
(Addison-Wesley Press, Cambridge, 1951), p. 296.
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with respect to time of the density of matter momentum
and energy. To see this (32) is written as

€UV

M ¥=pg;; (35)

(1—ex?)

with v, representing an ordinary velocity component
a=1, 2,3 and 1,=1

e d[ €, ]
(1— e} dil (1— e%?)?

€ [ /e

% (1— )il (1— e?)}

—Ma,kk=

uh;] . (36)
ke

Also the condition of matter continuity is

{(12/:2) ] =0

Equation (36a) can be understood from a particle model
for the continuous medium. The coefficient of v, is
proportional to the particle number density and this
divergence vanishes if numbers of particles are con-
served. Hence

(36a)

e d ety
— M, k= —[ ], (37)
(1— €20} dil (1— e2?)?
a=1,2, 3.
In similar fashion
e d 1
My b= ——[ ] (37a)
(1—e2?)? diln/e(1— e%?)}

These equations represent total time derivatives of the
matter densities of momentum and energy respectively.

Comparing (33), (34), (37), and (37a) with (14) and
(25a) it is seen that (42) is equivalent to the particle
equations (14) and (16a).

With v;; as the metric tensor and for the Newtonian
coordinate system ordinary derivatives and covariant
derivatives are equivalent. Hence, the covariant relation
equivalent to (33) is

0= M ;1 —5gim;h"M ", (38)
where the covariant derivatives are now defined with
v:; as the metric tensor. Equation (38) constitutes 4 field
equations for the 4 field quantities v, p.

For a continuous medium the field equation, (30),
for € becomes for the Newtonian coordinate system

1 k p(14-€%?)
SR L WIS LS
a1 e 2 (1—e?)
This field equation can be expressed in terms of the
energy momentum tensor of the gravitational field (27a).

DICKE

Multiply (39) by —e i/ke which form (27a) can then
be written for the Newtonian coordinate system as

1 o 14+e2? 1
0=G¢,kk—_ . €, j.

2 (1—e?)? (1—e?)t e

(40)

From (34) this can be written in generalized coordinates
as the tensor equation.

0=Gi;kk+%g1m; M m, (41)

The covariant derivatives are of course based upon 7y,
as the metric tensor. The four field equations, (41), are
equivalent as (40) divided by ¢, is independent of the
index 1.

Conservation relations for the two fields in interaction
are obtained by adding together (38) and (41) to obtain

0= (G++MP*),s. (42)

For the Newtonian coordinate system this reduces to
an ordinary divergence and defines conservation rela-
tions for momentum and energy in a manner similar to
that described earlier for the gravitational field alone.
For the Newtonian frame the integration of the ordinary
divergence of the total energy momentum tensor over
the volume bounded by two surfaces of constant time
gives, after converting to a surface integral,

t1 t2

Hence the total energy and momentum of the system

is conserved.

Angular momentum and torque stress densities may
be defined for the Newtonian coordinate system by
defining the quantities (not tensor components)

La67‘= Xa (GB]I+ Mﬂf) —Xg (Gaj+Ma]')y @, p#4.

Conservation of angular momentum takes the form of
the divergence relation

OzLﬂﬂ, Jj:

which in a manner similar to the derivation of (43) gives

(44)
(45)

f Log*d®c=const, (46)
t

where L.g* are the three components of angular mo-
mentum density of the field.

CENTRAL FORCES

In order to evaluate the constant £, the field equation
(39) will be solved for the case of static central sym-
metry. The resulting solution can be compared directly
with the Schwarzschild solution of the corresponding
problem of general relativity.

We consider a central spherically symmetrical source
of gravitational field. For points outside the source the
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scalar e satisfies the equation,

1
Vie——(Ve)2=0. 47
2¢

The solution to this equation for which e—1 asymp-
totically is
a 2
€= (1+—) ,
7

where a is a positive constant which must be adjusted
to join properly with the interior solution of (39).

