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Abstract:

The derivation of the Maxwell equations is reproduced whereby
magneti ¢ charges are included. This ansatz vyields follow ng
results:

1) Longitudinal Anpére forces in a differential magnetostatic
force law are inprobable. OQherwise a electric current would
generate maghetic charges.

2) Sinple magnetic and electric induced polarization phenonena
are conpl et el y anal ogous and are descri bed by a Lapl ace equati on.
3) Permanent magnetic fields can be understood to be caused by
magneti ¢ charges. Consequently, a noving pernmanent nagnet
represents a magnetic current which generates a electric field.
4) The el ectronagnetic tensors of energy and nonentum have sone
additional terns which are witten down generally.

5 If the electric material paraneters are influenced by non-
el ectric variables (for instance tenperature or pressure), the
formalism of electrodynamcs is not sufficient to describe the
system and has to be conpleted by further differential equations
fromthe other areas of physics.

6) Nonl i near el ectro-thernodynam c systens may vi ol ate t he second
| aw of thernodynamics. This is illustrated by a electric cycle

with a data storing FET invented by Yusa & Sakaki .



1) Introduction

The Maxwel | equations are about 150 Jahre old. They are the
mat hemati cal conpilation of the experinments and considerations
based on the original work of Cavendish, Coulonb, Poisson,
Anmpere, Faraday and others [1]. Mathematically they are parti al
differential equations. D fferent notations exist for them nost
popul ar is the vector notation (O Heaviside), which replaced t he
original notations in quaternions (J.C. Maxwell). More nodern
is the tensor notation (H M nkowski, A Einstein), whichis able
to describe situations which are discussed in the theory of
relativity [2]. Al notations are equivalent in the non-
relativistic limt.

The Maxwel | equations were and still are very successful. Until
today their range of applicability grows permanently.

Here a short derivation is given which especially takes account
for the newer devel opnents of material descriptions. Furthernore,
nonopol es are included because Ehrenhaft proved their existence
already 50 years ago [3-6]. It will be shown that the theory
needs also their existence for a full description of al
problenms. This explains perhaps effects which are regarded
generally as dubious because they cannot be understood in a

conventi onal approach.



2) The equations of the electromagnetic field

a) The laws of Coul onb and the equation of Poi sson

The so called Coul onb | aw describes the force between electric
charges. It was di scovered by Priestley in 1767 [1, 7]. Cavendi sh
redi scovered it again and neasured as well the dielectricity
constant. However, due to many contributions to the know edge
about electricity it has the nane of the third discoverer
Coul ounmb [1].

The Coul onb law in the notation of today is [8]

F-1y qq——1 ffp(><>(_)dx3dx 0
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with the definitions F.=force, ¢:=single charge, x° space

coordinate and i,j are indices. It can also be witten as
F= f PO)E(X) dx"? 2

by using the definition of the electric field E

E- [p0)- XX g s 3

x-x"

The electric field E can be derived froma potential @& by using

the definition

E=-Vo, (4)

Then, the E-field is defined by



_rpX)
o[ o 0

®_. has a enpirical neaning. The E-field can be neasured
experinmentally by difference of voltage D_(r)-®(r, ) bet ween a
point in space at r and a reference point at r,, which oftenly is
set toinfinity where no field exists. Using the Poisson equation

the charges the field can be calculated fromthe potenti al

a®, = -VE = ~4mp (6)

If matter is inthe field the enpirical potential &_. consists of

the induced charges (xX) and the contributions from the

P rmatter

charged surface of the conductors p_ o(X)

, , 1 ,
(I)E = (I)conductor * (I)P = f(pconductor(X )+pmatter(x ))ﬁ dx”® (7)

where @, is the “nean field” of the material charges. Thus, per
definition only the charges on the conductor are detected in the
experinment. In order to obtain a expression with enpirical

variables simlar to (6) the equation (7) is rewitten

p conductor (X, )

dx 3 8
XX | (8

(I)D ::q)E B (I)P: (I)conductor :f
Contrary to the enpirical neaning of ®_, @, has only a fornal

character. Using @, in the Poisson equation the charges to be

measured in or on the conductors can be cal cul ated. One defi nes



: : : N X=X ,
D .:SikE.: E+4TCP.: _V(DD:prOI']dUCIOI’(X )ﬁ dX 3 (9)

where g is the dielectric tensor of the material.
Using the nathematical relations V|x-x|'=-V x-x|''! and
V' 2x-x"| 1= -4nd(x-x’) and the redefinition p:=p .., the Poisson

equation is
A®(X) =V [, (X)VP(X)] =-4rp(X) (10)
Using (9) and (10) foll ows

V.D(X) =4p(X) (11)

| mportant special cases:
surface charges

An electric potential can exist due to a surface density o

G X
(I)D =P _f conductor( ) dX'Z (12)

~ " conductor |X—X' |

Then, the electric field

X-X

D:=-V®,_= f o(X") dal (13)

x-x"F°
constraints for the material properties

In the nost cases it is possible to nake sinplifying constraints

for the material properties. In order to explain this it is

necessary to wite down the potential ®y(x) of the nultipole



expansion of the charges in the material [9]. A nultipole
expansi on of the potential cal culates the distribution of charge

i n space about a origin O as a serie of nonents

Pgoo X 1 .
®(X) = P Fdipol -7 _Z Qij# _— (14)
r rs 27

cf. appendix 1. Here the definitions of the di pol nmoment pgi, and

the quadrupol nonent Q; are
Paipo ::fx PO )ax’ Qij:: (3, X/j_r25ij)P(X Nax '3 (25)

This consideration is done for all points in space. Using Py p

as density of polarisation then follows

(Xi —Xi/)(Xj—Xj)
5

AD(x'X) =

p(x) ", Paipa(¥) (x-x) 1y (x) Jav g
ij
i

/ /3 - /
X = IX;=xi 2% X=X

The first term represents induced charges for instance if
reconbi nati on processes in sem conductors have to be accounted
for. However, for the nost problens electric neutrality can be
assumed and the first term beconmes zero. Furthernore oftenly
hi gher terns are neglected because they are quantitatively

irrelevant. Then, after integration over the whole space hol ds

V/Pdipol(x ) WE

/)
X=X

@5(x) :fpdipol(xl) - (xx) dx'*= _f (17)

53
|xi =X

If (17) is inserted in (8) one can identify: P=Pgpo



b) Anpére’ s | aw

The di scovery of el ectronagnetismby Cersted [10, 11] in 1820
i nspired sone researchers in France to find the quantitative | aws
of these effects. Especially, Biot&Savart and Anpére tackled the
task to solve this problemby intelligent experinents [1, 11].
In order to fit their experinent by the theory they nade
addi ti onal assunptions which filled up sone | acki ng observati ons.
This led to different laws for the forces between differenti al
current elenments of a circuit. For closed circuits, however, the
different | aws coincided in one. The discussion of this problem
is running until today.

Bi ot and Savart [12-14] found out that “the total force which is
exerted by a file of infinite | enght under current on a el enent
of austral or boreal magnetism in the distance FA or FB, is

per pendi cul ar on the shortest distance between the nol ecul e and

h’&@g&

A

E—
ﬁ\“»

fig.1la: the Biot-Savart - setup Fig.1b: the Biot-Savart - setup
A magnetic needle is under the influence of the = measuring the time constant of the torsion
field of current CZ . A cover protects against pendulum it is concluded on the force of the

the movement of air. The magnet A'B’ compen- field on the needle, if the current flows.
sates the magnetism of earth where the needle  Distance and angle of the file are varied in the
is located. experiments.



the file (see figs.1)”. This lawis witten today in a formwhich

goes back to Grassmann [11, 15]. It holds [ 8]

ds, x(ds,xr). ds,.r
aF i i, D | s sy [ BT g, (18)
Ir? e\ IrP
W th iy, := current, dsy, := length of file elenent, r:=

di stance between file el enents.

