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Abstract:

The derivation of the Maxwell equations is reproduced whereby

magnetic charges are included. This ansatz yields following

results:

1) Longitudinal Ampère forces in a differential magnetostatic

force law are improbable. Otherwise a electric current would

generate magnetic charges.

2) Simple magnetic and electric induced polarization phenomena

are completely analogous and are described by a Laplace equation.

3) Permanent magnetic fields can be understood to be caused by

magnetic charges. Consequently, a moving permanent magnet

represents  a magnetic current which generates a electric field.

4) The electromagnetic tensors of energy and momentum have some

additional terms which are written down generally.

5) If the electric material parameters are influenced by non-

electric variables (for instance temperature or pressure), the

formalism of electrodynamics is not sufficient to describe the

system and has to be completed by further differential equations

from the other areas of physics.

6) Nonlinear electro-thermodynamic systems may violate the second

law of thermodynamics. This is illustrated by a electric cycle

with a data storing FET invented by Yusa & Sakaki.
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1) Introduction

The Maxwell equations are about 150 Jahre old. They are the

mathematical compilation of the experiments and considerations

based on the original work of Cavendish, Coulomb, Poisson,

Ampère, Faraday and others [1]. Mathematically they are partial

differential equations. Different notations exist for them: most

popular is the vector notation (O. Heaviside), which replaced the

original notations in quaternions  (J.C. Maxwell).  More modern

is the tensor notation (H. Minkowski, A. Einstein), which is able

to describe situations which are discussed in the theory of

relativity [2]. All notations are equivalent in the non-

relativistic limit. 

The Maxwell equations were and still are very successful. Until

today their range of applicability grows permanently. 

Here a short derivation is given which especially takes account

for the newer developments of material descriptions. Furthermore,

monopoles are included because Ehrenhaft proved their existence

already 50 years ago [3-6]. It will be shown that the theory

needs also their existence for a full description of all

problems. This explains perhaps effects which are regarded

generally as dubious because they cannot be understood in a

conventional approach.
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2) The equations of the electromagnetic field 

 a) The laws of Coulomb and the equation of Poisson

The so called Coulomb law describes the force between electric

charges. It was discovered by Priestley in 1767 [1, 7]. Cavendish

rediscovered it again and measured as well the dielectricity

constant. However, due to many contributions to the knowledge

about electricity it has the name of the third discoverer

Couloumb [1]. 

The Coulomb law in the notation of today is [8]

with the definitions F:=force, q:=single charge, x´ space

coordinate and i,j are indices. It can also be written as 

by using the definition of the electric field E

The electric field E can be derived from a potential  by using-E

the definition

Then, the E-field is defined by
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 has a empirical meaning. The E-field can be measured-E

experimentally by difference of voltage  between a-E(r)	-E(rref)

point in space at r and a reference point at rref which oftenly is

set to infinity where no field exists. Using the Poisson equation

the charges the field can be calculated from the potential

If matter is in the field the empirical potential  consists of-E

the induced charges  and the contributions from the!matter(x´)

charged surface of the conductors  !conductor(x´)

where  is the “mean field” of the material charges. Thus, per-P

definition only the charges on the conductor are detected in the

experiment. In order to obtain a expression with empirical

variables similar to (6) the equation (7) is rewritten 

Contrary to the empirical meaning of ,  has only a formal-E -D

character. Using  in the Poisson equation the charges to be-D

measured in or on the conductors can be calculated. One defines
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where 0ik is the dielectric tensor of the material.

Using the mathematical relations  and/ |x	x´ |	1

	/´ |x	x´ |	1

 and the redefinition  the Poisson/´ 2 |x	x´ |	1

	4�/(x	x´) ! :
!conductor

equation is

Using (9) and (10) follows

Important special cases:

  surface charges

An electric potential can exist due to a surface density 1

Then, the electric field

  constraints for the material properties

In the most cases it is possible to make simplifying constraints

for the material properties. In order to explain this it is

necessary to write down the potential -P(x) of the multipole



6

-P(x)

!

r
�

pdipol .x

r3
�

1
2Mi, j

Qij

xixj

r5
� .... (14)

pdipol :
P
x ��
!(x ��)dx � 3 Qij:
P

(3x �

i x �

j	r 2
/ij)!(x ��)dx � 3

(15)

û-P(x ��,x)
 !(x ��)

|xi		x ��

i |
�

Pdipol(x
��) .(x		x ��)

|xi		x ��

i |
3

�

1
2Mi, j

Qij(x
��)

(xi	x �

i )(xj	xj)

|xi		x ��

i |
5

� .... dV (16)

-P(x)

P

Pdipol(x
��) .

(x		x ��)

|xi		x ��

i |
3

dx � 3

	

P

/
�Pdipol(x

��)

|xi		x ��

i |
dx � 3

(17)

expansion of the charges in the material [9]. A multipole

expansion of the potential calculates the distribution of charge

in space about a origin 0 as a serie of moments

cf. appendix 1. Here the definitions of the dipol moment pdipol and

the quadrupol moment Qij are

This consideration is done for all points in space. Using Pdipol

as density of polarisation then follows

The first term represents induced charges for instance if

recombination processes in semiconductors have to be accounted

for. However, for the most problems electric neutrality can be

assumed and the first term becomes zero. Furthermore oftenly

higher terms are neglected because they are quantitatively

irrelevant. Then, after integration over the whole space holds

If (17) is inserted in (8) one can identify: P=Pdipol
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 b) Ampère´s law

The discovery of electromagnetism by Oersted  [10, 11] in 1820

inspired some researchers in France to find the quantitative laws

of these effects.  Especially, Biot&Savart and Ampère tackled the

task to solve this problem by intelligent experiments [1, 11].

In order to fit their experiment by the theory they made

additional assumptions which filled up some lacking observations.

This led to different laws for the forces between differential

current elements of a circuit. For closed circuits, however, the

different laws coincided in one. The discussion of this problem

is running until today.

Biot and Savart [12-14] found out that “the total force which is

exerted by a file of infinite lenght under current on a element

of austral or boreal magnetism in the distance FA or FB, is

perpendicular on the shortest distance between the molecule and

fig.1a: the Biot-Savart - setup 
A magnetic needle is under the influence of the
field of current CZ .  A cover protects against
the movement of air. The magnet A’B’ compen-
sates the magnetism of earth where the needle
is located.

Fig.1b: the Biot-Savart - setup
measuring the time constant of the torsion
pendulum it is concluded on the force of the
field on the needle, if the current flows.
Distance and angle of the file are varied in the
experiments.
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the file (see figs.1)”. This law is written today in a form which

goes back to Grassmann [11, 15]. It holds [8]

with  i1/2 := current, ds1/2 := length of file element, r:=

distance between file elements.

Ampère idolized Newton a little bit. So he overtook, 1) that

Newton’s 3.axiom (actio-reactio) of mechanics also holds for

electromagnetism, and 2) that the force between single elements

of current is a central force and lies on the distance line

between the elements.

Based on his own experiments on closed circuits Ampère included

the following observations [16, 17] in his  theory, see fig.2a-d:

1) The force of a file under current reverses if the current

reverses, see fig.2a.