The tensor g;; is obtained by substituting (48) in (10).
This may be compared directly with the Schwarzschild
solution?® in isotropic coordinates for which

GoMo\*
g11=g22=g33=*(1+ ) )
2r

I—GoMo/zr 2
Za4= (—) .
1+GOM0/21’

(48)

(49)

Neglecting (GoMo/2r)? compared with unity the two ex-
pressions are equal. At the surface of the sun (GoM ¢/2r)?
has a value of 1072 It is doubtful that it will ever be
possible to detect observationally the effect of a term
this small. Thus, the two theories give essentially the
same result for the planet and light trajectories in the
solar system.

They also give essentially the same result for the
gravitational red shift. An atom at the surface of the
sun emits a photon of energy

i ="Twoe 2,

(50)

where 7w is the energy of the photon emitted by a
similar atom at great distance where e=1. The photon
travels without shift in either energy or frequency
(Newtonian units). Compared with the photon of a
distant atom it appears to be shifted in frequency by
an amount

Aw=wi—w=wo(1—€¥), (51)
Aw kM, GoM,
—= = , (52)
wo 1677 7

which is the usual approximate expression from general
relativity for the red shift.

One of the fundamental assumptions of the theory
introduced earlier concerned the e dependence of the
rest energy of a particle. The assumption M =M *
can be justified on the grounds of the applicability of a
limited principle of equivalence. If it be assumed that
the gravitational red shift disappears for an experiment
performed wholly within a freely falling elevator, it is
found that the above relation for the rest energy of a
particle is the only one compatible with this assumption.

8R. C. Tolman, Relativity, Thermodynamics and Cosmology
(Oxford University Press, London, 1939), p. 205.
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The gravitational red shift (52) is compensated by a
Doppler effect resulting from the change in velocity of
fall during the propagation time of the light from one
atom to the other. It is also found that light travels in
“straight” paths in the elevator, meter sticks being
defined as “straight’” but being for Newtonian units
curved by just the right amount to make the light beam
appear to be straight.

To evaluate the constant k, we consider first a general
static solution to (39) in the weak field approximation.
Matter is at rest, gravitational forces being balanced
by other stresses not specified. These other stresses
would also be sources of gravitational fields but may be
neglected in the weak field limit. We assume that e—e
asymptotically. For static solutions (39) becomes

1 k
Vie——(Ve)?=2¢tV2el= ——p, (53)
€ 2
This can be written as
k po
Vied= —— — (54)
4 ¢

where po is the matter energy density with e=1. In the
weak field approximation e can be replaced by the con-
stant € on the right side of (54). Then the general solu-
tion with the proper asymptotic dependence is

k po(r’)
b= el f ay I (55)
16ree v |r—71'|
For a spherically symmetric source (55) becomes
kM,
6%= 60%+ y (56)
1671'607’

where M, is the volume integral of po over the region
interior to the field point 7. Mo/et? is the weak field
approximation for the internal matter energy. If (56)
is squared and compared with (48), (10), and (49) for
=1, k can be evaluated as

E=161G. (57)

One interesting question concerns the dependence
upon ¢ of the ratio of gravitational to electrical forces
between matter in the weak field approximation. Con-
sider two identical electrically charged static spherical
mass distributions. The gravitational force acting on
one of the masses due to the other is from (56) and (17)

M de kM2
F,=——=— . (58)
2e Or 167reg?r?
The electrostatic interaction is
q2
Fo=——u. (59)
eor?



372

The ratio of these two forces is

Fe Goeo]uo2
= . (60)

F, ¢

For fixed total matter M, and charge ¢, the ratio varies
as €. By measuring this ratio, one can in principle
experimentally determine local e= €.

ELECTROMAGNETIC INTERACTIONS

To include the Maxwell field in the formalism in a
proper way, the procedure outlined earlier is followed
again. The Lagrangian density of the Lorentz invariant
theory is written with ¢ replaced by €. To this is added
(29) the density of the gravitational field. The total is,
for the Newtonian frame

L= —Z M.~(1—e2vi2)*6(r—ri)+z ei(A-vi— go)(s(l"—n)
$ i

+i(eEz—332 %[e(ﬁ)z—%(w)?], (61)

8 € ot
where
oA
T e e e V¢,
ot
(62)
B=v XA,
and the Lorentz condition
de
v -A+—=0, (63)
ot
is assumed to be satisfied.
The variation principle
) f Ld*x=0, (64)

gives as the equation of motion of the ith particle

d ]‘livn;e2
L
dt (1 - 62'01'2)%

1 1+ew?
M ~Ve.