Anpere idolized Newton a little bit. So he overtook, 1) that
Newton’s 3.axiom (actio-reactio) of mechanics also holds for
el ectromagneti sm and 2) that the force between single elenents
of current is a central force and lies on the distance line
bet ween the el ements.

Based on his own experinments on closed circuits Anpere included
the foll ow ng observations [16, 17] in his theory, see fig.2a-d:
1) The force of a file under current reverses if the current
reverses, see fig.2a.

2) the forces of a current, which flows in a snooth circular
circuit, is the sanme, if the “circle” of the current is not
snoot h but sinoidal, see fig.2b.

3) the force of a closed current on a single current elenment is
per pendi cular to it, see fig.2c .

4) the force between two current el enents does not change if al
spatial dinensions of the setup are enlarged by a constant
factor, see fig. 2d.

Appl yi ng these observations Anpére constructed his force |aw
Based on Anpere’s assunption it holds for the force F~r. The
observations 1)+ 2) suggest for first order

8



fig.2a: Ampeére’s first experiment

AB is a fixed conductor under current. The
circuits d'c’fe and cde'f’ are stiffly connected ,
are symmetrical over AB and can rotate about
the axis x'y". Their orientation of the current is
opposite in these circuits; experimental result:
no rotation due to complete balance of opposite
forces

fig.2c: Ampeére’s third Experiment

M and M’ are trenches filled with mercury, arm
OC can be turned. The current flows over the
troughs M back to the arm OC. The arm turns
into the middle, where a equilibrium of torque
exists and where all forces on OC apply
perpendiculary.

fig.2b: Ampeére’s second experiment

in a trench PQ flows a current straight on in a
conductor, in the trench SR in a sinoidal
conductor. The circuits BCDE and FGHI
mounted stiffly together, but can rotate around
the Axis AK . The same current flows through
them, however in opposite direction.
experimental result: only if the circuit is exaxtly
in the middle between the conductors all forces
compensate and no movement is observable.

=

m T

fig.2d: Ampeére’s fourth Experiment

the outer circuits are fixed, the circuit in the
middle can move. Only, if the diameters fullfil
the relation di :dimiggie =miare-Grigne @l forces
compensate and the circuit in the middle NOM
does not move.



F~ii[o(r).(ds.ds) +y(r)(ds,.r).(ds,.r)], t he combi nati on of

proportionalities result in F~iir[e(r).(ds.ds) +y(r)(ds,.r).(ds,.r)].

Observation 4) inplies o(r)=A'r® and y(r)=B/r°®> with A and B as

constants to be determ ned.

These can be cal cul ated applying

observation 3) as shown in the proof below So follows B = -3A/ 2.

Proof [ 1]:

I magine two circuits located with an angle of 90° between. Due to observation 3)

holds for a closed circuit

F~ fil.izr

This equation is rewitten as

%(dsl.ds?) . %(dsl.r).(ds?.r) ds, =0

A (ds,.ds,).(ds,.r) . B(ds,.r).(ds,.r)?

rs ro

Because the integral over the circuit is zero, a potential exist and consequently

also a total differential. If the circuit is chosen to be a round circuit one can

replace by ds,=-dr and wite

Ad(dr.ds,).(ds,r) B(ds,r).(ds,r)?

rs ro

Due to the potential property follows ¢, = ¢, and then

dA - Bas.r)
2r3 o’
Wth ds,;=-dr this becomnes
—idr:idr
2rt rt
and B = -3A/2 follows. g.e.d
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So Anpere’s lawis witten :

P22 12 (ds, ds) --2(ds, ). (05, 1) 9
c? r r

Ri emann [18] and Wittaker [1] checked this derivation and
realized, that Anpére’s workout is only one possible ansatz to
explain the observations. They doubted in Anpeéere’s assunption,
that the force between current elenents is a central force,
because the forces could be as well angular nmonents [19]. They
found other possible formulas, which <could explain all
observations. Wittaker enlarged Anpére’'s fornula, by adding
terns, which were in accordance with the observations on cl osed
current | oops, because they were zero after integration over a
cl osed | oop. So he nmade the general ansatz:
F-- ir[r_i.(ds.ds') - %(ds.r).(ds’.r)]

C2
+x(r)(ds".r).ds+y(r)(ds.r)ds” +x(r).(ds.ds’).r (20)

+%x'(r).(ds.r).(ds'.r)

Whi tt aker dropped Anpére’ s assunption, that the force should be
a central force and he applied only Newton’s | aw acti o-reacti o.
He nade the nost sinple possible choices x(r)=i.i’/(c?r3)
, ¢ (r)=-3i.i’"/(c*? and obtained the force |aw

F= %[(dsr)ds’ +(ds’.r)ds-r(ds.ds)] (21)

11



Tabel 1: different versions of magnetostatic
force | aw between current elenments ([20] and [1])
general form of the magnetostatic force | aw

F= k%[r (A.(ds.ds) +B.(r.ds)(r.ds")/r 2 +C.(r.ds")ds+D.(r.ds)ds ]
r

name year r ef A B C D comment

Anper e 1823 [17] -2 3 0 0 central force

G assmann 1845 [11, 15] -1 0 0 1 no nonopol es

Ri emann 1875 [18] -1 0 1 1 noment conserved
Wi t t aker 1912 [1, 15] see under Ri emann

Br own 1955 ???? 1 -6 6 6 ???7?7

Aspden 1987 [ 21] -1 0 1 -1 cons. angul ar nonent
Mar i nov 1993 [22] -1 0 0.5 0.5 experi nment

Caval lieri 1998 [ 23] see under Grassnann experi nment

O course this force | aw was not convincing as well.

For the basic idea of R emann and Wittaker was used by nany
others who built their “own” force | aws usi ng other assunptions.
The discussion is running until today, see[23] and tab. 1.

Al different forns yielded the same result for the nagnetic

field H, if they were integrated over a closed circuit.
H= 1 XX ds or generally H:iggj(x')x X=X d3x/ (22)
¢ K9 ¢ x-xF

12



general schene of proof for every nagnetostatic force | aw

According to a general theorem of vector analysis, see appendix 2, every
vector field can be deconposed into a vortex field and a potential field. The
vortex field is caused by currents, the potential field by charges. If this
is compared with theorem?2 in appendi x 2, then the Biot-Savart |aw generates
a vortex field. Al other fields deviating from Biot-Savart, have to be
witten as
field law = Biot-Savart-law + additional terms

These additional ternms mnmust be identified as a potential field. If the
current is integrated over a closed circle the potential ternms cancel to

zero! . OJ

The force of a closed circuit on a differential current el enent

is according to Biot-Savart, see (18) and (22),

dF = il Hxds (23)
c

If one integrates over two interacting closed circuits the von

Neumann force law is obtained [1, 8, 24, 25]

11 X
F= ;229695 2ds,ds, (24)

From (22) also follows, that the magnetic field can be cal cul ated

1

The Biot-Savart |aw i s probably the correct version for
physical currents. It does not generate “magnetic charges” and
coincides with the B-field of a noving charge according to

Li enard-Wechert (in the special case of zero accel eration).
Experinmentally the Biot-Savart - law is supported by the
neasurenents of Cavallieri [23].

13



froma vector potential H:= VxAwth

AG) =2 PIX) gy (25)
c v [x-X|
Then fol | ows
divrot A=divH =0 (26)

So Anpere concluded: The cause of the nagnetic field are not
magneti c charges but only currents.

Ampere’s theory includes as well para-, dia- oder ferromagnetic
“excited” materials. The total nagnetic field B includes the
field from the measurable currents j and the field M of the
magneti sm of the nmaterial, where the field M (according to

Anpere) is generated exclusively by currents in the nmaterial.

