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ABSTRACT 
The general term is given for the Taylor series and asymptotic expansions of the line-absorption 

coefficient when both the Doppler effect and damping contribute to the line shape. The influence of the 
Doppler effect on the fractional absorption of a line as measured in the laboratory is calculated and com- 
pared with the usual expressions which assume a Lorentz line shape. The radiation transfer in a planetary 
atmosphere is calculated when both the Doppler effect and damping contribute to the line shape and 
when the change of half-width with height is taken into account. It is shown that for the earth’s atmos- 
phere the radiative transfer calculated from the Lorentz shape alone is not changed appreciably by the 
Doppler effect for either weak or strong lines at heights up to at least 50 km, even at altitudes where 
the Doppler width is somethat greater than the Lorentz width. 

INTRODUCTION 

When both the Doppler effect and Lorentz collision damping contribute to the line 
width, a knowledge of the line-absorption coefficient is needed for problems in such di- 
verse fields as stellar radiation, laboratory absorption measurement, and atmospheric 
radiation transfer. As is well known, the expression for the line-absorption coefficient is1 

k (v, a) 
kQa rœ exp ( — x2) , 
Ar“ aS+(co-*)¿ dX (1) 

k0 

7T1/2 ax — cos o)xdx , 
4/ 

(2) 

whereto = (S/AvD) (In 2/7r)1/2;# = (a/AvD) (ln2)1/2;a> = (v — vp/AvD) (ln2)1/2;Æisthe 
absorption coefficient at the frequency 5 is the total intensity of the line; Avd is half 
the Doppler width at half-maximum ; and a is half the Lorentz plus natural width at half- 
maximum. 

The line-absorption coefficient given by equation ( 1) has been tabulated by a number 
of authors, including Mitchell and Zemansky,1 Hjerting,2 and Harris.3 Here this work is 
extended to give the general tèrm of the expansion of ¿(y, a) in a Taylor series in powers 
of a and also in an asymptotic expansion in inverse powers of — vp. 

In the second section we discuss the measurement of the fractional absorption from a 
beam of radiation in the laboratory when the Doppler effect makes an appreciable con- 
tribution to the line width. These results reduce in certain limiting cases to the well- 
known results of Ladenburg and Reiche4 for the fractional absorption of a single line 
having the Lorentz shape. 

The pressures and temperatures of a planetary atmosphere are such that both the 
Lorentz and the Doppler effects contribute to the line broadening. It was shown by 
Strong and Plass5 that an isothermal atmosphere composed of radiating gases which have 

* This work was supported by the ONR. 
1 Mitchell and Zemansky, Resonance Radiation and Eoccited Atoms (Cambridge: At the University 

Press, 1934), pp. 101 and 320. 
2 Ap. /., 88, 508, 1938. 4 Ann. d. Phys., 42, 181, 1911. 
3 Ap. /., 108, 112, 1948. *Ap. /., 112, 365, 1950. 
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226 GILBERT N. PLASS AND DANIEL I. FIVEL 

Lorentz-broadened lines can emit very much more radiation from the lower layers than 
would be calculated from a model using a gray absorption coefficient. The radiation 
escaping to space from the lower layers of the atmosphere comes predominantly from the 
wings of the pressure-broadened lines, for, as the lines in the upper atmospheric layers 
are considerably narrower, they do not effectively absorb the radiation from the wings 
of the lines in the lower layers. The model of Strong and Plass assumed an isothermal 
atmosphere with a radiating gas having a constant fractional concentration. The absorp- 
tion lines of this gas were assumed to have the Lorentz line shape and not to overlap 
appreciably at the atmospheric pressures considered. This model has been extended 
to include cases where the atmosphere is nonisothermal,6 where the collision-broadened 
line shape is asymmetrical at frequencies far from the line center,7, ^ 9 where the lines 
of the band overlap appreciably,9*10,11,12 and where the fractional concentration of the 
radiating gas varies with height.6, 9’10 

Although the above-mentioned calculations determine the radiation balance in the 
atmosphere from ground level to the middle stratosphere, they cannot be applied at 
higher altitudes without further consideration, since the collision-broadened line shape 
has been assumed. At higher altitudes the Doppler effect contributes appreciably to the 
half-width. The radiation balance under these conditions is examined in the last part of 
this paper. 