B e (65)
21—t e

Here the first term on the right is the Lorentz force and

the second term is the previously obtained gravitational

force. The variation principle also gives the two Maxwell

equations that are not identities.

1 9
v X (—B) —;(GE) =47 Y evd(r—r,),
€ t i

(66)
v (eE)=4r Z ed(r—r;).
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It also gives the field equation for the gravitational

field as

626 Mi(1+€27)12)

Vie— = —k‘z —3(r—r;)
12 i 2(1—e )t

1 1 1 de\? 1 '
+——(6E2+ 32)*‘—[6(—‘) —|—~(Ve)2”. (67)

8 € 2k ot €
In this coordinate system the electromagnetic energy
density and the gravitational energy density serve as
source terms for the generation of gravitational waves
but they couple with opposite signs. Per unit energy,
the electromagnetic field couples with twice the strength
of a slowly moving particle. This is in agreement with
the extra factor of two for the gravitational deflection
of light.

On the right side of (67) the first term represents the
total effect of the particle (at a distance) and the par-
ticle self-fields are to be omitted from the 2nd and 3rd
terms. Presumably with a proper classical field theory
of particles the self-fields of the particle (2nd and 3rd
terms) would be included as sources of gravitational
field. Because of the difference in sign of these two terms,
the self-electric and gravitational energies could be each
large compared with the total particle energy and still
generate the proper gravitational field. There is, hence,
a possibility within this framework of a charged particle
of very small characteristic radius (gravitational radius)
held together by gravitational forces. On the other hand,
one has little reason to believe that a theory having its
origin in macroscopic phenomena only should be valid
at such small distances.

There is one piece of unfinished business regarding
the form of (20). It was shown that without violating
invariance arguments this term could be multiplied by
an arbitrary function of e. However, on physical
grounds it would be expected that for the Newtonian
coordinate system the third term on the right of 73
would, like the 2nd term, be an energy density. For
this to be true the function of ¢ must be omitted.

The Lagrangian density (61) is easily written in
generally covariant form by introducing the covariant
four potential 4;=(A, —¢) and the usual antisym-

metric field tensor
Fa=A4:1— A, (68)

In this notation, for the Newtonian frame

ds dw?
L=—3% Mi—o(—r1)+2 e;Ad7—6(r—r,)
i dt i dat

€ 1
__.___FikF”hirhks_*__hije' 7€, jo (69)
1 2k

T

As (ds/dt)s (r—r;) is assumed to transform like a scalar,
this Lagrangian density is a scalar. The invariant form
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of (64) is

5 f L/ —yd4e=0. (70)

As previously, divergence difficulties with self-fields
can be avoided by using a macroscopic description of
matter. In the usual way an energy-momentum tensor
for the electromagnetic field can be defined as

€ €
Eij= ,_____F“anmhkmhnj__Bij__anF“hmrhns. (71)

4gr 167
In the Newtonian coordinate system the energy den-
sity is
1 1
E44=—(eE2+—BZ). (72)
8w €
The momentum density is
€
—Eut=—(EXB)a, a=1,2,3. (73)
4
The Poynting vector is
1 1
Epr=—-(EXB)o=——E." (74)
4re €’

The remainder of the terms constitute the Maxwell
stress tensor.

For a continuous charge-current distribution the
charge and current densities can be combined in a four
vector which in the Newtonian coordinate system is

7%= (:p). (75)

Making use of (68), (62), and (75) Maxwell’s equations
(66) can be written for a general coordinate system as
(eF s oh¥h), j= — 4w ji. (76)

For the Newtonian coordinate system the covariant
divergence reduces to an ordinary divergence.

