
Kinematical/potential Fourier/Calderon waves/wavelets 

 
Wavelets are proposed as appropriate analysis tool for the proposed single gravity and quantum field 
model, additionally to the standard Fourier wave analysis technique. Regarding all physical classical 
PDE model and their related variational representations in line with the Hamiltionian formalism) Fourier 
waves are related to the standard kinematical Hilbert space H(1); the corresponding variational theory 
and the related Ritz-Galerkin approximation procedure provide the mathematical framework for the 
well established (numerical) finite element methods. The physical notion "Fourier wave package" is 
related to the H(1)-complementary subspace of H(1/2). The corresponding tool set for analytical and 
approximation analysis are the (continuous) wavelets accompanied with the related approximation 
discrete wavelet methods.    
 
There are at least two approaches to wavelet analysis, both are addressing the somehow 
contradiction by itself, that a function over the one-dimensional space R can be unfolded into a 
function over the two-dimensional half-plane (HoM1):   
 
the first approach is the interpretation of the wavelet transform as a time-frequency analysis tool, 
where a one-dimensional information (a one-parameter family of purely oscillations) is somehow 
'unfolded' into a two-dimensional time-frequency plane, i.e. a function over the real line is mapped into 
a function over the time-frequency plane that tells 'when' and which 'frequency' occurs. The (human 
perception) hearing process of a concert is somehow reflecting this kind of compromise (!!) between 
the (mathematically correct) (either) time localization or frequency localization on the one hand side, 
and the human perceived melodies, and hence music, just based on a received one-dimensional 
signal on the other hand side. The interpretation of the wavelet transform of a one-dimensional signal 
in this context is about a time-frequency analysis with the physical parameters "time" and "frequency" 
with constant relative bandwidth. 
 
The second approach uses the wavelet analysis as a mathematical microscope. The idea is to look at 
the details that are added if one goes from a scale "a" to a scale " a-da", where "da" is infinitesimally 
small. This second approach is closely linked to approximation theory, e.g. in the context of the 
building of Calderon-Zygmund operators, based on the truncation of kernels (MeY). This mathematical 
microscope tool 'unfolds' a function over the one-dimensional space R into a function over the two-
dimensional half-plane of "positions" and "details" (where is which detail generated?). This two-
dimensional parameter space may also be called the position-scale half-plane. The interpretation of 
the wavelet transform in this context is about a mathematical microscope with the physical parameters 
"position (parameter a)", "enlargement" and "optics (wavelet function g)". 
 
(LoA) remark 1.1.10: The second mathematical microscope approach enables a purely (distributional) 
Hilbert scale framework where the "microscope observations" of two wavelet (optics) functions f, g can 
be compared with each other by the corresponding "reproducing" ("duality") formula (see also (*) 
below), whereby 
 
- the "bra(c)"-wavelet transform W(f) is inverted by the adjoint operator of the "(c)ket"-wavelet 
transform W(g) (given corresponding admissibility conditions are valid) 
 
- the identity (*) provides also some additional degree of freedom in the way that in order to analyze a 
signal s(t) the wavelet f can be chosen properly according to the special situation of the underlying 
mathematical model. The prize to be paid is only later, when the "re-building" wavelet g needs to be 
built accordingly to enable the corresponding "synthesis" 
 
- the Hilbert transform operator (which is valid for every Hilbert scale) is a "natural" partner of the 
wavelet transform operator, as it is skew-symmetric, rotation invariant and each Hilbert transformed 
"function" has vanishing constant Fourier term. The example in the context above is the Hilbert 
transform of the Gaussian/Maxwellian distribution function, the (odd) Dawson function, with the 
"polynomial degree" point of zero at +/- infinite. 
 
 

 
 
 



Further details 
 
 
The sine and cosine functions have unbounded support and they do not vanish at infinity. Their 
spectra are very local consisting of a finite sum of Dirac measures. Conversely, if one use 
approximations based on finite sum of Dirac measures the spectrum of the corresponding basis 
"functions" (which is basically the (cosine(x*s) + i * sine(x*s) function) does not vanishes at infinity in 
the frequency domain. 
 
The wavelet concept is trying to overcome this issue, while basically looking for an orthogonal basis of 
a Hilbert space (e.g. L(2)=H(0) or H(-1/2)), constructed from a unique generation function g (the 
scaling function), via translation, dilation and linear combinations, whereby g can be localized in x 
(space variable) and s (Fourier variable). The admissibility condition for a wavelet governs the 
behavior of the wavelets in the neighborhood of the frequency zero. The (wavelet) admissibility 
condition is obviously related to the H(-1/2) Hilbert space norm in case of space dimension m=1. 
 
We note that the hypothesis that a function g has compact support is essential to become a wavelet. 
Otherwise, it can be shown that there are infinitely supported solutions of the corresponding scaling 
equation. For instance, the Hilbert transform of the function g satisfies the scaling recursion whenever 
g does. 
 
We further note the two fundamental examples of universal scaling functions (scaling functions for 
every rank), the sinc and the Haar scaling functions, which are Fourier transforms of each other. 
 
The wavelet transform W(g)(v) of a function v with respect to a wavelet function g is an isometric 
mapping, whereby the corresponding adjoint operator is given by the inverse wavelet transform on its 
range. Let u,v denote two elements of a Hilbert space with inner product (u,v), let ((*,*)) denote the 
inner product of the Hilbert space H(-1/2). Let further f,g denote two wavelets with bounded inner 
product ((f,g)) and let (((*,*))) denote the inner product of the corresponding wavelet transforms 
W(f)(u), W(g)(v) with respect to the underlying Haar measure. Then (up to a constant) it holds 

 
 (*)     (((W(f)(u),W(g)(v)))) = ((f,g)) * (u,v) . 

 
This identity (in combination with the below) enables a combined wave-wavelet ((H(0),H(-1)) concept 
for analysis of the H(-1/2) = H(0) * H(0)(ortho) framework, whereby in this specific case it holds 
(u,v):=((u,v)). 
 
In (PaR) the wavelet transform for a class of distributions is provided, whereby the corresponding 
inversion formula is established by interpreting convergence in a weak distributional sense. In the 
context of above we note that log2(sin(x/2)) (with its corresponding 1st and 2nd derivatives, the cot(x) 
and the 1/(sin(x)*sin(x)) functions) is a L(2) function fulfilling the admissibility condition. 
 
The Gaussian function stands out since it minimizes the Heisenberg uncertainty principle (DaS). The 
corresponding windowed Fourier (integral) transform is e.g. applied in quantum physics, where it is 
used for defining and investigating coherent states. It is related to the Weyl-Heisenberg group, while 
the corresponding wavelet (integral) transform is related to the affine group. In other words, from a 
group theory perspective windowed Fourier transforms and wavelet transforms are identical. 
 
The wavelet mother function, which is directly connected to the Gaussian function (which is not a 
wavelet) is the Mexican hat function. It is basically the second derivative of the Gaussian function. In 
(DaS) a new interpretation of the Mexican hat function is provided: it can be interpreted as a 
minimizing function of an uncertainty principle, in case its rotation invariant form "A" has a certain 
form/representation. 
 
The affine-linear group (where each element of that group has two components, while the Weyl-
Heisenberg group has three components) of unitary operators equipped with the Haar measure is 
locally compact, i.e. the group multiplication and the inverse operation of the group are continuous 
mappings. For local compact groups there is an orthogonality relationship valid, which provides the 
common group theoretical denominator of windowed Fourier and wavelet transforms (GrA). 
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