2) the forces of a current, which flows in a smooth circular

circuit, is the same, if the “circle” of the current is not

smooth but sinoidal, see fig.2b.

3) the force of a closed current on a single current element is

perpendicular to it, see fig.2c .

4) the force between two current elements does not change if all

spatial dimensions of the setup are enlarged by a constant

factor, see fig. 2d.

Applying these observations Ampère constructed his force law.

Based on  Ampere´s assumption it holds for the force . TheF�r

observations 1)+ 2) suggest for first order
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fig.2a: Ampère´s first experiment
AB is a fixed conductor under current. The
circuits  d’c’fe and cde’f’ are stiffly connected ,
are symmetrical over AB and can rotate about
the axis x’y’. Their orientation of the current is
opposite in these circuits; experimental result:
no rotation due to complete balance of opposite
forces

fig.2b: Ampère´s second experiment
in a trench PQ flows a current straight on in a
conductor, in the trench SR in a sinoidal
conductor. The circuits BCDE and FGHI
mounted stiffly together, but can rotate around
the Axis AK . The same current flows through
them, however in opposite direction.
experimental result: only if the circuit is exaxtly
in the middle between the conductors all forces
compensate and no movement is observable.

fig.2c: Ampère´s third Experiment
M and M’ are trenches filled with mercury, arm
OC can be turned. The current flows over the
troughs M back to the arm OC. The arm turns
into the middle, where a equilibrium of torque
exists and where all forces on OC apply
perpendiculary.

fig.2d: Ampère´s fourth Experiment
the outer circuits are fixed, the circuit in the
middle can move. Only, if the diameters fullfil
the relation dleft :dmiddle =dmiddle:dright, all forces
compensate and the circuit in the middle NOM
does not move.
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, the combination of bothF� i1.i2[3(r).(ds1.ds2)�%(r)(ds1.r).(ds2.r)]

proportionalities result in .F� i1.i2r[3(r).(ds1.ds2)�%(r)(ds1.r).(ds2.r)]

Observation 4) implies 3(r)=A/r3 and %(r)=B/r5 with A and B as

constants to be determined. These can be calculated applying

observation 3) as shown in the proof below. So follows B = -3A/2.

Proof[1]:

Imagine two circuits located with an angle of 90° between. Due to observation 3)

holds for a closed circuit

F��i1.i2r
A

r 3
(ds1.ds2)�

B

r 5
(ds1.r).(ds2.r) ds2
0

This equation is rewritten as

     
A (ds1.ds2).(ds2.r)

r 3
�

B(ds1.r).(ds2.r)2

r 5

Because the integral over the circuit is zero, a potential exist and consequently

also a total differential. If the circuit is chosen to be a round circuit one can

replace by ds1=-dr and write

   	
A d(dr.ds2).(ds2.r)

r 3
�

B(ds1.r).(ds2.r)2

r 5

Due to the potential property follows Qxy = Qyx and then

d A

2r 3

	

B

r 5
(ds1.r)

With  ds1=-dr this becomes

	

3A

2r 4
dr
 B

r 4
dr

and  B = -3A/2 follows. q.e.d a
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So Ampère´s law is written :

Riemann [18] and Whittaker [1] checked this derivation and

realized, that Ampère’s workout is only one possible ansatz to

explain the observations. They doubted in Ampère’s assumption,

that the force between current elements is a central force,

because the forces could be as well angular moments [19]. They

found other possible formulas, which could explain all

observations. Whittaker enlarged Ampère’s formula, by adding

terms, which were in accordance with the observations on closed

current loops, because they were zero after integration over a

closed loop. So he made the general ansatz: 

Whittaker dropped Ampère’s assumption, that the force should be

a central force and he applied only Newton’s law actio-reactio.

He made the most simple possible choices $(r)
 i.i´/(c 2r 3)

,  and obtained the force law$´(r)
	3i.i´/(c 2r 3)
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H
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|x 3|
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Tabel 1: different versions of magnetostatic

force law between current elements ([20] and [1])

general form of the magnetostatic force law:

F
k i.i´

r 3
[r.(A.(ds.ds´)�B.(r.ds)(r.ds´)/r 2)�C.(r.ds´)ds�D.(r.ds)ds´]

name year ref. A B C D comment

------------------------------------------------------------------------

Ampere 1823 [17] -2 3 0 0 central force

Grassmann 1845 [11, 15] -1 0 0 1 no monopoles

Riemann 1875 [18] -1 0 1 1 moment conserved

Whittaker 1912 [1, 15] see under Riemann

Brown 1955 ????  1 -6 6 6 ?????

Aspden 1987 [21] -1 0 1 -1 cons.angular moment

Marinov 1993 [22] -1 0 0.5 0.5 experiment

Cavallieri 1998 [23] see under Grassmann experiment

Of course this force law was not convincing as well.

For the basic idea of Riemann and Whittaker was used by many

others who built their “own” force laws using other assumptions.

The discussion is running until today, see[23] and tab.1.

All different forms yielded the same result for the magnetic

field H , if they were integrated over a closed circuit.
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 The Biot-Savart law is probably the correct version for
physical currents. It does not generate “magnetic charges” and
coincides with the B-field of a moving charge according to
Lienard-Wiechert(in the special case of zero acceleration).
Experimentally the Biot-Savart - law is supported by the
measurements of Cavallieri [23]. 
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dF
 i
c
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|x12|
3
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general scheme of proof for every magnetostatic force law:

According to a general theorem of vector analysis, see appendix 2, every

vector field can be decomposed into a vortex field and a potential field. The

vortex field is caused by currents, the potential field by charges. If this

is compared with theorem 2 in appendix 2, then the Biot-Savart law generates

a vortex field. All other fields deviating from Biot-Savart, have to be

written as

field law = Biot-Savart-law + additional terms

These additional terms must be identified as a potential field. If the

current is integrated over a closed circle the potential terms cancel to

zero1 .  a

The force of a closed circuit on a differential current element

is according to Biot-Savart, see (18) and (22),

If one integrates over two interacting closed circuits the von

Neumann force law is obtained [1, 8, 24, 25]

From (22) also follows, that the magnetic field can be calculated
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A(x )

1
c
� j(x´)

|x	x´|
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div rot A
div H
0 (26)

rot B
 4�
c

(jconductor� jmaterial) (27)

B:
µH oder B:
H�4�M (28)

from a vector potential H := /×A with 

Then follows

So Ampère concluded: The cause of the magnetic field are not

magnetic charges but only currents.

Ampère’s theory includes as well para-, dia- oder ferromagnetic

“excited” materials. The total magnetic field B includes the

field from the measurable currents j and the field M of the

magnetism of the material, where the field M (according to

Ampère) is generated exclusively by currents in the material.

Then follows

with

Analogously like for charges a relation is sought between the

empirical variables. So the unknown current jmaterial is eliminated.