LINE-ABSORPTION COEEEICIENT 

The line-absorption coefficient can be evaluated as a power series in the parameter a 
if we expand the Reiche form of the integral as given by equation (2) in a Taylor series 
in a: 

k(-v’ 
n=0 

(— 1)»2w+1aw 

nl 

oo 
xn exp ( — x2) cos 2uxdx . (3) 

First we evaluate the integrals that occur in equation (3) for even integral values of n. 
We note that the Hermite polynomial of the wth degree, Hn{x), is defined as 

dn 

Hn O) = ( - l)w exp (*2)-^exP ( “ *2) • (4) 

Let 
r 00 

^4 (o>) = / exp ( — x2) cos lojxdx = ^tt1/2 exp ( — co2). 
J n 

rs) 

Differentiating this equation n times, where n is an even integer, we obtain 

A (CO) = (- 
du> 

& oo 
- A = ( — l)n/22nJ xn exp ( — x2) cos 2o)xdx 

= è7rl/2^expi_cj2)- 

(6) 

If we combine this expression with the definition of the Hermite polynomial, the nth 

6 J. I. King, J. Meteorol., 9, 311, 1952. 
7 G. N. Plass and D. Warner, Phys. Rev., 86, 138, 1952. 
8 G. N. Plass and D. Warner, J. Meteorol., 9, 333, 1952. 
9 G. N. Plass, J. Opt. Soc., 42, 677, 1952. 
10 G. N. Plass, J. Meteorol. (in press). 
11 L. D. Kaplan, J. Meteorol., 9, 1, 139, 1952. 
12 J. I. King, Transfer Theory for Purely Pressure-broadened Band Spectra (A.F.C.R.C. Kept. No. 5 

[Salt Lake City: University of Utah, 1952]). 
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RADIATION TRANSFER 227 

term in the summation of equation (3) for even n is found to be 

k^an (n\) -1 exp ( — a?2) Hn (a>) cos \mr . 

The odd terms in the summation can be evaluated in a similar manner in terms of the 
function F(co) defined by the equation13 

/CO fix} 
exp ( — x2) sin = exp ( — co2) / exp (æ2) d# . (7) 

Now the nth derivative where n is an odd integer is 

F(w) (co) = ( — 1) (1/2)(W~1)2W f xn exp ( — x2) cos 2o)xdx . (8) 
J0 

Thus the nth term in the summation of equation (3) for odd n is found to be 

— k0a
n (nl) _1 FW (co) sin Jwtt . 

TT1/2 

The line-absorption coefficient can now be written as the sum of Hermite polynomials 
and derivatives of F(co) in the form 

This result agrees with the first five terms of the expansion as given by Harris.3 However, 
the general term of the expansion is given here, and this result is used later. 

It is interesting to note that the even terms in equation (9) can be summed exactly. 
The generating function of the Hermite polynomials is 

cxi 
exp [ — (/ — co)2] = exp ( — co2) (n\) ~1Hn (co) tn . (io) 

n—0 

In equation (10) replace t by it and add to this equation (10) with t replaced by — it. 
The resulting sum is the same as the sum over even n in equation (9), so that 

k (y, a) = k0 I exp (a2 — co2) cos 2coa (co) an sin . UD 

A similar procedure may be performed on the summation over odd n, but it does not lead 
to elementary functions. Equation (11) approaches the Doppler line shape as a ap- 
proaches zero, as, of course, it should. 

We shall also require the asymptotic expansion of ¿(y, a) in inverse powers of co. This 
can be obtainèd from an integral evaluated by Stokes:14 

1/2 4 M 
- t2) dt = exp O2) - 

m^l 

(- l)™(2m- 1) ! 
22m (m — \)\ v2m+1 * 

(12) 

The substitution v = —io: changes this integral into —iF(co). Taking the nth derivative 
13 See, e.g., Mitchell and Zemansky, op. tit., p. 321. 
14 E. T. Whittaker and G. N. Watson, Modern Analysis (4th ed.; Cambridge: At the University Press, 

1940), p. 152. 
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228 GILBERT N. PLASS AND DANIEL I. FIVEL 

and evaluating the derivatives of the exponential in the same manner as described be- 
tween equations (10) and (11), we obtain 

k (v, a) = &o j (cos 2o>a + sin 2caa) exp (a2 — co2) 