Then fol |l ows

4 . .
rot B = ?(J conductor ) maIeriaJ) (27)

W th

B:=pyH  oder  B:=H+4zxM (28)

Anal ogously like for charges a relation is sought between the
enpirical variables. So the unknown current j meria IS €limnated.
I f conpared with electrostatics, see eq. (14) to (17), it can be
derived for currents, that for magnet ostatics hol ds

fj d3x:fv_j d2x:—fp d? = 0. Here is applied vj+p=0 and j(»)=0, i.e.

14



no currents exist at the boundary in the infinite. Thus no
charges can be built up there and only dipol terns and terns of
hi gher order can contribute to the result. So a definition (29)

anal ogous to (17) is used for the magneti zati on Mof the materi al

VXM =] e /€ (29)

Then, using (27),(28) and (29) Anpere’ s |laws are derived

4.

rotH =—j divB=0 (30)
c

conductor

In order to derive the present version Anpére’s lawis rewitten

as [8]:
VxH =rot rotA = grad divA - V?A
(X (v (3D)
:ij(x )v_ 1, d3x'_fJ(X)v2 1, d3x
c X-x"| c X-x|

Wth t he mat hemat i cal rel ations VX-X 1= -V x-x|* and
V' 2Ix-X'| t= -4rd(x-x") this becones

VxH = —ij(x )V' 1 ~ d3X' +ﬂj (32)

C X-x| C

because A also fulfills the Poisson equation v2A=-4zj/c .
If the integral in (32) is integrated partially using that |

vani shes at boundary in the infinite, then follows

vxH = A —vaj(xi) d3x (33)
C cix-X|

15



Now, the observation is used that no charges build up during
magnet ostatic experinents. Using the continuity equation this
fact can translated into mathematics by v ~-o=0.

This yields Anpére”s | aw of nagnetostati cs:

_4n. _dn
VxH = Cj oder ¢Hds C{JdA (34)

Conmparing the coefficients of (31) and (33) follows grad div A=0.
Otenly, it is assuned div A =0. This expression is known as
Coul onb- gauge. The vector potential A is not a unique function,
because A can be replaced by A= A + Vf(x) . The inportant point
for the choice of vector potential Ais that grad div A=? has to
be chosen such, that a physically notivated constraint is
fulfilled - the continuity equation [26].

At the tinme of Biot&Savart and Anpere this was not known fully
and only the closed circuits could be tested out. So the result
(22) for the HFeld was ok. . However | ater, after the discovery
of the electron by J.J. Thomson [27], discussions canme up due to
the basic problem behind the approaches of Biot&Savart and
Anmpére: Not every magnetic probl emcoul d be di scussed by a cl osed
el ectric circuit. Freely noving charges (as differential current
el ements) could exist and the question for their field had to be
sol ved. So observations were published that |ongitudinal forces
existed in railguns [28, 29] and in plasma tubes [30, 31] (See
also the review article [32]). These forces seened to be

expl ai ned by Anpere’s differential force |law, but not by Biot-

16



Savart”s version. Althought these problens seem to be solved
today not in favour for longitunal forces? the problem will be
| eft open here for further considerations. So all mathematically
possible field configurations will be included in the discussion
by addi ng a magnetic potential to the magnetic vector field. So
any vector field F can be deconposed into two terns F. and F,,
derived from a potential (for F) and a vector potential of
vortex field (for F,), see the proof in appendix 2 [26] and [ 35,

36]. Thus any H Feld is described by

10(.,. X=X N X=X
H=H,+H.= s fj(x ) X |X_X,|3d3x/_ fQH(X )|x—x’|3d3X/ (35)

Here oy is the magnetic charge distribution due to the deviation
fromBiot-Savart’s differential |aw, see eq.(18).
If a concrete systemis solved with a boundary problem a Lapl ace

field H has to be added which satisfies rot H =0 and div H =0.

-,

11({.,. X-X .y X=X
H=Hy+Ho+H, == fj(X)Xl ,|3d3X’—feH(X)| ,|3d3X’—V<p(X) (36)
X—X X—-X

Here is H :=-Vo(x) the Laplace field. This potential describes a
field, which is generated outside of the defined area of the

problem The field H helps to adapt the solution to the given

2

Bot h observations were explained | ater by Ranbaut
&Vigier[33], see as well [34]. They pointed out, that these
observati ons do not answer the question, because a cl osed
noving circuit shows a “longitudi nal” nmechani cal expansi on due
to a “expansion” pressure of a |oop due to the Lorenz force.

17



boundary condition of the problem Then (36) changes to

- Ve X'
H=H,+H.+H =VxA - VE -Vg(x) = Vx 1 &d&’—vfwd&’—w(x) (37)
cY x-X| X-X|

With A:=c1fj(x)|jx-x|d3 as nmagnetic vector potential and
E;ZJQKXjMX_qu%( as potential function of the magnetic charges.
I f magnetic charges are included the magnetic field becones a
general field and | oses all symretry properties with respect of
parity. So every field configuration can be described generally.
It will be shown here that this is useful for problens with
i nduced and pernmanent nmagnetization. Only a reinterpretation of
t he conventional point of view |leads to a Poisson equation for
magneti ¢ charges.

Pr oof :

The conventional theory for problens with permanent nagnetization [8]

(wi thout exciting field fromoutside) assumes, that
V.B,=V.(H,+4xM) =0 (38)

Here is Mthe magneti zation of the material and H, the inner nagnetic field
whi ch generates the nmagnetization. If a field is applied additionally from

outside, this equation is enlarged
V.Bozv.(H0+H +47M) =0 (39)

with Ha the exciting Hfield from outside, which is added. Because no
currents are obvious in matter as cause for the inner Hy-field it holds
VXHO:O . This means that H, can be derived froma potenti al EHO accordi ng

to Hoz—VEHO and the magnetostatic Poi sson-equation follows [8]

18



AEHO = -4dmp,, (40)

vw'thV.HO:=4an defined as “effective magnetic charge density” in [8].

From (39) and (40) follows
V.B:=V.(H +4aM) = -4np,,:=4np,, (41)

Wth these redefinitions the conventional equation (39) is witten down with
maghetic charges in a form which is conpletely analog to electrostatics.

Then, analogously to electrostatics, the enpirical field is the H-field

contrary to the conventional interpretation taking the B-field. gq.e.d. O

Thus, magnetostatic boundary problens can be worked out
anal ogously to electrostatics with changed boundary conditions.
Text books show [8], that the solution of mnmagnetic boundary
probl ens are sonetimes conpl etely anal ogous to el ectrostatics.

Simlarly, permanent magnets (like an analog to ferroel ectrets)

fig.3: polarized bowl in a potential field

boundary condition between inner of bowl and outside:no charges and no currents, i.e.
Binen=Bauzen » Similar like in electrostatics the field is given by the charge distribution at the outer
boundary: B,=0 , VBjs = -VB,ecs - It holds the Laplace equation A@=VB=0. For the equations of a
metal bowl in the electric field the magnetic variables have to be replaced by electric ones.

19



can be regarded to consist of nmagnetic charges.