If compared with electrostatics, see eq. (14) to (17), it can be

derived for currents, that for  magnetostatics holds

. Here is applied  and , i.e.
P

j d 3x

P
/.j d 2x
	

P
�! d 2x 
 0 /.j��!
0 j(�)
0
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d 3x´	P
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|x	x´|
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/×H
	/P
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c
./´

1
|x	x´|

d 3x´�
4�
c

j (32)

/×H


4� j
c
	/

/´ j(x´)
c|x	x´|

d 3x´ (33)

no currents exist at the boundary in the infinite. Thus no

charges can be built up there and only dipol terms and terms of

higher order can contribute to the result. So a definition (29)

analogous to (17) is used for the magnetization M of the material

Then, using (27),(28) and (29) Ampère´s laws are derived

In order to derive the present version Ampère´s law is rewritten

as [8]:

With the mathematical relations  and/ |x	x´|	1

	/ |́x	x´|	1

 this becomes/´ 2 |x	x´|	1

	4�/(x	x´)

because A also fulfills the Poisson equation  . /2A
	4� j/c

If the integral in (32) is integrated partially using that j

vanishes at boundary in the infinite, then follows
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/×H


4�
c

j oder lHds
 4�
c P

S

jdA (34)

Now, the observation is used that no charges build up during

magnetostatic experiments. Using the continuity equation this

fact can translated into mathematics by . /´ j´�	�N
0

This yields Ampère´s law of magnetostatics:

Comparing the coefficients of (31) and (33) follows grad div A=0.

Oftenly, it is assumed div A =0. This expression is known as

Coulomb-gauge. The vector potential A is not a unique function,

because A can be replaced by A*= A + /f(x) . The important point

for the choice of vector potential A is that grad div A=? has to

be chosen such, that a physically motivated constraint is

fulfilled - the continuity equation [26].

At the time of Biot&Savart and Ampère this was not known fully

and only the closed circuits could be tested out. So the result

(22) for the H-Feld was ok. . However later, after the discovery

of the electron by J.J. Thomson [27], discussions came up due to

the basic problem behind the approaches of Biot&Savart and

Ampère: Not every magnetic problem could be discussed by a closed

electric circuit. Freely moving charges (as differential current

elements) could exist and the question for their field had to be

solved. So observations were published that longitudinal forces

existed in railguns [28, 29] and in plasma tubes [30, 31]  (See

also the review article [32]). These forces seemed to be

explained by Ampere’s differential force law, but not by Biot-
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 Both observations were explained later by Rambaut
&Vigier[33], see as well [34]. They pointed out, that these
observations do not answer the question, because a closed
moving circuit shows a “longitudinal” mechanical expansion due
to a “expansion” pressure of a loop due to the Lorenz force. 
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H
HV�HC�HL

1
c
�j(x´) × x	x´

|x	x´|3
d 3x �

	�NH(x´) x	x´

|x	x´|3
d 3x �

	/3(x) (36)

Savart´s version. Althought these problems seem to be solved

today not in favour for longitunal forces2 the problem will be

left open here for further considerations. So all mathematically

possible field configurations will be included in the discussion

by adding a magnetic potential to the magnetic vector field. So

any vector field F can be decomposed into two terms FC and FV,

derived from a potential (for FC) and a vector potential of

vortex field (for FV), see the proof in appendix 2 [26] and [35,

36]. Thus any H-Feld is described by 

Here NH is the magnetic charge distribution due to the deviation

from Biot-Savart´s differential law, see eq.(18). 

If a concrete system is solved with a boundary problem, a Laplace

field HL has to be added which satisfies rot HL =0 and div HL =0.

Here is  the Laplace field. This potential describes aHL :
	/3(x)

field, which is generated outside of the defined area of the

problem. The field HL helps to adapt the solution to the given
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H
 HV�HC�HL
//×A 	 //�	/3(x) 
 //×
1
c
� j(x´)

|x	x´|
d 3x �

	//� NH(x´)

|x	x´|
d 3x �

	/3(x) (37)

/.B0
/.(H0�4�M)
0 (38)

/.B0
/.(H0�H�4�M)
0 (39)

boundary condition of the problem. Then (36) changes to

with  as magnetic vector potential andA :
c 	1 ,j(x´)/|x	x´|d 3x´

 as potential function of the magnetic charges.� :
,NH(x´)/|x	x´|d 3x´

If magnetic charges are included the magnetic field becomes a

general field and loses all symmetry properties with respect of

parity. So every field configuration can be described generally.

It will be shown here that this is useful for problems with

induced and permanent magnetization. Only a reinterpretation of

the conventional point of view leads to a Poisson equation for

magnetic charges.

Proof:

The conventional theory for problems with permanent magnetization [8]

(without exciting field from outside) assumes, that

Here is M the magnetization of the material and H0 the inner magnetic field

which generates the magnetization. If a field is applied additionally from

outside, this equation is enlarged

with H a the exciting  H-field from outside, which is added. Because no

currents are obvious in matter as cause for the inner H0-field it holds

 . This means that H0 can be derived from a potential  according/×H0
0 �H0

to  and the magnetostatic Poisson-equation follows [8]H0
	/�H0
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��H0

	4�!M (40)

/.B :
/.(H�4�M)
	4�!M :
4�!H (41)

with  defined as “effective magnetic charge density” in  [8]./.H0 :
4�!M

From (39) and (40) follows 

With these redefinitions the conventional equation (39) is written down with

magnetic charges in a form, which is completely analog to electrostatics.

Then, analogously to electrostatics, the empirical field is the H-field

contrary to the conventional interpretation taking the B-field. q.e.d.  a

Thus, magnetostatic boundary problems can be worked out

analogously to electrostatics with changed boundary conditions.

Textbooks show [8], that the solution of magnetic boundary

problems are sometimes completely analogous to electrostatics.

Similarly, permanent magnets (like an analog to ferroelectrets)

fig.3: polarized bowl in a potential field
boundary condition between inner of bowl and outside:no charges and no currents, i.e. 
Binnen=Baußen , similar like in electrostatics the field is given by the charge distribution at the outer
boundary: By=0 , /Blinks = -/Brechts . It holds the Laplace equation =/B=0. For the equations of aû3
metal bowl in the electric field the magnetic variables have to be replaced by electric ones.
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/.B(x)
/.(µ(x).H(x))
µ(x)/.H(x)�H(x)./µ(x)
4�NM g0 (42)

can be regarded to consist of magnetic charges. 

For the simple phenomena of induced polarization, however , see

fig.3, the fields are derived by the assumptions, that B is the

solution of the equation . The boundary condition represent/.B
0

either given current distributions exciting the material, either

they are the existing field in a distance far from the object

under consideration. This means, that the magnetic field H in the

neighborhood of a magnetic material fullfils locally always

 and  . Or the Laplace equation holds for theû3
/.B
0 /×H
0

induced magnetism.