1 (2 w + w) ! sin ( Jwtt) (13) 

22ww!w!a;2m'Hi+1 ) * 

If I ï' — î'o I a and | ^ — vq\ then the exponential term can be neglected, so that 

The first three terms of equation (14) agree with those given by Harris.3 

LABORATORY ABSORPTION 

As an example of the application of these expressions for the line-absorption coef- 
ficient, the absorption measured in the laboratory over a finite frequency interval is cal- 
culated when the Doppler effect contributes to the width of the line. The assumption will 
be made that the lines in the band do not overlap to an appreciable extent at the pres- 
sures used in the experiment. This is usually the case under the conditions when the 
Doppler effect makes a.contribution to the absorption. If the lines do not overlap appre- 
ciably, the total absorption from the lines in a band in a certain frequency interval is 
merely the sum of the absorptions from each of the individual lines. 

For a single line the fractional absorption, A, is defined15 as 

/oo * 
[ 1 — exp ( — kw) ] dv , (is) 

.00 

where Ay is the frequency interval in which the absorption is measured and w is the 
optical thickness of the absorbing gas. The limits of integration are extended to infinity 
for convenience, since the interval Ay is chosen sufficiently large so that the absorption 
from this particular line is negligible outside this interval. We consider the evaluation of 
the fractional absorption in three different cases. 

Case I—weak-line approximation.—A line is called a weak line when Æw <<C 1 at all 
frequencies, including the line center for a particular Optical thickness w. Then, by ex- 
pansion of equation (15) in powers of kw, we obtain 

P 00 
AAv^w I k(v, a) dv. (i6) 

J —CD 

If k(v, a) is replaced by its expression from equation (11), the definite integral from the 
first term gives 

AAv = Sw. (17) 

All the terms from the summation in equation (11) vanish after integration, since, for 
large o?, F(u) ^ (2aj)~1 and therefore F(n)(w = ± oo ) = 0. If there are N nonoverlapping 
lines in the interval Ay, then 

N 
^4Ay = Sy. (is) 

i=l , 
16 See, e.g., W. M. Elsässer, Heat Transfer by Infrared Radiation in the Atmosphere (Cambridge: 

Harvard University Press, 1942). 
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RADIATION TRANSFER 229 

Thus the fractional absorption varies linearly with w for a weak line, regardless of the 
value of ö, i.e., of the relative contributions of the Doppler effect or natural and collision 
damping to the half-width. This result states that the total line intensity always deter- 
mines the absorption from a weak line. 

Case II—Doppler width alone.—At sufficiently low pressures, when the half-width due 
to damping is very small compared to the Doppler half-width, the fractional absorption 
can be calculated by substituting the first term of equation (9) in equation (15). The re- 
sult has been given by Struve and Elvey.16 

Case III—strong-line approximation.—A line is called a strong line when almost all the 
incident radiation is absorbed at frequencies within the total half-width of the line center 
for a particular optical thickness w. Obviously, when the optical thickness is increased 
sufficiently, a weak line becomes a strong line. The fractional absorption for a strong line 
is obtained from equation (14), since it accurately represents the line-absorption co- 
efficient in the wings of the line. It is inaccurate only at frequencies inside the half-width, 
where both the approximate and exact expressions give the same virtually complete 
absorption. The result of the substitution of equation (14) in equation (15) is 

where 

(19) 

b= {*-a*)ß, c= (15-5^+^)/^ 
irAvp 

Saw In 2 * 

This integral can be evaluated by expanding the exp( —Z?/#4) and exp( — c/x&) into a 
power series. The resulting integrals are all well known. The fractional absorption is thus 
found to be 

AAv=2 (Na^)1/2} l+^+| c-fffc2 + . . . } . (20) 

The fractional absorption for a line that is sufficiently strong so that Z> <<C 1 and c <<C 1 is 
given by the familiar square-root law, AAv = 2(Saw)1/2, usually derived from the 
Lorentz line shape.4’15 If a )>> AvD, the square-root law results when Sw a, from the 
definitions of b, c> and ß in equation (19). On the other hand, if AvD » a, the square-root 
law still results if Saw^ Avb- In other cases the fractional absorption due to both 
Doppler and Lorentz widths can be calculated from equation (20). It is interesting to 
note that even when AvD^> a the main contribution to the absorption for a strong line 
comes from the wings of the Lorentz line shape and not from the Doppler shape, since 
the latter falls off exponentially from the line center. 