For the sinple phenonena of induced polarization, however , see
fig.3, the fields are derived by the assunptions, that B is the
sol ution of the equation v.B=0. The boundary condition represent
ei ther given current distributions exciting the material, either
they are the existing field in a distance far from the object
under consi deration. This neans, that the magnetic field Hin the
nei ghborhood of a nagnetic material fullfils locally always
Ap=V.B=0 and vxH=0 . O the Laplace equation holds for the
i nduced magnetism

Only, if the experiment deviates from the theory, nagnetic
charges are probable. This is the case for the ferronmagnetic
hysteresis of iron. If conpared with the conventional parity
tabel, see tab.2, the B-field has (-1) parity under tine
inversion, i.e. if the current is inversed, the field has to be
inversed as well. If a hysteresis exists, this is not the case,
because the hysteresis line B(H) is not unique. For a change of
parity with fields of the strenght of the coercitivity, the
change in parity can easily be disproved. In this case
i nhonogenities or gradients of nagnetic perneability p(x) can

i nduce magnetic charges. Then it hol ds

V.B(X) =V.(1(x).H(X)) = u(X)V.H(X) + H(X).Vu(X) = 4ng,, # 0 (42)

20
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fig.4: field lines of magnetic H-field of a cylindric permanent magnet

the magnet is modeled here as capacity of magnetic charges.The magnetic charges are distributed
on the surfaces of north and south pole. The iron has a permeability of u=10000

Tab.2: symetry properties of conventional el ectrodynamn cs

It holds generally: F(uy =P . F(-u)

variable wu field F parity P sort of field
X --> -X E -1 potentia

D -1 pot enti al

H 1 vort ex

B 1 vort ex

cause

t --> -t E 1 char ge

D 1 char ge

H -1 current

B -1 current
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Consequently, a nagnet can be nodeled as well using nagnetic
charges, see fig.4. Any pernmanent nagnetism destroys any parity
of a B-field simlar like it is proved in the original
experinments of violation of parity in beta-decay.

O course a general B-field with no parity cannot be expl ai ned
solely by a vector potential A

1) because B = rot A has a defined parity;

2) because B:=rot Ainplies divrot A=div B=20 follows, which
is contradicting to the physical result div B+0.

So, for magnetic charges the magnetic potential = has to be

introduced. Simlar |ike the magnetic vector potential A it has
a nore formal character, because it is not known very nuch about
magneti ¢ charges except of Ehrenhaft” s [5, 6] and MKkhailov's
experinments [37-48]. Inportant questions about concentrating,
storing and conducting of magnetic charges are open.

The potentials of the magnetic field are

A _ 1ij’H’M(X,)d3X,

BHM ™ X=X |

g o
- [~ dx (43)

BHM — |X_X'|

[1]

Then, the nmagnetic fields can be derived

B, =rotA; , B, = -VEg
H, =rotA,, , H. = -VE, (44)
M, =rotA,, /4n | M = -VE,,/4n

using the definitions B_:=H_.+4xM_, B, :=H,+4aM,,, Ag:=A, +A, and

+E,, . The enpirical magnetic field is
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H=H.+H, +H_ (45)

For the B-field hol ds:

B:=B,+B.+B_ (46)

Anpere’s law are witten (using rot Hy, =0 and div B, =0):

UxH =VxH,, :4_(’:‘1' V.B=V.B_-4np, (47)

Then the general force | aw of nagnetismis:

1, , ,
FZ?fJXBV dx 3+ng.(HC+HL) dx 3 (48)

Later Ampere’s |law VxH =4rj/c was extended by Maxwell. Maxwel |
realized [49], that it could not describe cases, where electric
charge appeared, which were stored in capacitances. Maxwel |
sol ved the problem by a hypothesis, which turned out to be very
useful, especially with respect to the theory of el ectromgnetic
waves. He changed Anpere’s equation to

Y, - 41, 12D

c c ot (49)

I ntroducing the dielectric displacenent dD/dt Maxwel | renoved a
contradiction between physics and nathematics, because the

continuity equation as a constraint could always be fulfilled

d
div rot H, = dif 2 +id_D) :ﬂ(divp%] -0 (50)
C



This formof Anpére’ s law holds until today. It can describe as
well the cases where charges are generated, for instance
el ectron-positron pairs in high energy physics, electron-hole
pairs in sem conductors, or dissociations intoions in chemstry.
Maxwel | “s i nprovenent does not change as wel | the gauge rel ation,
because using (31) it can be cal cul ated

Yl Ve : X,
grad divA - —va'J—(X,) d3x'=—vaE—(,) d3x - 19D (51)
cix-X| cix-X| c dt

So the vector potential for Anpere’ s |law (34) can be retained.

c) Faraday’ s | aw
The induction law has been found by Faraday. Using his

formulation it is witten

U=-—- (52)

For Faraday the flux w=[B dA were the nunber of field |ines,
whi ch go through a closed circuit. For a expanding or contracting
circuit this is witten today [9]

1 df 1f B 1f 1f
-® Eds==— | BdA-= Zda+= | vx(Bxv)dA+= | v(V.B)dA
c cdtY s cY S ot +c S ( ) +c 5( ) (53)

A sinple derivation can be done using the formalism of speci al
relativity, see section e). This law can be formulated

alternatively using (53) » 4mp,,=V.B and ju=pyV
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10B 1 4.
-VXxE==—-=VX%x(vxB) + —
codt ¢ (vxB) cH (59
It will be shown in the next section, that this equation is

consistent with a gauge by a continuity equation for nagnetic

nonopol es.

d) the conplete Maxwel | equati ons
The Maxwel | equati on describe the coupling of fields with noving
charges in space. They can be generalized that they hold for
solids and for gases and |iquids.
The notations for the indices here are C. =charge, V:=vortex,
E:=electric field and H =magnetic field.
I f magnetic charges are included the Maxwel |l equations are

(using the definitions v=velocity and j:=vp)

dvy. 1d de. 1d
~¢E ds=21:=29 [Bda H ds=22:22% (DdA oder
96 v t cdtf 96 V7T dt T ¢ tf
10B \Y} 4z 13D \Y} 4z
-VXE,, === -Vx(—xB) + —p,Vv VxH,, === -VX(—=xD) + —p.V
Voocoat (c ) c PH Vio¢ oot (c ) c PE
div D =4no. div B =4ng, (55)
0p+Vig =divV><(%><B)=0 0 +Vi, =divV><(%><D) -0
ap,=divD =0 arpg=divB, =0
D:DV+DC+DL B:BV+BC+BL

For a m xed system of charged particles the individual equations
of each sort of particle have to be added toget her.

In the version above Anpere’s law is extended by the so called
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fig.5a: E-field due to the Lorenz force fig.5b: H-field due to the Rowlands force
at the expansion (or contraction) of a circuitina at the roll out of a conducting foil over a
magnetic field polarized electret material

Rowl ands termwhich is electric analog to the Lorenz force. This
term takes account for a Hfield, which is generated, if a
capacitance grows in an electric field, see fig.5b.

Simlarly the Laplace field is accounted for in (55).

To conpl ete the theory an el ectric vector potential nust al so be
i ntroduced. It is generated by nagnetic currents.

Al'l generating potentials are listed in (56)

QDEP(X) 1 deam®) 5
L)) —=" 43} = =~ d°X
DEP f X=X | DEP Cf X=X
(56)
__fJDEP(X) 3¢ = fQBHM(X)dSX'
X=X B X=X

They are interconnected with the fields by
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B, =rotA; , B. = -VE;
H, =rotA , , H. = -VE,
M, =rotA,, /4n | M = -VE,,/4n
(57)
D, =rotl' , D, = -V@,
E, =rotl'; , E. = VO,
P, :rotFP/4n , Pc. = -V®,/4n

Summarizing it can be said about the Maxwel | equati ons:

El ectric and nagnetic fields can be described mathematically as
general fields. Their causes are charges and currents of electric
and nagnetic particles, which fullfil the continuity equation as
a constraint. Due to the mathematics the electric and nagnetic
fields can be deconposed into a vortex, a potential field and
a Laplace field. The charges build up the potential fields, the
currents the vortex field and the Laplace field adapts to the

boundary conditions.

e) The Maxwel | equations and the theory of relativity

In the theory of relativity the Maxwel | equati ons are fornul at ed
in the term nol ogy of tensor cal cul us.
The theory of relativity relates the variables neasured in a
reference systemto the variables of another system which noves
relative to the first system The transformation applies for a

nmovenment in z-direction (using the definitions g:=v/c, y:=1//1-p2)
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vy 0 O ipy

ax’; 0O 100

== 58
% X 0O 01 O (58)