Only, if the experiment deviates from the theory, magnetic

charges are probable. This is the case for the ferromagnetic

hysteresis of iron. If compared with the conventional parity

tabel, see tab.2, the B-field has (-1) parity under time

inversion, i.e. if the current is inversed, the field has to be

inversed as well. If a hysteresis exists, this is not the case,

because the hysteresis line B(H) is not unique. For a change of

parity with fields of the strenght of the coercitivity, the

change in parity can easily be disproved. In this case

inhomogenities or gradients of magnetic permeability µ(x) can

induce magnetic charges. Then it holds
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fig.4: field lines of magnetic H-field of a cylindric permanent magnet
the magnet is modeled here as capacity of magnetic charges.The magnetic charges are distributed
on the surfaces of north and south pole. The iron has a permeability of µ=10000

Tab.2: symmetry properties of conventional electrodynamics

It holds generally:   F(u) = P . F(-u)

variable u field F parity P sort of field

x --> -x E           -1 potential

D           -1 potential

H  1 vortex

B  1 vortex

cause

t --> -t E  1 charge

D  1 charge

H -1 current

B -1 current
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AB,H,M

1
cP

jB,H,M(x´)

|x	x´|
d 3x´ �B,H,M
P

NB,H,M(x´)

|x	x´|
d 3x´ (43)

BV 
rotAB , BC 
 	/�B

HV 
rotAH , HC 
 	/�H

MV 
rotAM 4� , MC 
 	/�M 4�

(44)

Consequently, a magnet can be modeled as well using magnetic

charges, see fig.4. Any permanent magnetism destroys any parity

of a B-field similar like it is proved in the original

experiments of violation of parity in beta-decay.

Of course a general B-field with no parity cannot be explained

solely by a vector potential A,

1) because B = rot A has a defined parity;

2) because B:=rot A implies div rot A = div B = 0 follows, which

is contradicting to the physical result div Bg0. 

So, for magnetic charges the magnetic potential � has to be

introduced. Similar like the magnetic vector potential A it has

a more formal character, because it is not known very much about

magnetic charges except of Ehrenhaft´s [5, 6] and Mikhailov´s

experiments [37-48]. Important questions about concentrating,

storing and conducting of magnetic charges are open. 

The potentials of the magnetic field are

Then, the magnetic fields can be derived

using the definitions , ,  andBC :
HC�4�MC BV :
HV�4�MV
AB :
AH�AM

 . The empirical magnetic field is�B :
�H��M
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H
HC�HV�HL (45)

B :
BV�BC�BL (46)

/×H
/×HV

4�
c

j /.B
/.BC
4�!B (47)

F
 1
cP

j×BV dx´ 3
�PNH.(HC�HL) dx´ 3 (48)

/×HV

4�
c

j� 1
c
0D
0t

(49)

div rot HV
div
4�
c

j� 1
c

dD
dt




4�
c

div j�
dNE

dt

0 (50)

For the B-field holds:

Ampère´s law are written (using rot HC/L=0 and div BV/L=0):

Then the general force law of magnetism is:

Later Ampère´s law  was extended by Maxwell. Maxwell/×Hv
4� j/c

realized [49], that it could not describe cases, where electric

charge appeared, which were stored in capacitances. Maxwell

solved the problem by a hypothesis, which turned out to be very

useful, especially with respect to the theory of electromagnetic

waves. He changed Ampère’s equation to

Introducing the dielectric displacement dD/dt Maxwell removed a

contradiction between physics and mathematics, because the

continuity equation as a constraint could always be fulfilled 
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grad divA
	/
/´.j(x´)
c|x	x´|

d 3x´
	/
�NE (x´)

c|x	x´|
d 3x´


1
c

dD
dt

(51)

U
	 d�
dt

(52)

	�
C

Eds
 1
c

d
dt
�

S
B dA


1
c
�

S

0B
0t

dA�

1
c
�

S
/×(B×v) dA�

1
c
�

S
v(/.B) dA (53)

This form of Ampère´s law holds until today. It can describe as

well the cases where charges are generated, for instance

electron-positron pairs in high energy physics, electron-hole

pairs in semiconductors, or dissociations into ions in chemistry.

Maxwell´s improvement does not change as well the gauge relation,

because using (31) it can be calculated

So the vector potential for Ampère´s law (34) can be retained.

 c) Faraday’s law

The induction law has been found by Faraday. Using his

formulation it is written

For Faraday the flux �=,B dA were the number of field lines,

which go through a closed circuit. For a expanding or contracting

circuit this is written today [9]

A simple derivation can be done using the formalism of special

relativity, see section e). This law can be formulated

alternatively using (53) ,  and 4�NH
/.B jH
!H v
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	/×E
 1
c
0B
0t
	

1
c
/×(v×B)� 4�

c
jH (54)

	lEVds
 d�
dt

:
 1
c

d
dt P

BdA lHVds
 d,
dt

:
 1
c

d
dt P

DdA oder

	/×EV

1
c

0B
0t
	/×(

v
c

×B)�
4�
c
!Hv /×HV


1
c

0D
0t

	/×(
v
c

×D)�
4�
c
!Ev

div DC
4�NE div BC
4�NH

�NE�/.jE 
div /×(
v
c

×B)
0 �NH�/.jH 
div /×(
v
c

×D)
0

�3D
div DL
0 �3B
div BL
0

D
DV�DC�DL B
BV�BC�BL

(55)

It will be shown in the next section, that this equation is

consistent with a gauge by a continuity equation for magnetic

monopoles.

 d) the complete Maxwell equations

The Maxwell equation describe the coupling of fields with moving

charges in space. They can be generalized that they hold for

solids and for gases and liquids.

The notations for the indices here are C:=charge, V:=vortex,

E:=electric field and H:=magnetic field.

If magnetic charges are included the Maxwell equations are

(using the definitions v=velocity and j:=v!)

For a mixed system of charged particles the individual equations

of each sort of particle have to be added together.

In the version above Ampere´s law is extended by the so called
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-D,E,P
P
ND,E,P(x´)

|x	x´|
d 3x´ +D,E,P


1
cP

jB,H,M(x´)

|x	x´|
d 3x´

AB,H,M

1
cP

jD,E,P(x´)

|x	x´|
d 3x´ �B,H,M
P

NB,H,M(x´)

|x	x´|
d 3x´

(56)
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fig.5a: E-field due to the Lorenz force
at the expansion (or contraction) of a circuit in a 
magnetic field

fig.5b: H-field due to the Rowlands force 
at the roll out of a conducting foil over a
polarized electret material

Rowlands term which is electric analog to the Lorenz force. This

term takes account for a H-field, which is generated, if a

capacitance grows in an electric field, see fig.5b. 

Similarly the Laplace field is accounted for in (55).

To complete the theory an electric vector potential must also be

introduced. It is generated by magnetic currents. 

All generating potentials are listed in (56)

They are interconnected with the fields by
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BV 
rotAB , BC 
 	/�B

HV 
rotAH , HC 
 	/�H

MV 
rotAM 4� , MC 
 	/�M 4�

DV 
rot+D , DC 
 	/-D

EV 
rot+E , EC 
 	/-E

PV 
rot+P 4� , PC 
 	/-P 4�

(57)

Summarizing it can be said about the Maxwell equations: 

Electric and magnetic fields can be described mathematically as

general fields. Their causes are charges and currents of electric

and magnetic particles, which fullfil the continuity equation as

a constraint. Due to the mathematics the electric and magnetic

fields can be decomposed into a vortex, a potential field  and

a Laplace field. The charges build up the potential fields, the

currents the vortex field and the Laplace field adapts to the

boundary conditions.

 e) The Maxwell equations and the theory of relativity 

In the theory of relativity the Maxwell equations are formulated

in the terminology of tensor calculus. 