ATMOSPHERIC RADIATION TRANSPER 

In the calculation of radiation transfer in the atmosphere, the information usually 
desired is the amount of radiation transferred over a frequency interval large compared 
to the half-width of a particular line, rather than the amount transferred at a single par- 
ticular frequency. It is well known5,6’ 8'9> 10,11 that the transfer of radiation between any 
two atmospheric layers, between the ground and an atmospheric layer, and between an 
atmospheric layer and space can be calculated if the transmission function, t(u0, Ui), is 
known, where 

r (-w0j ^i) =exp ] — sec 6 f k (v, u, a) dur , (21) 

6 being the angle included between the beam and the vertical. The optical thickness in 
16 O. Struve and C. T. Elvey, Ap. 79,409, 1934. The result for strong lines is their equation (6) and 

for weak lines is equation (5). In the latter equation the first factor 2 is incorrect and should be omitted. 
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230 GILBERT N. PLASS AND DANIEL I. FIVEL 

the atmosphere, u, is defined as 

u — 
/oo n co 

cpdz = j prdz , (22) 

where z is the vertical distance and the fractional concentration, c, is the ratio of the 
density of the radiating gas, pr, to the total density, p. It should be noted that the optical 
thickness defined here decreases with height and is zero at the top of the atmosphere. 

Consider the solution of Schwarzschild’s equation for the intensity, /, of a beam di- 
rected upward at an angle 6 to the vertical, at the height where the optical thickness has 
the value u0 

I Oo) = Io Ol) T Oo> ^i) + sec 0 Z' ^ (v, u, a) Ib (u) r Oo> du , (23) 
Juo 

where 7oOi) is the incident intensity at the level U\ and /& is the black-body intensity, 
which is a function of u if the temperature varies with height. From equation (23) and a 
similar equation for radiation directed downward, expressions can be derived for the 
solution of any problem involving radiation exchange. Since all these expressions can be 
written in terms of the transmission function, rOo, ^i), a knowledge of this function 
enables one to calculate the answer to any atmospheric radiation-transfer problem. 

Here we calculate the contribution of the Doppler effect to the atmospheric radiation 
exchange. The Doppler width makes an appreciable contribution to the total line width 
for the absorbing bands in the atmosphere only at heights greater than 20 km. The over- 
lapping of the lines in the band can be neglected for almost all lines at heights greater 
than 20 km because of the very low pressures. Therefore, we calculate the transmission 
function only for a single line. The contribution from the entire band is the sum of the 
contributions from each line when the lines do not overlap appreciably. In order to 
simplify the following calculations, we also assume that the atmosphere is isothermal. 
Since the Doppler width varies as the square root of the temperature, the width is only 
about 30 per cent greater at the temperature maximum near 60 km than it is at the tem- 
perature minimum in the stratosphere. The results below show that the atmospheric 
transmission in many cases would be very insensitive to a change of the Doppler width 
of this order of magnitude. 

The integrated absorption for a line, A, defined by 

oo 
A(Uq,Ui) = j [l — T (Uq, Ui)} dv , (24) 

will be calculated for each of three cases. As discussed above, the radiation exchange over 
a frequency range large compared to the half-width can be calculated, once the integrated 
absorption, A, is known. As an example of the usefulness of A, the radiation loss to space, 
dR, into a solid angle dQ, at an angle 0 to the vertical from an atmospheric layer between 
uq and u\ is calculated under the assumptions of constant temperature with height and 
negligible overlapping of the absorption lines. Under these conditions, it has been shown 
that6,9 

dR — Ib cos 0 [A (0, ui) — A (0, uQ) ] dQ . (25) 

According to kinetic theory, the Lorentz half-width is proportional to the total pres- 
sure, provided that the partial pressure of the absorbing gas is small compared to the 
total pressure. This condition is satisfied for all the absorbing gases in the earth’s at- 
mosphere. Therefore, the half-width, 

‘-(j)*- 
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RADIATION TRANSFER 231 

where a8 is the half-width at the standard pressure p8. A slightly more complicated equa- 
tion applies if the absorbing gas is a major constituent of the atmosphere. The natural 
breadth is negligible for planetary atmospheres. 