-ipy 0 0 v
Simlarly vectors are transfornmed (using the Ei nstein convention)

A =a.A (59)

Tensors T are transformed by
T=a.a. Ty (60)

The 4-vectors of the theory of relativity are, cf. appendi x 3,

gpace coordinates :  x=(X,Y, z ict)
momentum :  p=(p,, P, P, imc)
wave number : k:(&,&Jgf%m)
electric 4-current : jE=(J'XE,J'yE,jZE, icpF) (61)
magnetic 4-current : jH=(J'XH,J'yH,jZH, icp™)
electric Lorenz vector : L =(A/, AyE, AF, icoP)
magnetic Lorenz vector : L =(T}, I}, Iy, icE®)

The 4-vectors are invariant, i.e. the length of a vector is
i ndependent fromthe state of nmovenent of the reference system

Fromthis property and from(61) follows the continuity equation

d ., . . dog d ., . . doy

—j'c=divj.+——==0 — ', =divj + =0

o e e g ax | n TR (62
An anal ogous equation - the Lorenz gauge -holds as well for

Lorenz vectors, see appendix 3. The definitions for the
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el ectromagnetic tensor field at no current (v=0) are

0 -E, E, -iB, 0 H, -H, -iD,

| g, o -E -iB, |-H, 0 H, -iD,

FU:-= ) GY:= . (63)
E, E, 0 -iB, H, -H, 0 -iD,
iB, iB, iB, 0 iD, iD, iD, O

If there no current is flowng, (j=pv=0) the 4-currents are

je=(0,0,0,icp") j,=(0,0,0, icp") (64)

Then the Maxwel | equations can be witten

d ij _ N d ij — i
TF J—4TCJH 76 J—4TCJE (65)

j j

The conplete system (55) of Maxwell equations follows if the
charges nove. This is described by the follow ng coordinate

transformati on

X pigg Xk iy
—_— = = TE— 7T
d, O, ox ox ox; J' =4 "

(66)
X X ox', ..
d_,G'kn d Tk GIJ Qp—X J |:4ﬂ:j'Ek
dx” dx ax ax X,
(66) represents the conplete Mxwell equations in tensor

notation, cf. (55). One consequence shoul d be enphasi zed:
if currents exist the conplete Maxwell equations have to be

applied including the terns of Lorenz and Row ands force.

29



f) the el ectromagnetic tensors of nonmentum and ener gy

The el ectromagneti c conservati on of energy
The power of a electrically and nmagnetically charged particle is
(using F,=q, (H—%XD) , FE:qE(E+%xB) and F=F.+F, )

ClEme(:h
dt

=Fv:=q..Ev+q,.HV (67)

Thi s equation integrated over the whol e space yields with j:= vp

dE . .
dted‘:F.v::f(JE.EﬂH.H)dx3 (68)

If the Maxwell equations are solved for the currents, (i.e.

- c 10D v :
jHA%JVXE%%_?Nx(%XB) and JE:E[VXH_EENX(EXD) ) and inserted
in (67), and usingv.(axb)=b.(Vxa)-a.(Vvxb), it follows a nodified

Poynting energy conservation equation for the energy density:

de; e U ¢ Vv c Vv
T = V.S — + = Vx(=%xB) | . H + =] Vx(—=xD) | .E 69
dt ot 4xn (C ) 4n (C ) (69)

Here the followi ng definitions have been used

S:=C (ExH)

4r (70)
QU. 1(gdD 4B
dt  4x\ dt  dt

The last two ternms in (69) are non-standard, because the energy

conservation is derived al ways wi t hout Rowl ands and Lorenz terns.
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The el ectromagneti c conservati on of nonmentum

The force on a charge distribution of electronagnetic charge is

Fren ™ [P (E + ~ExB) =y, (H + £xD) b ¢ (71)

Usi ng again Maxwel | s equations solved for j this can be witten

1{ oD 1{ oB ,
F _=([EV.D+HV.B + (VxH )xB+(VXE *)xD - =] —xB| + =| —=xD|]dx 3

Using the definitions E*:=E+v/cxB and H*:=H-v/cxD and the

calculation in footnote® foll ows
d Ti’;—DdE—BdH ~ d=D><B

F”“h:f dx, dx,  dx, dt 4nc
¥ ((vx(lxs))x5)+ [(vx(XxD))xD)
C C

(73)
dx @

Here T, is defined as T;:=ED,+HB,. The fourth termof the first

line of (73) is pguy=(DxB)/(4nc) which is defined as the

8 The first three vector terns can be witten in the
term nol ogy of the tensor cal cul us:

Mg

'S ax

oE
E.V.D +H.VB + (VxH)xB+(VXE)xD = sijksjlsé—stk FEE ‘.
|

. . ) [
Using g;gs=6,48,s60; the first termis transformed to

OE, oH, _aD,
‘Sijksjlsa_xle+8ijk8jlsa_X|Bk:Ei X +D,
j

oE,
ax B ax Pax. ax. K ax
k i i k i

In the 2" and 5'" termk can be exchanged with j without
changing the result. Then follow the first three terns of (73).
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el ectromagneti ¢ nonmentum pg,y Of the field.
If the generality of (73) is restricted (i.e. if only materials
are used with purely linear constitutive relations |ike B=uH and
D=¢E) then the first three terns of (73) represent the Muxwell
energy tensor:

%::dd—xk(EiDUHin—%(sEzmH %) (74)
This equation is found in the textbooks nornmally. The |ast two
terms of (73) are ontted always, because “shorted” Maxwell
equation are used which is wong in the general case according
to the author”s opinion.
The equati ons of conservati on of energy and nonmentumdescri be t he
behavi our of a generalized capacitive-inductive- electronic
el enent. Special cases for the energy equation are the pure
capacitance (if H=0 and B=0) and the pure coil (if E=0 and D=0),
see (73). For these cases the equation says, that the energy
flowwng into the electronic elenent can be identified with the
el ectric or nagnetic field energy.
The definition of electromagnetic work can be done if (69) is

appl i ed

ClEme(:h
W, = f & dt (75)

It should be said that the discussion about the “correct”

equations (69) and (73) is alive until today, cf. [50].
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It is remarkable that the derivation with nonopoles yields the
same result as without. The cause of this may be, that many
Maxwel | equations are the solutions from the the theory of
general relativity, because one degree of freedom remains

undet erm ned during the derivation [8] [51, 52]. These consi de-

rati ons were done for the shorted Maxwel |l equations (55), i.e.
VD=dnp.  vxH-19B, 4m
cdt c
VB, -wE-19D 4 7o
' H cdt c'F

It can be shown, that all these equation can be transformnmed by

E= E’cos,+H’sn; D= D’cos,+B’sin;
H=-E’sn{+H’cos, B=-D’sin{+B’cos,
/ . . s/ A (77)
Pe= PECOSL+pySNG  Jp= JgCOSC+ ]y SING
Py= P SING+py COS, = —jgSinG+ ]} cost

If the paraneter ¢ in (77) is chosen appropriately, the
conventi onal Maxwel | equations w thout magnetic charges are the
result. It is shown that relativistic pressure tensor (shorted
cal cul ation without Lorenz and Rowl ands terns !) is invariant
under these transformations.

If it is believed, that every electric charge is in a constant
proportion with a nmagnetic charge, -so the argunentation and the
calculation of Harrison[53] and Katz [52]- the conbined charge
is regarded as a new “elenentary charge”, and built up a

transfornmed (shorted) system of Maxwell|l equations with div B=0
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[8, 52, 53]. So it is understandable, that Mkhailov [38, 48, 54]
tried to determ ne the proportion between electric and magnetic
charge, especially because the first workout of his neasurenents
[ 38] spoke agai nst the generally accepted theoretical value of
Dirac [55, 56]. Anyway, in the light of these opinions of
Harrison[ 53] and Katz [52], one can ask why M khail ov sees any
effects at all. For author the discussion is not at the end here.