The theory of relativity relates the variables measured in a

reference system to the variables of another system which moves

relative to the first system. The transformation applies for a

movement in z-direction (using the definitions �:=v/c, )� :
1/ 1	�2
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aij

0x´i

0xj




� 0 0 i��

0 1 0 0

0 0 1 0

	i�� 0 0 �

(58)

A´i
aij . Aj (59)

T´ij
aik . ajl . Tkl (60)

space coordinates : x
( x, y, z, ict)
momentum : p
( px, py, pz, imc)

wave number : k
( kx, ky, kz,
i

c
&)

electric 4	current : jE
( j E
x , j E

y , j E
z , ic!E)

magnetic 4	current : jH
( j H
x , j H

y , j H
z , ic!H)

electric Lorenz vector : LE
( A E
x , A E

y , A E
z , ic-D)

magnetic Lorenz vector : LH
( +H
x , +H

y , +H
z , ic�B)

(61)

d
dxi

j i
E 
 div jE�

dNE

dt

 0

d
dxi

j i
H 
 div jH�

dNH

dt

 0 (62)

Similarly vectors are transformed (using the Einstein convention)

Tensors  are transformed byT´ij

The 4-vectors of the theory of relativity are, cf. appendix 3,

The 4-vectors are invariant, i.e. the length of a vector is

independent from the state of movement of the reference system.

From this property and from (61) follows the continuity equation

An analogous equation - the Lorenz gauge -holds as well for

Lorenz vectors, see appendix 3. The definitions for the
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F ij :


0 	E3 E2 	iB1

E3 0 	E1 	iB2

	E2 E1 0 	iB3

iB1 iB2 iB3 0

G ij:


0 H3 	H2 	iD1

	H3 0 H1 	iD2

H2 	H1 0 	iD3

iD1 iD2 iD3 0

(63)

jE
( 0, 0,0, ic!E) jH
( 0,0, 0, ic!H) (64)

d
dxj

F ij

4� jH

i d
dxj

G ij

4� jE

i
(65)

d
dx´n

F´kn



d
dx´n

0x´n

0xj

0x´k

0xi

F ij

4�

0x´k

0xi

jH
i

4� j´H

k

d
dx´n

G´kn



d
dx´n

0x´n

0xj

0x´k

0xi

G ij

4�

0x´k

0xi

jE
i

4� j´E

k

(66)

electromagnetic tensor field at no current (v=0) are

If there no current is flowing, (j=!v=0) the 4-currents are 

Then the Maxwell equations can be written

The complete system (55) of Maxwell equations follows if the

charges move. This is described by the following coordinate

transformation

(66) represents the complete Maxwell equations in tensor

notation, cf. (55). One consequence should be emphasized: 

if currents exist the complete Maxwell equations have to be

applied including the terms of Lorenz and Rowlands force.
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dEmech

dt

F.v :
qE .E.v�qH .H.v (67)

dEmech

dt

F.v :
P( jE .E� jH .H ) dx 3 (68)

demech

dt

	/.S	 0U

0t
�

c
4�

/×(
v
c

×B) .H�

c
4�

/×(
v
c

×D) .E (69)

S:
 c
4�

(E×H)

dU
dt

:

1

4�
E dD

dt
�H dB

dt

(70)

 f) the electromagnetic tensors of momentum and energy 

 The electromagnetic conservation of energy

The power of a electrically and magnetically charged particle is

(using  ,  and  )FH
qH (H	 v
c

×D) FE
qE (E� v
c

×B) F
FE�FH

This equation integrated over the whole space yields with j:= v!

If the  Maxwell equations are solved for the currents, (i.e.

 and  ) and insertedjH

c

4�
	/×E	 1

c
0B
0t
�/×(

v
c

×B) jE

c

4�
/×H	 1

c
0D
0t
�/×(

v
c

×D)

in (67), and using , it follows a modified/.(a×b)
b.(/×a)	a.(/×b)

Poynting energy conservation equation for the energy density:

Here the following definitions have been used

The last two terms in (69) are non-standard, because the energy

conservation is derived always without Rowlands and Lorenz terms.



0ijk0jls

0Es

0xl

Dk�0ijk0jls

0Hs

0xl

Bk
Ei

0Dj

0xj

�Di

0Ek

0xk

	Dk

0Ek

0xi

� Hi

0Bj

0xj

�Bi

0Hk

0xk

	Bk

0Hk

0xi

3 The first three vector terms can be written in the

terminology of the tensor calculus:

    . E./.D�H./B� (/×H)×B�(/×E)×D
0ijk0jls

0Es

0xl

Dk�0ijk0jls

0Hs

0xl

Bk

Using  the first term is transformed to0ijk0jls
/kl/is	/ks/il

In the 2nd and 5th term k can be exchanged with j without

changing the result.Then follow the first three terms of (73).
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Fmech
P!E ( E �

jE

c
×B) � !H ( H �

jH

c
×D) dx´ 3 (71)

Fmech
P[E /.D�H /.B � (/×H ��)×B�(/×E ��)×D 	

1
c

0D
0t

×B �

1
c

0B
0t

×D ]dx´ 3 (72)

Fmech

d
dxk

T ��

ik	D dE
dxk

	B dH
dxk

	

d
dt

D×B
4�c

� (/×(
v
c

×B))×B � (/×(
v
c

×D))×D dx´ 3
(73)

 The electromagnetic conservation of momentum

The force on a charge distribution of electromagnetic charge is

Using again Maxwell’s equations solved for j this can be written

Using the definitions  and  and theE ��:
E�v/c×B H ��:
H	v/c×D

calculation in footnote3 follows

Here  is defined as . The fourth term of the firstT ��

ik T ��

ik:
EiDj�HiBj

line of (73) is  which is defined as thepFeld:
(D×B)/(4�c)
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dTik

dxk

:

d
dxk

(EiDk�HiBk	
/ik

2
(0E 2

�µH 2)) (74)

Wel
P
dEmech

dt
dt (75)

electromagnetic momentum pFeld  of the field. 

If the generality of  (73) is restricted (i.e. if only materials

are used with purely linear constitutive relations like B=µH and

D=0E) then the first three terms of (73) represent the Maxwell

energy tensor:

This equation is found in the textbooks normally. The last two

terms of (73) are omitted always, because “shorted” Maxwell

equation are used which is wrong in the general case according

to the author´s opinion.

The equations of conservation of energy and momentum describe the

behaviour of a generalized capacitive-inductive- electronic

element. Special cases for the energy equation are the pure

capacitance (if H=0 and B=0) and the pure coil (if E=0 and D=0),

see (73). For these cases the equation says, that the energy

flowing into the electronic element can be identified with the

electric or magnetic field energy. 