The dimensionless constant, 7, introduced by Strong and Plass17 is defined by 

Scps 
2ira8g ' 

(27) 

When the Doppler width is negligible, the strong or weak-line approximation applies 
when 7 is much greater or less than unity, respectively.5 

Case I—weak-line approximation.—It will be assumed that the argument of the ex- 
ponential in equation (21) is less than 1, even at the line center. In this case the ex- 
ponential may be expanded, the order of integration reversed, and k replaced by the 
expression from equation (11). Then by an integration similar to that described in the 
section on laboratory absorption (case I), the result is obtained that 

A Ui) = S (u-i — u0) sec 6 . (28) 

This result is valid even if the temperature varies with height (provided that S does not 
change appreciably over this temperature range) and even if the fractional concentration 
of the absorbing gas, c, varies with height. 

If equation (28) is substituted in equation (25) and the result integrated over the 
hemisphere, the radiation loss to space from the layer between u0 and Ui for an isothermal 
atmosphere with constant c is found to be 

R = IfbS (ui — u0) = 47r/&7 (ai — a0) , (29) 

where /& is the black-body flux,/& = irlb- Thus the radiation loss is the same as though 
there were only Lorentz and no Doppler broadening. 

Case II—Doppler width alone.—The result of the substitution of the first term of 
equation (9) in equation (24) is 

A (w05 u\) — 2Ai'jD(ln 2) 1/2 f J A 
1 — exp [ — &o (% “ ui) sec 6 exp ( — co2) ] } dco . O0) 

This integral is similar in form to the one considered by Struve and Elvey.16 By the use 
of this result, we find, for weak lines, 

A (w0> ^1) = S (uQ — Ui) sec 
(- l)w[¿o (^0-^1) sec B]n 

(n+DHn+l)'/* 

and, for strong lines, 

(31) 

A (uQ, Ui) 
2Avd 

(In 2)1/2 {In [&o (^0 — ^i) sec 6] 

X 
 c  
2 In [&o (^o “ Ui) sec 8 

(32) 

where C is Euler’s constant. The radiation loss to space into the solid angle dü can be 
obtained immediately from equation (25). The total radiation loss to space can be ob- 
tained by integrating equation (32) over the hemisphere. The radiation exchange be- 
tween the highest layers of a planetary atmosphere can be calculated from these expres- 
sions for the integrated absorption. 

Case III—strong-line approximation.—The majority of radiation is transferred by the 
17 The constant, 7, defined here differs by a factor cos 6 from the constant used by Strong and Plass, 

op. cit. 
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232 GILBERT N. PLASS AND DANIEL I. FIVEL 

strong lines of the radiating gases in the atmosphere.6’6 In order to calculate the influence 
of the Doppler effect on this radiation transfer when the change of the Lorentz half-width 
is taken into account, we substitute equation (14) in equation (21). With the help of 
equations (26) and (27) and after an elementary integration, the result is obtained that 

where 

T (Wqj Ui) 
/ cos 6 

X' 
g cos2 6 

X* 

X2 (v-vo)2 

7 sec 6 (a2 — a2)2 ’ 

(33) 

1 f 3Av£> ai-|-ao”] 
7 (a*-apt 2 In 2 2 J ’ 

_ 1 Í ISA^d 5 (al+ ao) Av2
D ai+aiao+ftol 

?~72(a2-a2
0)
2L4(ln 2)2 TkTl 1 3 J’ 

a0 and ai being the Lorentz half-widths at the heights where the optical thicknesses are 
uo and Ui, respectively. 