Per haps, parity checks can solve this question.
g) boundary conditions

stationary discontinous boundary conditions by charges

In order to derive boundary condition equation (13) is applied
on a fictive “pillbox” at the boundary between two materials of
a potential field [8], see fig.6a .

So one obtains the relation (wth o:=surface charge density)

f V.F. dv= f F..n da=(F.(1)-F.(2).n ra=4ncra (78)
S

Equation (78) shows a rel ati on between vector conponents of the
field F, in region 1 and F, in region 2 which both are normal to
the surface. This yields for the vertical conponents of

di el ectric displacenent D :

(D(1)-D(2)).M = 4no,. (79)



F.
fig.6a the pillbox - construction fig.6b the circuit - construction
for the determination of boundary conditions for the determination of boundary conditions

due to charges due to currents

i.e. at the boundary there is a discontinuity which is determ ned
by the surface charge density. An anal og holds for the

vertical conponent of the magnetic field B :

(Bo(1)-B(2)).N = 4ro,, (80)

For a electric or magnetic conducting surface hol ds

® = constant E = constant (81)

stationary boundary conditions by currents
Equation (29) can be applied to derive a boundary condition if
a surface current k flows at the boundary between regions of

different materials, see fig.6b . So one obtains [8]

[VXFy dA= [F, ds=(nx).(F,()-F(2)a1 = Tkt (@)
S

Equation (82) is a relation between the vector conponents F, and
F, which flow tangentially on the surface of the boundary

between two regions 1 and 2 of different materials.
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di scontinuities of the nagnetic vortex field

for tangents to the surface

Ax(H,,(1)-H,,(2)) =4—:KE (83)

di scontinuity of the electric vortex field

for tangents to the surface

Ax(E,(1)-E,(2) =4—:KH (84)

For nore general, nonstationary boundary conditions at noving

surfaces, see [8].

h) the constitutive equations of the materi al
The system of Maxwell equations can be solved after the
constitutive equation are known which describe the materi al
properties. They couple the electric variables (E D) and the

magneti c variables (B, H which can be represented generally by

( [B)) =coupling © ( E') (85)

In the nost cases these couplings are sinple, i.e.

as redstor: j=c.E
or capacitively: D=¢cE (86)

or inductively: B=pH
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Initially the material constant were constants which descri bed
the sinple cases of material properties. Later nore conplicated
nonlinear functions were found which could generate phase

transitions, i.e.

c=o(E), e=e(E), u=p(H) (87)

After the fundanental crystal structures were known, the materi al
properties could be correlated to the symetry of the crystals.

Then, the constitutive equation were described by tensors

G = Gik(E)’ €= ‘Sik(E)y M= Hk(H) (88)

which were first linear, then non-Ilinear.

Then, materials were discovered whose properties were magnetic
and el ectric, and where an electric field influenced the magnetic
properties and vice versa [57] [58].

The theory of relativity found out that dielectric or magnetic
pol ari zed nateri al behaved different if it was set in notion. The

foll owi ng equations are from [59]

E =E-YxM
C

H/=H-Yxp (®9)
C

A further conplication of the constitutive relations are space-
dependence of the material properties which are realized for
i nstance as el ectronic el enents.

Furthernore all materials had their own dynamics in time in the
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formof relaxation tine.

If all material properties are accounted for then the genera

constitutive equations can be abstracted as additional

differential equations which help to solve the conplete system

of partial differential equations. This systemcan be witten as

E f,(E.D,H,B;T,p.X,0,...)(Xt)
[H] :[le(E,D,H,B;T,pi,X,w,....)(x,t)) (90)
or
D f,(E,D,H,B;T,p,.X,0,...)(X,t)
5] | £,(E.D,H.BT,0,%,0,....) (X.) (91)

The variables after the semi colon show that the constitutive
equations may not depend only from el ectromagneti c paraneters,
but can depend as well from nmechanic or thernodynanic naterial
properties. This means that the electrodynam cs cannot be
separated fromthe other areas of physics. If these the materi al
properties drift under the influence of electronmagnetic fields
then a purely electrodynam c description is not sufficient and
further differential equations fromother areas of physics have
to be added to a conplete partial differential equation system
to be sol ved.

Exanpl es:

1) Known exanples are electric notors and generators. Here the
mechani ¢ equations of notion of the notors are added. They

descri be the notion by the angul ar coordinate of the rotor.
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2) O her systens are magnetic materials, for which the Landau-

Lifshitz-G |l bert - equation [57] [60] hold

M = —y.MxH . +a.Mx(MxH ) (92)

It generates a system of partial differential equation (:=PDE)
if it is conbined with the equation of the nagnetostatic
potential (41) [61]. It allows to calculate magnetic domains in
ferromagnetic material s.

3) A honopbgeneous thernostatic systemlike a polynmer solution is
described by a free energy density f. The system plus field is
described by the free energy density f'=f+p_«®_.. Then using the
definitions of the global chem cal potential p*:=df*/dx; and
Xi:=volume ratio the PDE-system hold

A®(X(r),r) =-4mnp,

ol 93
%(xm, ®_(1)=0 %3

For a magnetic system (for instance a ferrofluid solution) the
el ectric variables (E D) are replaced by magneti c ones (H B). The
magneti c charge density p is set to zero, because no magnetic
charges can be detected during the magneti zation, see [62].

4) If the probl emdepends fromtinme additionally, it is necessary
to replace the second equation of (93) by the thernodynam c

functions for non-equilibrium Then one can wite
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A®(X(r),r) =-4mnp

(94)
i--D ani(r) o, Zen,(nE(r)
ar RT

Here hol d the definitions n:=concentration, r:=space coordi nate
Z: =nunber of charges per ion, e:=elenentary charge, E: = electric
field, R =Avogadr o- const ant , T: =t enper at ur e, D: =di f fusi on
constant, A:=npobility. The second equation of (94) is the Nernst-
Pl anck equation, which should coincide with the second equation
(93) for j=0. So el ectrochem cal problens are di scussed, cf.[63].
5) In sem conductors the charge densities depend from chem cal
potential or quasi-Ferm |evel, which can be influenced by the
el ectric potential. A good exanple for such a systemis a |InAs-
guant umdot - dot ed FET i nvent ed by Yusa&Sakaki [64]. Its structure
is shown in fig.7. The FET can be used for storing data by
chargi ng the gate capacitance.

The theoretical nodel of this FET stens from Rack et al.[65].

The PDE s of the systemis:

Poisson-equation: &, 0,[2(2).0,@(2)] = -p(2) With p(2) =e[N(2)-n*}2) Ny (2]

1, .
current: 3, N(2) = Eaz i@ - f(nyp(z1),n(2) =0 (95)
recombinations: athD(z,t) = f(nQD(z,t),n(z))
Here are ¢, := dielectric constant of vacuum ¢:=dielectric
constant of the material, p:=charge density, Ny =density of

donators, ns: =charge density of el ectrons, ng: =charge density of
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é - doping InAs,_1.75 ML

aAs-GaAs 70 nm 200 nm 400 nm

fig.7: structure of a InAs-quantum dot-doted GaAs-FET
a two-dimensional electron gas (2DEG) is located in the boundary between AlGaAs and GaAs. It
represents the zero potential of the system. The electric potential is applied to the Al layer,cf. figs.9

el ectron trapped im quantum dots, n(z):=free electron density
function specified in the article, j:=current in the FET, and
f(npn) is a specific function, which characterizes the
reconbi nati on process, see [65]. Figs.8 showthe el ectron density
in the 2DEG versus voltage. Renmarkable is the orientation of the
electric cycle which is opposite to the ferroelectric |oss

hysteresis. This suggests a “gain hysteresis”.