The definition of electromagnetic work can be done if (69) is

applied

It should be said that the discussion about the “correct”

equations (69) and (73) is alive until today, cf. [50].
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/.D
4�!E /×H


1
c

dB
dt

�

4�
c

jH

/.B
4�!H 	/×E
 1
c

dD
dt

�

4�
c

jE

(76)

E
 E �� cos�� H �� sin� D
 D �� cos�� B �� sin�
H
	E �� sin� � H �� cos� B
	D �� sin�� B �� cos�

!E
 !
�

E cos�� !H sin� jE
 j ��

E cos�� j ��

H sin�

!H
	!E sin�� !
�

H cos� jH
	j ��

E sin�� j ��

H cos�

(77)

It is remarkable that the derivation with monopoles yields the

same result as without. The cause of this may be, that many

Maxwell equations are the solutions from the the theory of

general relativity, because one degree of freedom remains

undetermined during the derivation [8] [51, 52]. These conside-

rations were done for the shorted Maxwell equations (55), i.e.

It can be shown, that all these equation can be transformed by

If the parameter � in (77) is chosen appropriately, the

conventional Maxwell equations without magnetic charges are the

result. It is shown that relativistic pressure tensor (shorted

calculation without Lorenz and Rowlands terms !) is invariant

under these transformations.

If it is believed, that every electric charge is in a constant

proportion with a magnetic charge, -so the  argumentation and the

calculation of  Harrison[53] and Katz [52]- the combined charge

is regarded as a new “elementary charge”, and built up a

transformed (shorted) system of Maxwell equations with div B=0
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P/.FC dV
P
S

FC.n da
 (FC(1)		FC(2)).n �a
4�1�a
(78)

(DC(1)	DC(2)).33n
4�1E (79)

[8, 52, 53]. So it is understandable, that Mikhailov [38, 48, 54]

tried to determine the proportion between electric and magnetic

charge, especially because the first workout of his measurements

[38] spoke against the generally accepted theoretical value of

Dirac [55, 56]. Anyway, in the light of these opinions of

Harrison[53] and Katz [52], one can ask why Mikhailov sees any

effects at all. For author the discussion is not at the end here.

Perhaps, parity checks can solve this question.

 g) boundary conditions

 stationary discontinous boundary conditions by charges

In order to derive boundary condition equation (13) is applied

on a fictive “pillbox” at the boundary between two materials of

a potential field [8], see fig.6a . 

So one obtains the relation (with 1:=surface charge density)

Equation (78) shows a relation between vector components of the

field F1 in region 1 and F2 in region 2 which both are normal to

the surface. This yields for the  vertical components of

dielectric displacement DC :
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(BC(1)	BC(2)).33n
4�1H (80)

- 
 constant � 
 constant (81)

P/.×FV dA
P
S

FV ds
 (n×t).(FV(1)		FV(2))ûl
 4�
c

k.t ûl (82)

n
F2

F1

F2

F1

t

fig.6a the pillbox - construction 
for the determination of boundary conditions
due to charges

fig.6b the circuit - construction 
for the determination of boundary conditions
due to currents

i.e. at the boundary there is a discontinuity which is determined

by the surface charge density. An analog holds for the 

vertical component of the magnetic field BC :

For a electric or magnetic conducting surface holds

 stationary boundary conditions by currents

Equation (29) can be applied to derive a boundary condition if

a surface current k flows at the boundary between regions of

different materials, see fig.6b . So one obtains [8]

Equation (82) is a relation between the vector components F1 and

F2  which flow tangentially on the surface of the boundary

between two regions 1 and 2 of different materials. 
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33n×(HV(1)	HV(2))
 4�
c

KE (83)

33n×(EV(1)	EV(2))
 4�
c

KH (84)

D
B 
coupling q

E
H (85)

as resistor: j
1.E

or capacitively: D
0E

or inductively: B
µH

(86)

 discontinuities of the magnetic vortex field

 for tangents to the surface

 discontinuity of the electric vortex field

 for tangents to the surface

For more general, nonstationary boundary conditions at moving

surfaces, see [8].

 h) the constitutive equations of the material

The system of Maxwell equations can be solved after the

constitutive equation are known which describe the material

properties. They couple the electric variables (E,D) and the

magnetic variables (B,H) which can be represented generally by

In the most cases these couplings are simple, i.e.
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1
1(E), 0
0(E), µ 
µ(H) (87)

1
1ik(E), 0
0ik(E), µ
µ ik(H) (88)

E´ 
 E 	

v
c

×M

H ��

 H 	

v
c

×P
(89)

Initially the material constant were constants which described

the simple cases of material properties. Later more complicated

nonlinear functions were found which could generate phase

transitions, i.e.

After the fundamental crystal structures were known, the material

properties could be correlated to the symmetry of the crystals.

Then, the constitutive equation were described by tensors 

which were first linear, then non-linear.

Then, materials were discovered whose properties were magnetic

and electric, and where an electric field influenced the magnetic

properties and vice versa [57] [58].

The theory of relativity found out that dielectric or magnetic

polarized material behaved different if it was set in motion. The

following equations are from [59]

A further complication of the constitutive relations are space-

dependence of the material properties which are realized for

instance as electronic elements.

Furthermore all materials had their own dynamics in time in the
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��E
��H




f1(E,D,H,B;T,!i,��x,&,...)(x,t)
f2(E,D,H,B;T,!i,��x,&,....)(x,t)

(90)

��D
��B




f1(E,D,H,B;T,!i,��x,&,...)(x,t)
f2(E,D,H,B;T,!i,��x,&,....)(x,t)

(91)

form of relaxation time.

If all material properties are accounted for then the general

constitutive equations can be abstracted as additional

differential equations which help to solve the complete system

of partial differential equations. This system can be written as

or

The variables after the semicolon show that the constitutive

equations may not depend only from electromagnetic parameters,

but can depend as well from mechanic or thermodynamic material

properties. This means that the electrodynamics cannot be

separated from the other areas of physics. If these the material

properties drift under the influence of electromagnetic fields

then a purely electrodynamic description is not sufficient and

further differential equations from other areas of physics have

to be added to a complete partial differential equation system

to be solved.

Examples: 

1) Known examples are electric motors and generators. Here the

mechanic equations of motion of the motors are added. They

describe the motion by the angular coordinate of the rotor.
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��M
	�.M×Heff�..M×(M×Heff) (92)

°-D(xi(r), r)
	4�!E

0µ�

i

0r
(xi(r), -E(r))
0

(93)

2) Other systems are magnetic materials, for which the Landau-

Lifshitz-Gilbert - equation [57] [60] hold

It generates a system of partial differential equation (:=PDE)

if it is combined with the equation of the magnetostatic

potential (41)  [61]. It allows to calculate magnetic domains in

ferromagnetic materials.

3) A homogeneous thermostatic system like a polymer solution is

described by a free energy density f. The system plus field is

described by the free energy density . Then using thef �
f�!E�-E

definitions of the global chemical potential µi*:=df*/dxi and

xi:=volume ratio the PDE-system hold

For a magnetic system (for instance a ferrofluid solution) the

electric variables (E,D) are replaced by magnetic ones (H,B). The

magnetic charge density ! is set to zero, because no magnetic

charges can be detected during the magnetization, see [62].