In this case the integrated absorption, A, from equation (24) is 

A (UQ, uj = 27^2 (a2 _ a2) 1/2 sec1^ Q Í [1 — r U^} dx . (34) 

Substituting for r from equation (33), the resulting integral has the identical form of 
equation (19). From the previous evaluation of this integral as given by equation (20), 
the result in the present case can be immediately written as 

A Wi) = 27T1/27l/2 (0,2 ft2) l/2 scc1^ Q [l + \f cos 0+§g cos2 6 
(35) 

— èf cos2 ^ — ^ ^ cos3 Q ~ fff ^2 cos4 ^ 

The radiation loss from an atmospheric layer to space in the solid angle dti is obtained 
by the substitution of this expression in equation (25). The total radiation loss from the 
top of the atmosphere down to the level u = uh obtained by integrating this expression 
over the hemisphere, is 

Æ [ 1+ ;&/„ +sk g0 
45 f2   3_5 f ç _ 2835 t 
224-^0 8 ^Oöq 1408 °0 ‘ * ' * (36) 

where /0 and go are the values of / and g when a0 = 0. Similarly, the radiation exchange 
between any two layers can be calculated from equation (35). 

The terms outside the brackets in equations (35) and (36) are identical with the ex- 
pressions for the radiation loss from a strong Lorentz-broadened line as derived by Strong 
and Plass.5 This term is obtained for the Lorentz line shape if the line absorption at large 
distances from the line center is assumed to vary as (^ — i^)-2. The terms inside the 
brackets of equations (35) and (36) represent the change in the radiation loss due to the 
fact that the actual line shape does not vary as (^ — v0)~

2 as the line center is ap- 
proached. Again these terms agree with the result of Strong and Plass5 when the Doppler 
width is zero. 

The additional terms in equations (35) and (36) show clearly when the radiation loss 
is different from the loss calculated by the use of the Lorentz line shape alone. The radia- 
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RADIATION TRANSFER 233 

tion loss is clearly unchanged from the Lorentz result when/o <<C 1 and g0 L For these 
inequalities to be satisfied, it follows from the definitions of these quantities that it is 
sufficient that (Afy/al) <<C y and 7^>> 1. The major part of the atmospheric radiation 
is transferred by the very strong lines in the atmospheric bands. There are many lines in 
our atmosphere with y > 100. For these most important lines, the Doppler width can 
become somewhat larger than the Loren tz width and still satisfy the above inequality. 
Therefore, we conclude that, for the very strong atmospheric lines (y > 100), the radiative 
transfer is the same as would be calculated from the Lorentz shape alone for heights up to 
50 km. The physical reason for this fact is that only the radiation transfer in the far wings 
is important for a very strong line. However, in the far wings the line shape is accurately 
represented by the Lorentz equation, even when the Doppler width is larger than the 
Lorentz width, since the Doppler line shape‘falls off exponentially. The results of case I 
show that, for a weak line, the integrated absorption and radiation loss are the same, regard- 
less of the relative contributions of the Lorentz and Doppler widths to the total width. The 
physical reason for this result is that the total emission of a weak line determines the 
radiation loss, since the absorption by higher layers is very small. 

The above results make possible an enormous simplification in the radiation calcula- 
tions near the temperature maximum in the stratosphere (60 km). For a very strong line, 
the radiation is not influenced to any appreciable extent by the Doppler width. Thus the 
change in the Doppler width with temperature need not be taken into account. Similarly 
for the weak lines, the relative contributions of the Doppler and Lorentz widths to the 
total width need not concern us. It is only for the lines of intermediate strength at alti- 
tudes less than 50 km that the Doppler effect alters the radiative transfer calculated from 
the Lorentz shape alone. 

In calculating the radiation transfer from an atmospheric band, the band is usually 
divided into several frequency intervals, each sufficiently large that it contains a number 
of individual lines. For the intervals at or near the center of the band, either the lines are 
all very strong lines, or the very strong lines completely dominate the weak lines in the 
radiation transferred. For such intervals the conclusions drawn above for very strong 
lines are valid. For the intervals near the edge of the band, all the lines usually satisfy the 
weak-line criterion. It is only intervals between the edge and center of the band that 
usually contain lines of intermediate strength and for which more elaborate calculations 
are necessary. However, since the frequency intervals may be chosen as large as desired, 
provided that the black-body intensity is approximately constant in the interval, it is 
usually possible to choose the intervals so that the majority of the lines in a given interval 
satisfy either the strong- or the weak-line criterion. When it is possible to divide the band 
into frequency intervals in this manner, the contribution of the Doppler effect to radia- 
tive transfer can be neglected for heights up to at least 50 km. 
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