For the Newtonian coordinate system the ordinary
divergence of the energy-momentum tensor of the
electromagnetic field is from (71) and (76)

1
E; j=—Fgj*— Es*-¢ i,

(77)
€
1 1 1
Faj=pBat (iXB)a——( eE?+—BZ)—e, .
& € €
a=1,2,3, (78)
1 1 1
E,ji=—j 'E——(€E2+—B2)—e,4. (79)
8 € €

Equation (78) represents the force per unit volume
exerted by the electromagnetic field. Equation (79) is

373

the negative of the rate of energy transfer from electro-
magnetic to other forms of energy.

Equation (77) can be written in general covariant
form by first rewriting the last term as a derivative of
the Lagrangian density of the electromagnetic field. In
generally covariant form (77) becomes

9/ €
Ei;jj= - Fikjk_l__(._FikFrshirhka) € q. (80)
de\ 167

For a continuous matter distribution [see (39)], (67)
becomes

9% 1p(14+e2?) 1 1
Vie—ed—=—Fk {— —+——(6E2+—BZ)
a1 2 (1—e?) 8r €

) w

If this equation is multiplied by —e, i/ke and compared
with (27a) and (40) it can be written as

1462?21 1
— ——

0=Gi*—%p
1—eh? e 8w

1 €3
eE2+—B2)~—. (82)
€ €

Equation (82) can be written in generally covariant
form by making"uselof}(34)

0/ ¢
0=G's;1*+ 5 gum; B M " +—\ —F mh”h’“)e, i« (83)
de\ 167
For a continuous medium (65) can be written as
ew? 1

1
)=peE+iXB+%p ~Ve.

1—e%? e

d [ pelv
di\1— e%?

(84)

Here p again represents the matter energy density in a
co-moving coordinate system. Making use of (32), (33),
(34), (37), (62), (68), and (75), (84) can be written

O=Mi;kk—'%glm; ihlnMnm_Fikjk~

This is obviously generally covariant.

Defining the total energy-momentum tensor as the
sum of the tensors for the electromagnetic field, gravita-
tional field and matter

T#=E}GH+M#, (86)

the conservation of energy and momentum is expressed
by

(85)

Tk =0. (87)

The vanishing of the covariant divergence of T';* follows
from (85), (80), and (83).

The fact that the covariant divergence reduces to an
ordinary divergence for the Newtonian coordinate sys-
tem suffices to define conservation laws. Also angular
momentum and torque densities can be defined for the
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Newtonian coordinate system as

o, B=1,2, 3. (88)

The angular momentum of a closed system is conserved.

Although the physical picture of polarizable space
was used as a guide in constructing the above theory,
this interpretation is not fundamental to the formalism.
The formalism has a structure of its own, that is inde-
pendent of the philosophic interpretations. In this more
general sense the theory is simply a scalar field theory
of gravity based upon a flat space-time and local
Lorentz invariance.

Laﬂi= x,,TBf— xﬁTaf,

COSMOLOGY

The cosmological principle was taken to be a funda-
mental assumption of the theory. Namely, from any
fixed position point of a Newtonian frame the universe
is assumed to be on the average uniform. This implies
that matter is on the average fixed in position relative
to the Newtonian coordinate frame, for motion would
introduce a lack of uniformity as seen by an observer
located where the matter would be moving. In like
manner the scalar field variable e and matter density
must be position independent.

If the lack of uniformity of matter and its random
motion are ignored, the time dependence of e can be
computed from energy conservation. Equation (87)
becomes for the Newtonian, frame, remembering the
position independence of the densities

0= T4, kk = T4, 44, (89)

or
(90)

Ts=U (const).

Assuming that electromagnetic energy can be ignored,
from (86), (35), and (27), (90) can be written

1 sde\? po
U:_E(_) +2 (91)
2k \dt Ve

with po constant.

€

€= 73
5
L)
o= /?
Locus of —~7
Minima | 040
Time in Proper Units x
0 - T='hge of Universe” r
-5 -10 -5 ] 5

F16. 1. Variation with time of vacuum polarizability
for 'various energy densities.
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Equation (91) can be integrated to give
4= (28U =2€t(d— eo) 3+ (5/12) eotet+5eo |

sl ()](2) ) o5
)

The constant of integration is chosen to cause the
minimum of ¢, () to occur at ¢=0.