4) If the problem depends from time additionally, it is necessary

to replace the second equation of (93) by the thermodynamic

functions for non-equilibrium. Then one can write 
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°-D(xi(r), r)
	4�!E

ji
	Di

0ni(r)

0r
��i

Zieni(r)E(r)

RT

(94)

Poisson	equation: 00 0z[0(z).0z-(z)]
	!(z) with !(z)
e[N �

D(z)	n 3d(z)	nQD(z)]

current: 0t n(z)

1
e
0z j(z) 	 f(nQD(z,t),n(z))
0

recombinations: 0tnQD(z,t)
 f(nQD(z,t),n(z))

(95)

Here hold the definitions n:=concentration, r:=space coordinate

Z:=number of charges per ion, e:=elementary charge, E:= electric

field, R:=Avogadro-constant, T:=temperature, D:=diffusion

constant, �:=mobility. The second equation of (94) is the Nernst-

Planck equation, which should coincide with the second equation

(93) for j=0. So electrochemical problems are discussed, cf.[63].

5) In semiconductors the charge densities depend from chemical

potential or quasi-Fermi level, which can be influenced by the

electric potential. A good example for such a system is a InAs-

quantum dot-doted FET invented by Yusa&Sakaki [64]. Its structure

is shown in fig.7. The FET can be used for storing data by

charging the gate capacitance.

The theoretical model of this FET stems from Rack et al.[65].

The PDE´s of the system is:

Here are 00 := dielectric constant of vacuum, 0:=dielectric

constant of the material, !:=charge density, ND:=density of

donators, n3d:=charge density of electrons, nQD:=charge density of
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fig.7: structure of a InAs-quantum dot-doted GaAs-FET
a two-dimensional electron gas (2DEG) is located in the boundary between AlGaAs and GaAs. It
represents the zero potential of the system. The electric potential is applied to the Al layer,cf. figs.9

electron trapped im quantum dots, n(z):=free electron density

function specified in the article, j:=current in the FET, and

f(nQD,n) is a specific function, which characterizes the

recombination process, see [65]. Figs.8 show the electron density

in the 2DEG versus voltage. Remarkable is the orientation of the

electric cycle which is opposite to the ferroelectric loss

hysteresis. This suggests a “gain hysteresis”.

It is known that electric work can be changed to mechanic work

fig.8a the experiment of Yusa-Sakaki- cf. [64]
hysteresis of a InAs-quantum dot-doted FET
electron charge density of the two-dimensional
electron gas (2DEG) vs. gate voltage

fig.8b the theoretical calculation of the
Yusa-Sakaki-FET by Rack et al.
electron charge density of the two-dimensional
electron gas (2DEG) vs. gate voltage
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with efficiencies until 100% in the best electromotors. So

electric work should be equivalent to mechanical work in a

thermodynamical sense. An “isothermically” proceeded  electric

cycle with an orientation like in fig.8a can fulfill the energy

balance only if heat flows in from outside. Thus, the FET is a

candidate for second law violation because only heat and

electricity can be exchanged. According to own recent work [62]

such cycles could be possible and further evidence can be found:

Cooling effects in semiconductors have been predicted by  [66].

These considerations support the considerations for the FET

discussed above. According to [66] the FET is cooled down if it

is set under voltage. So the electrons are enforced into the

quantum dots below the quasi-Fermi niveau, where they stick due

to their binding energy. After the electric discharge of the FET-

capacitance the FET goes back to the equilibrium either if the

voltage is slightly inverted, cf.fig.8a, either if the wavelength

of the thermal radiation is suffiently high to overcome the

binding energy of 0.25eV, which holds the electrons in the

quantum dot potentials. So, the system can be regarded also as

a concretisation of Maxwell´s demon. The electric energy is

lended probably from the quantum dots to be paid back after some

time from the thermic influx of environment. Further evidence for

this idea can be found from the results of fig. 9a-c, which show

the conduction band edge (which is here equivalent to the

potential) in the FET at the beginning of the cycle, after

charging it with voltage, and after discharging the capacitance.
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fig.9a the conduction band edge vs. position in the FET of Yusa&Sakaki 
before the cycle: voltage U=0 V

fig.9b the conduction band edge vs. position in the FET of Yusa&Sakaki 
in the cycle: voltage U=0.9 V

fig.9c the conduction band edge vs. position in the FET of Yusa&Sakaki 
after the cycle: voltage U=0 V
the band edge is changed due to the storage of charges in the quantum dots, cf. fig.9a
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ûW
P

T

0

U. I dt
	
1

4�PP
E dD dV (96)

From the slope in the diagrams one calculates the electric fields

in the FET. If one regards the FET as a capacitance and applies

(69) one can estimate the energy exchanged after a cycle. From

(69) follows for a pure capacitance

If one reads off electric field values from the slopes in fig.

9a to fig. 9c one obtains the electric field energies in the FET:

before charging the gate capacitance

W1 � E2*V � (1V/600nm)2 *600nm = 0.00166666

after discharging the gate capacitance 

W2 ��� E2
i*Vi �(.38V/200nm)2*200nm +(.62V/400nm)2*0.400nm = 0.001683

energy balance

ûW � -(W2-W1) � -0.00001633

The energy difference of �1% is negative meaning that electric

energy is released by the FET after the electric cycle is closed.

The Second Law is violated by the hysteresis of the equilibrium

state. The effect is due to the nonlinear behaviour of the FET.

Of course, all evidence of the experiment with the Yusa-Sakaki

FET is indirectly concluded here. More decisive would be a full

balance of all electrons in the calculation or the experiment.

Herewith, the constitutive equations are characterized from the

simple case to the most complicated systems. Generally, the

description of a system may be very sophisticated. However,

normally the description is made as simple as possible.
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fig.10: strength of the --component of the electric vortex field +of a rotating magnetic ring
cross section view: ring radius 1m, ring width 5cm, ring heigth 12cm, center of rotation is to the
left, (not to be seen in picture). rainbow scale: blue is minus min., red is plus max., see appendix 4. 

3. Conclusions

It has been shown that the existence of magnetic charges is

justified at least theoretically especially if fields of

permanent magnetism are described. 

This result suggests the following consequences to be proved: 

If magnetic charges can be separated in space - for instance in

the form of charges of polarisation in a permanent magnet - and

if this magnet moves in a circle, two opposite magnetic currents

are generated which itself should generate a electric field

according to Faraday´s law extended for magnetic charge currents.

Measurement of the electric field from moving permanent magnets
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fig.11a: E-field strength around a rotating magnetic ring (cross section) 
ring radius 1m, ring width 5cm, ring heigth 12cm, center of rotation is to the left, (not shown in the
picture). Arbitrary units. Picture is calculated from the data of fig.10,see appendix 4.

fig.11b position angle of the E-field around a rotating magnetic ring (cross section) 
radius 1m,ring width 5cm,ring heigth 12cm,center of rotation is to the left,(not shown in the picture)
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can answer the question whether the field stems from currents of

moving magnetic charges or from the dB/dt - term. According to

the theory above both possibilities can be calculated.

The setup of such experiments would be similar to constructions

which are known in the unofficial subscene of physics. J.

Searl[67-70], D. Hamel [71] and Godin&Roschin [72, 73] claim,

that they have observed strong electrostatic effects around fast

moving permanent magnets.