It is known that electric work can be changed to nmechani c work

2 . ————rT ——— wg 1.6 T T T T -
- —
[ After LED T 3= = 4] 1
L illumination ’-: ' / =
a15¢ TP P S o 124 / .
= XA A Sy i o
o AL S 1.0 .
— H H s
z [ aR B z
§.1 gc‘ | A i ] z 087 g 1
P i ] 2 a
= A i A'.';\ Before LED ] 5 o064 ]
05F i illumination | €
. \ \-4 ",' | % 0.40C _ .
- 27 S1(InAs dots, Light) 2, 20 secondssweepdime
0 . " f L 0.0 0.2 0.4 0.8 0.8 1.0
05 0 05 1 15 veltage [V]

V, V]

fig.8a the experiment of Yusa-Sakaki- cf. [64] fig.8b the theoretical calculation of the
hysteresis of a InAs-quantum dot-doted FET  Yusa-Sakaki-FET by Rack et al.

electron charge density of the two-dimensional electron charge density of the two-dimensional
electron gas (2DEG) vs. gate voltage electron gas (2DEG) vs. gate voltage
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with efficiencies until 100% in the best electronotors. So
electric work should be equivalent to nechanical work in a
t her nodynam cal sense. An “isotherm cally” proceeded electric
cycle with an orientation like in fig.8a can fulfill the energy
bal ance only if heat flows in fromoutside. Thus, the FET is a
candidate for second law violation because only heat and
el ectricity can be exchanged. According to own recent work [62]
such cycles coul d be possi ble and further evidence can be found:
Cool ing effects in sem conductors have been predicted by [66].
These considerations support the considerations for the FET
di scussed above. According to [66] the FET is cooled down if it
is set under voltage. So the electrons are enforced into the
guantum dots bel ow t he quasi-Ferm niveau, where they stick due
to their binding energy. After the electric discharge of the FET-
capaci tance the FET goes back to the equilibriumeither if the
voltage is slightly inverted, cf.fig.8a, either if the wavel ength
of the thermal radiation is suffiently high to overcone the
bi ndi ng energy of 0.25eV, which holds the electrons in the
guantum dot potentials. So, the system can be regarded al so as
a concretisation of Maxwell s denon. The electric energy is
| ended probably fromthe quantumdots to be paid back after sone
time fromthe thermc influx of environnment. Further evidence for
this idea can be found fromthe results of fig. 9a-c, which show
the conduction band edge (which is here equivalent to the
potential) in the FET at the beginning of the cycle, after

charging it with voltage, and after dischargi ng the capacitance.
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fig.9a the conduction band edge vs. position in the FET of Yusa&Sakaki
before the cycle: voltage U=0 V
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fig.9b the conduction band edge vs. position in the FET of Yusa&Sakaki
in the cycle: voltage U=0.9 V
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fig.9c the conduction band edge vs. position in the FET of Yusa&Sakaki
after the cycle: voltage U=0 V

the band edge is changed due to the storage of charges in the quantum dots, cf. fig.9a



Fromthe slope in the diagrans one cal cul ates the electric fields
in the FET. If one regards the FET as a capacitance and applies
(69) one can estimate the energy exchanged after a cycle. From

(69) follows for a pure capacitance

AWzZU.I dt:—4—iffEdD av (96)

If one reads off electric field values fromthe slopes in fig.
9a to fig. 9c one obtains the electric field energies in the FET
bef ore charging the gate capacitance

W ~ E*V ~ (1V/600nm 2 *600nm = 0. 00166666
after discharging the gate capacitance
W ~Y B3 *V, ~(.38V/ 200nm) 2*200nm +( . 62V/ 400nn) 2*0. 400nm= 0. 001683
ener gy bal ance

AW ~ - (W-W) ~ -0.00001633

The energy difference of ~1%is negative neaning that electric
energy is released by the FET after the electric cycle is cl osed.
The Second Law is violated by the hysteresis of the equilibrium
state. The effect is due to the nonlinear behaviour of the FET
O course, all evidence of the experinent with the Yusa- Sakak
FET is indirectly concluded here. Mdre decisive would be a ful
bal ance of all electrons in the calculation or the experinent.
Herewith, the constitutive equations are characterized fromthe
sinple case to the nost conplicated systens. Generally, the
description of a system may be very sophisticated. However,

normal Iy the description is made as sinple as possible.
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fig.10: strength of the ®-component of the electric vortex field of a rotating magnetic ring
cross section view: ring radius 1m, ring width 5¢cm, ring heigth 12cm, center of rotation is to the
left, (not to be seen in picture). rainbow scale: blue is minus min., red is plus max., see appendix 4.

3. Concl usi ons

It has been shown that the existence of mmgnetic charges is
justified at |least theoretically especially if fields of
per manent magneti sm are descri bed.

This result suggests the follow ng consequences to be proved:

I f magnetic charges can be separated in space - for instance in
the form of charges of polarisation in a permanent magnet - and
if this nmagnet noves in a circle, two opposite magnetic currents
are generated which itself should generate a electric field
according to Faraday s | aw ext ended for nagnetic charge currents.

Measurenent of the electric field from noving per manent magnets
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fig.11la: E-field strength around a rotating magnetic ring (cross section)
ring radius 1m, ring width 5¢cm, ring heigth 12cm, center of rotation is to the left, (not shown in the
picture). Arbitrary units. Picture is calculated from the data of fig.10, see appendix 4.
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fig.11b position angle of the E-field around a rotating magnetic ring (cross section)
radius 1m,ring width 5¢cm,ring heigth 12cm,center of rotation is to the left,(not shown in the picture)
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can answer the question whether the field stenms fromcurrents of
novi ng magnetic charges or fromthe dB/dt - term According to
the theory above both possibilities can be cal cul at ed.

The setup of such experinents would be simlar to constructions
which are known in the unofficial subscene of physics. J.
Sear| [67-70], D. Hamel [71] and Godi n&Roschin [72, 73] claim
that they have observed strong el ectrostatic effects around fast
movi ng per manent nagnets.

Fig.10 shows the calculated electrical vortex field I due to a
novi ng permanent nmagnet ring representing two currents of
opposite magnetic surface charge which are placed on top and
bottomof the ring, cf. fig.4. The electric field is cal cul ated
fromthe electric vortex field by E=rot I, see fig.1lla and fig.
11b: the pictures show the electric field strength and the
position angle of the field around the cross section of the right
half of the ring. In appendix 4 the nethod of the calculation is
shown. |f one conpares the order of magnitude of the cal cul ation
with the data of Godi n&Roschin [72, 73] then this suggests for
the electric field values an agreenment between theory and

experi nment.

47



Appendi x 1: the derivation of the multipol e expansion

First the term1l/|x-x"| is witten as:

1 1 11
kX1 xzexzmaxx K 1, X 22X
IxP?

with the abbreviation g:=(x"2-2xx)/Ixf «1 -

This expression is expanded in a series

1 _ g 9. 80, g 1X2 2x¢ 3T2xx|",
V1+a 2 8 2 xP 2 xP 8 P

Using the definitions xq:=x/|x| and |x|:=r one obtains

x| 1

1 1 1, 1.3, /v _ 1,/2 1
— =2(X Xg) + ?[?(X Xg) ?X ] + O(?)