For some purposes it is desirable to obtain € as a
function of 7, the “proper” or atomic time. Multiplying

(91) by N
()

4+ (260 r = et (h— eol)} (e Seot)

e} Y
ORER
€9 €0 i
Equation (95) with a shift in time zero is plotted in
Fig. 1. U is chosen to give an asymptotic slope of unity
and the time zero is adjusted to make e=1 at ¢=0.
Although all matter is at rest in this model there is a
galactic red shift. With increasing e, the photon emitted
in the past has more energy than its present counter-
part. This might be thought to cause a “blue shift.”
However, a photon loses energy with increasing e at
twice the rate of loss characteristic of an atom, hence
there is a net shift toward the red. The energy lost by
a photon becomes converted to gravitational field
energy. Combining (16) and (16a), it is apparent that
the energy of a photon varies as ¢! whereas that of a
stationary atom varies as ¢ %. The red shift is conse-
quently given by

with
(93)

(94)

and integrating gives

+"%€0 log

1

—=6;

A

(96)

Here the ratio refers to the wavelength of light of
distant origin A, and the laboratory light ;. € is the
value of the dielectric constant at the time the light
was emitted and e is assumed to be unity now.

Although photon concepts were used to obtain the
galactic red shift these particle ideas are not necessary.
Tt is easily seen from Maxwell’s equations that for time
dependent but space independent ¢, an electromagnetic
wave propagates without a change in wavelength but
with its frequency varying as ¢

For small red shifts (96) can be written, assuming
¢

1dN de

1t —=1(2r0)%
Adr dr

©7)
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Using the present value of the Hubble constant of
6.5X10° years for the reciprocal of the left side of (97)
gives an energy density of space

U=9X102 g/cm®. (98)

Defining the “age of the universe” as the negative time
at which e extrapolates to zero (Fig. 1), gives an age
of the universe of 3.25X10° years with this choice of U.
Remembering the changes in the Hubble constant in
the past years, another factor two change is perhaps not
excluded. The evidence from isotope abundance and
radioactive dating favors an age of the galaxy of at
least 6.5)X10° years.® If this is taken as the “age” of the
universe, one obtains U=2.25X10"% g/cm? With a
minimum matter density of the universe equal to that
of galactic matter (1073 g/cm?®), there is a lower bound
on ¢ from (93) of

€0>0.002. (99)

It is interesting to consider the effect of a changing e
on the random motion in the universe. Consider a test
particle moving through the idealized uniform space.
Its momentum is a constant of the motion. Hence,
from (15)

€
e¢————=const. (100)
(1—e2p?)?

With increasing e the ratio of particle to light velocity
(ev) decreases. Thus, the random kinetic energy meas-
ured in atomic units falls with time and the kinetic
temperature of galactic matter decreases with time.
This energy is converted into gravitational energy
[see (82)].

Much of the formalism developed in the past 40 years
by the cosmologists is concerned with kinematics and is
equally valid in the present theory. The tensor g;; (10)
is easily transformed into the standard form of Robert-
son and Lemaitre’ through the substitution of proper
time for coordinate time using (94). This gives as an
expression for interval measured in proper units

ds?= — e[ (da*)>+ (da?)>+ (da®)?*]4-d?,

with e given by (104).

This is the type of universe characterized as open and
flat. Since in the present theory the equations of motion
of a particle are identical with those of general rela-
tivity, the kinematical description of the universe based
upon (101) is identical with that of general relativity.

Equation (91) and its solution (92) are based upon
the assumption that (37a) is valid or that the total
matter is conserved. Only under this condition does the
last term in (91) have this form. On the other hand,
without violating conservation of energy, momentum,
or angular momentum the condition (37a) could be
relaxed. Namely, a mechanism for the production of

(101)

6 F. Hoyle ef al., Science 124, 611 (1956).
7 See reference 5, p. 369 [Eq. (148.20)].
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particles by the conversion of gravitational energy into
matter energy could be postulated This would allow a
variety of continuous creation universes.