Fig.10 shows the calculated electrical vortex field + due to a

moving permanent magnet ring representing two currents of

opposite magnetic surface charge which are placed on top and

bottom of the ring, cf. fig.4. The electric field is calculated

from the electric vortex field by E = rot +, see fig.11a and fig.

11b: the pictures show the electric field strength and the

position angle of the field around the cross section of the right

half of the ring. In appendix 4 the method of the calculation is

shown. If one compares the order of magnitude of the calculation

with the data of Godin&Roschin [72, 73] then this suggests for

the electric field values an agreement between theory and

experiment. 



48

1

|x	x �� |



1
r
�

1

r 2
(x ��.x0) �

1

r 3
[ 3

2
(x ��.x0)

2
	

1
2

x �� 2] � O( 1

r 4
)

-(x) 
 1
r P

!d 3x´ � 1

r 2
x0P!x´d 3x´ �

x0i
x0j

2r 3 P![3x´ix´j	x´n x´n/ij]d
3x´ � O( 1

r 4
)

-(x) 

q
r
�

p.x0

r 2
�

Qij.x0i
x0j

2r 3
� O( 1

r 4
)

q:
P!(x ��)d 3x �� p :
Px ��
!(x ��)d 3x �� Qij :
P(3x´i x´j	x´n x´n/ij)!(x ��)d 3x ��

Appendix 1: the derivation of the multipole expansion

First the term 1/|x-x´| is written as:
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Using the definitions x0:=x/|x| and |x|:=r one obtains

If this result is applied to the potential definition one gets

This can be written as well

using the definitions
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Appendix 2: decomposition of a general vector field into a

potential field and a vortex field

Theorem 1:

The derivative of a vector field F can be decomposed in a

symmetric (index=C) and a antisymmetric part (index=V), i.e. 

FC is the symmetric part and is a gradient of a potential field

(with U(xl):=potential function)

FV is a antisymmetric vortex field

Proof:

The derivatives of the field F can be decomposed according to

for the symmetric part holds:
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for the antisymmetric part holds:

It can be checked, that

q.e.d.

Theorem 2:

F is a field with a defined boundary condition 0F around the

space which is interesting for the problem. Divergence and

rotation are defined according to

and the boundary condition 0F

Then it holds:
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F can be calculated as sum of a gradient FC  of a potential, plus

rotation of a vector potential FV , plus a Laplace field FL

according to

It holds:

scheme of the proof [26]: 

1) It is looked for the solution of 

This is the potential field

2) It is looked for the solution of

This is the vortex field
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FV

1
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/.FL
0 /×FL
0

FL.n
F.n	FC.n	FV.n

F
FC�FV�FL

3) It is looked for

using the boundary condition

The solution is the Laplace field

/.FL
û3
0

4) The general solution is the sum of  1) - 3). This can be

checked using the vector relations divrot A=0 and rotgrad -=0 .

So one obtains

q.e.d

The Laplace field is a “generalized constant of integration”. It

allows to adapt to the boundary conditions. It is needed, if

boundary conditions for F exist which are non-zero in the

infinite, see fig.3.
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Appendix 3: Derivation of the Lorenz gauge 

The continuity equation is

It can be written as

The divergence term is changed using partial integration. One

term can be canceled during partial integration, because j(x’)=0

holds for x’= � . So it is obtained

With  one yields/ |x	x´|	1

	/ |́x	x´|	1

This is the Lorenz gauge
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Appendix 4:

Model calculation 1:

In order to estimate the field, which could be generated by a

magnetic current, we calculate here the non-real case of a coil

of one turn which is driven by a current of magnetic charge. The

coil is modelled as a rotating tube which is charged with

magnetic surface charges.

We use the formulas of magnetostatics applied for magnetic

currents (in SI-units) by exchanging the magnetic variables by

the analogous electric variables.

Datas of the setup:  
1 magnetic tube charged with magnetic charges
diameter: d= 2m
height: h= 10cm
number of turns: n= 1
magnetic field strength at the surface: B0 = 1T = 1 Vs/m

2

magnetic permeability:  µ = 10001
speed of rotation:  f = 10Hz.

Using this data the magnetic current IH can be calculated to

  IH = surface charge * speed of rotation = (µ-1)*B0*d*�*h*f 

Then, the electrical field of a magnetic current, cf. (80)

E = IH*n/h = (µ-1)*B0*d*�*f =2*�*10
5 V/m

This means: electrical fields generated by magnetic currents
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]

\

[

U
�

D

,

1

should be sufficiently strong to be detected easily. It should

be possible to reach the breakdown voltage of air (30 kV/cm at

1 bar) if the parameters are chosen accordingly high.

Model calculation 2:

We estimate here the field of a magnetic cylinder ring which

turns around its central axis. The upper surface of the ring is

the north pole, the lower the south pole.

Data of the setup:
1 magnetic ring magnet
upper rim: north-, lower rim: south pole
diameter d= 2m
height h= 12cm
width b= 5cm 
number of turns n= 1
magnetic field strength at the pole surfaces: B0= 1T 
magnetic permeability µ= 10000
speed of rotation: f= 10Hz.

The origin of the coordinate

system is the centre of

symmetry on the middle of the

central axis. The distribution

of the electric field lines of

the setup can be calculated by

using a known example and

adapting it for the present

setup. For a simple ring

current,see fig. 12, Jackson[8] Fig.12: the coordinate system

calculates a vortex vector-field in chapter 5.5, equation 5.37.

The formula transferred to magnetic currents yields
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  Due to geometry it holds:

fig.13 the geometric situation of a field point due to a circulating magnetic dipol
the field is composed from two opposite circulating magnetic currents

Here are K(m) and E(m) elliptic integrals of first and second

order, which are calculated numerically by a program.

This formula is applied for two circuits which are shifted by z0

upward and downwards. In both circuits the magnetic current flows

in opposite directions. From the geometry of the setup the

appropriate radii and angles of each circuit can be determined,

see fig. 13 . The system of equations from fig. 13 are solved 
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+
-

(r,�)
+
-

(r1,�1)�+-(r2,�2)

Then it is possible to write down the electric vortex potential

+ which has only one component in --direction which is

perpendicular to the plane of the paper, see fig.11

For the purpose of a simple calculation the equally distributed

magnetic charge on the surface was approximated by 11 charges at

equidistant positions on the surfaces each. The calculated

intensity of the --component of the electric vortex field + is

already shown in fig.10. Then, the E-field is calculated

according to E = rot +, fig. 11 a)+b). So the field has been

estimated having a maximum 80 kV/cm near the edges at the surface

of the moving magnet. This seems to coincide with the

observations of Godin&Roschin [72, 73]. They observed a

luminescence and therefore a ionisation of the air near the

surface of moving magnets. However, the prediction of

electrodynamics is contrary to the other reported claims like the

self-acceleration and the weight loss of the setup at higher

angular velocities. Electrodynamics predicts a braking down due

to the Lenz-rule. Any currents generated by the E-field leads to

braking and dissipation as well. Whether electric cycles can be

built up with a gain hysteresis or not has to be proved

separately.
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