If this result is applied to the potential definition one gets

D(x) = 1 pd3x" + Y pX d3x" + ﬁ p[3X" X . -X X §.]1d3" + O(i)
I’f r2 Of 2I’3f i n" n-ij I’4

This can be witten as well

XX
ox) = 3+ PXy , Qi%oXo + oL
r r2 2r3 r
usi ng the definitions
q:=fp(x')d3x’ pZZfX/p(X')d3X/ Qij::f(3x'ix'j =X X" 3)p(x )d >



Appendi x 2: deconposition of a general vector field into a

potential field and a vortex field

Theorem 1:
The derivative of a vector field F can be deconposed in a

symmetric (index=C) and a antisynmetric part (index=V), i.e.

oF, oFY oF°
+

axj axj axj

Fcis the synmetric part and is a gradient of a potential field

oF° oF© o _c_ dUx)
—=—— o rot F.=0 with F~=
ax X X

(with U(x,):=potential function)

Fy, is a antisynmetric vortex field

oF"  oF’

X X

Pr oof :

The derivatives of the field F can be deconposed according to
oF; 1( dF, dF 1( oF; dF,
—_ —t—] + =] ———
axj 2 axj IX; 2 axj IX;

for the symmetric part hol ds:
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It can be checked, that

oF, oFY oF°
—_ = — +

axj axj axj

Theorem 2:
Fis a field with a defined boundary condition JoF around the

space which is interesting for the problem D vergence and

rotation are defined according to

VxF=j(X) V.F=p(X)

and t he boundary condition JF

oF: F.n=1(r)

Then it hol ds:
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F can be cal cul ated as sumof a gradient F. of a potential, plus
rotation of a vector potential F, , plus a Laplace field F,

according to

Fi=F.+F,+F_
fp(xl)(x Xl) 3 fp(Xl)d3 1V(I)
47': x-x | an X=X 4r

Fy= f:CKOXCx:x5d3X ===fo=(xf)d3x’==1;VxA
4n |X X’l 4n |X—X /| 4n
F =V¢

It hol ds:
VxF.=0 V.F.=p(X)
V.F,=0 VxF,, =j(X)
V.F =A¢=0

schenme of the proof [26]:

1) It is |looked for the solution of

VXF.=0 V.Fe=p(X)

This is the potential field

pX)X-X) 43, p(x) 43
Fe= 471[ 4n f d

x-x? Ix-x]

2) It is |ooked for the solution of

V.F,=0 VxF,, =} (X)

This is the vortex field
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E —ifj(xl)x(x_xl)d%(:ivxfj(xl) d3x

Vodnl xxP 4nJ |x-x/]

3) It is |ooked for

V.F =0 VxF, =0
usi ng the boundary condition

F ..n=F.n-F..n-F, n
The solution is the Laplace field

V.F =A¢=0

4) The general solution is the sum of 1) - 3). This can be

checked using the vector relations divrot A=0 and rotgrad =0 .

So one obtains

F=F.+F,+F_

g.e.d
The Lapl ace field is a “generalized constant of integration”. It
allows to adapt to the boundary conditions. It is needed, if

boundary conditions for F exist which are non-zero in the

infinite, see fig.3.
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Appendi x 3: Derivation of the Lorenz gauge
The continuity equation is
do
divj(x) +—=(x") =0
JX) + dt( )

It can be witten as

divj(x) +o (X
f 10 +0el) s

x-x]

The divergence term is changed using partial integration. One
termcan be cancel ed during partial integration, because j(x')=0

holds for x’= « . So it is obtained

o
-i(XWV 1, +Qé }dx3:0
X-x| [x-X|

Wth vx-x|1=-Vx-x|* one yields

. Ve : X,
g () , 0l )dx3:0

X-x"  [X-X|
This is the Lorenz gauge
oD
V.AH+1 E-
c ot
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Appendi x 4:

Mbdel cal cul ati on 1:

In order to estimate the field, which could be generated by a
magnetic current, we calculate here the non-real case of a coi
of one turn which is driven by a current of magnetic charge. The
coil is nodelled as a rotating tube which is charged wth
magneti c surface charges.

W use the fornulas of magnetostatics applied for magnetic
currents (in Sl-units) by exchanging the magnetic variables by
t he anal ogous el ectric vari abl es.

Dat as of the setup:
1 magnetic tube charged with magnetic charges

di aneter: d= 2m

hei ght : h= 10cm

nunber of turns: n=1

magnetic field strength at the surface: B, = 1T = 1 Vs/nt
magneti c perneability: u = 10001

speed of rotation: f = 10Hz.

Using this data the nmagnetic current 1, can be calculated to

|y = surface charge * speed of rotation = (u-1)*By*d*n*h*f

Then, the electrical field of a nagnetic current, cf. (80)

E=14n/h = (p-1)*By*d*o*f =2**10° VI m

This neans: electrical fields generated by nagnetic currents



shoul d be sufficiently strong to be detected easily. It should
be possible to reach the breakdown voltage of air (30 kV/cm at

1 bar) if the paraneters are chosen accordi ngly high.

Mbdel cal cul ati on 2:

W estimate here the field of a magnetic cylinder ring which
turns around its central axis. The upper surface of the ring is
the north pole, the |lower the south pole.

Dat a of the setup:
1 magnetic ring magnet

upper rim north-, lower rim south pole

di anet er d= 2m
hei ght h= 12cm
wi dt h b= 5cm
nunber of turns =1
magnetic field strength at the pol e surfaces: B,= 1T
magneti c perneability pu= 10000
speed of rotation: f= 10Hz.
The origin of the coordinate z

system is the —centre of
symmetry on the middle of the
central axis. The distribution "\'o

of the electric field |lines of ///// \\\\\

the setup can be cal cul ated by

using a known exanple and

adapting it for the present X

set up. For a sinple ring

current,see fig. 12, Jackson[8] Fig.12: the coordinate system

calcul ates a vortex vector-field in chapter 5.5, equation 5.37.

The formula transferred to magnetic currents yields
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N

‘\‘r]
r;'-.__." rfe"" a Due to geonetry it hol ds:
—— Z,
"'-._,__.. 0 \ z-coordinates.  r,.co80,+Z,=.C0S0
<|>E"‘--. / y r,.c0s0,-7,=r.cosH
A?::f 2, radius projection  r .sin, =r.sing
.:.,__) into x-y-plane: r,.sinb,=r.sing
X

fig.13 the geometric situation of a field point due to a circulating magnetic dipol
the field is composed from two opposite circulating magnetic currents

4|Ha[(2—m)K(m)—2E(m) with me darsin(0)
J/m | m a?+r2+2arsin(o)

I'y(r6)=

Here are K(m and E(m elliptic integrals of first and second
order, which are calculated nunerically by a program

This fornmula is applied for two circuits which are shifted by z,
upwar d and downwards. I n both circuits the magnetic current fl ows
in opposite directions. From the geonetry of the setup the
appropriate radii and angles of each circuit can be determ ned,

see fig. 13 . The system of equations fromfig. 13 are sol ved

r.cosH-z, ) )
o,=arcot| ————| - r =r.sng/sing,

r.sino

r.cos0+%, . .
0,=arcot| ———| - r,=r.sing/sing,

r.singd
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Then it is possible to wite down the electric vortex potenti al
I which has only one conponent in &-direction which is

per pendi cul ar to the plane of the paper, see fig.11

L(r,0)=Tg(r,0) +T(r,6,)

For the purpose of a sinple calculation the equally distributed
magneti ¢ charge on the surface was approxi mated by 11 charges at
equi di stant positions on the surfaces each. The calcul ated

intensity of the ®-conponent of the electric vortex field " is

already shown in fig.10. Then, the E-field is calculated
according to E = rot 1, fig. 11 a)+b). So the field has been
esti mat ed havi ng a maxi mrum 80 kV/ cmnear the edges at the surface
of the noving magnet. This seens to coincide wth the
observations of Godin&Roschin [72, 73]. They observed a
| um nescence and therefore a ionisation of the air near the
surface of noving mgnets. However, the prediction of
el ectrodynamcs is contrary to the other reported clains |ike the
sel f-acceleration and the weight |oss of the setup at higher
angul ar velocities. Electrodynam cs predicts a braki ng dowmn due
to the Lenz-rule. Any currents generated by the E-field | eads to
braki ng and di ssipation as well. Wether electric cycles can be
built up with a gain hysteresis or not has to be proved

separately.
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