A cataclysmic production of particles could also be
obtained within the framework of the theory. The
universe might be visualized as initially free of particles
(t<0) and containing only gravitational energy. The
time dependence of e would be given by (92) with the
negative sign and with ¢e=0. ¢ would be decreasing with
time, varying as (—7)% One might postulate in a com-
pletely ad hoc fashion the creation of heavy neutral
bosons at a rate varying as e *(de/dt)? with »n>3. This
would result in a cataclysmic production of bosons at
t=0. The heavy bosons would then quickly decay into
protons and electrons. The production of particles is
accompanied by a rapid increase of e from a low value
to € after which production effectively ceases. From
here on e varies with time in accordance with (92).

THE PHYSICAL CONSTANTS OF NATURE

From (95) it is apparent that asymptotically e is
proportional to the age of the universe on an atomic
time scale. From (53) and (95), the ratio of the gravi-
tational to electrical interaction between two ele-
mentary particles varies asymptotically inversely as the
age of the universe. This agrees with Dirac’s hypothesis,?
and suggests that the time dependence be examined of
the remainder of the physical and astrophysical con-
stants of Fig. 1 of the preceding paper.

The theory has been constructed to make the numbers
in the first column constants, hence time independent.
The present theory says nothing about the Fermi
interactions except that their strength would suggest
that they might be time dependent.

The only other number requiring discussion is in the
last column, the number of particles in the universe out
to the Hubble radius. Basing the discussion upon the
asymptotic dependence expressed in atomic units, the
volume inside the Hubble radius is proportional to
73~¢* and the average distance between particles varies
as et This gives a total number of particles which
varies as r¢ instead of 7? as suggested by Dirac’s
considerations.

There is a simple explanation for this difference. The
present theory contains a small dimensionless number
¢/ €0 which is time dependent. In the absence of a theory,
any of the large dimensionless numbers could contain a
factor in the form of a power of this number without
changing its order of magnitude. Consequently, the
time dependence of a number cannot be inferred from
its magnitude alone.

From this point of view there is a single large dimen-
sionless number which is statistical in origin. This is the
number of particles in the universe. The age of the
universe, “now,” is not random but is conditioned by
biological factors. The radiation rate of a star varies as

8 P. A. M. Dirac, Proc. Roy. Soc. (London) A165, 199 (1938).
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€79 and for very much larger values of e than the
present value, all stars would be cold. This would
preclude the existence of man to consider this problem.
On the other hand, if ¢/¢; were presently very much
larger, the very rapid production of radiation at earlier
times would have converted all hydrogen into heavier
elements, again precluding the existence of man. This
suggests that e/ is presently a relatively small number,
perhaps under ten. The universe can be characterized
as young.

Some insight into the puzzle of the constants of
Table I of the previous paper is gained by noting that
for any solution to the field and orbit equations (39)
and (14), a family of solutions can be obtained through
the use of a simple scaling transformation.

Let 7 represent the density of particles of rest energy
m. Then a macroscopic treatment of matter employs
the matter density function p which is related to the
particle density, according to (36a), as

p Po
m= = .
(1=t A/e(1—e?)?

For any solution to (39), (14), and (102) another is

(102)

9 E. Teller, Phys. Rev. 73, 801 (1948).
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obtained through the transformation
e(r,0)—ve(y ',y %),
V()= (v iy ),
n(r)—yn(y'ry%),
po(r,)—=vpo (Y 'r,v7%),

(103)

with vy a constant.

If this transformation is applied to the cosmological
problem [and (92)] it is found that the number of
particles in the universe scales as v*, the age and radius
of the universe in atomic units scale as 4?2, and the ratio
of electrical to gravitational forces scales as 2. The
energy density U is independent of v. Consequently this
trans formation preserves theinternal relations exhibited
by Fig. 1 of the previous paper. Apparently, to make
some sense out of the regularity of these numbers in the
framework of the present theory, it is necessary to
assume two things, that the universe is young (i.e.,
¢/eo~1) and that it has a characteristic energy density
~1078 erg/cm® when expressed in Newtonian units.
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