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Abstract 
 

For 𝑠 ≠ 𝜈, 𝜈 ∈ Z, Riemann‘s meromorphic Zeta function 
 

ξ∗(s) ≔
1

2
Γ (

s

2
) π−

s

2ζ(s) = ∫ ψ(x2)[xs + x1−s]
dx

x

∞

1
−

1

2

1

s(1−s)
= ξ∗(1 − s)  

 

is represented in the form 
 

                          ξ∗(s) =
ζ(s) sin(

π

2
(1−s))+ζ(1−s) sin(

π

2
s)

sin(πs)
+

1

π
∑ (−1)n [

ζ(2n)

2n−s
+

ζ(2n)

(2n−1)+s
]∞

n=0 − 2 ∑ b2n(s −
1

2
)2n∞

n=0   
 

 

with 
 

b2n ≔ ∫ Φ(x) [∑
log2n(x)

(2n)!
∞
n=0 ]

dx

√x

∞

1
   and   Φ(x): = ∑ (e−2πnx − e−πn2x2

)∞
n=1  . 

 

The non-trivial zeros {𝑠𝑛 =
1

2
+ itn} of the Zeta function are characterized by the identity of two convergent 

series representations in the form 
 

∑ (−1)nb2ntn
2n∞

n=0 =
1

2π
∑ (−1)nζ(2n) [

4n−1

(2n−
1

2
)2+tn

2
]∞

n=0  , 

 

which do not allow negative values tn
2n < 0. In the critical stripe the corresponding alternative entire Zeta 

function ξ∗∗(s): = sin(πs) ξ∗(s) can be represented as a Mellin transform of a Kummer function 

(accompanied by the product representation 𝐹1
⬚

1 (
1

2
,

3

2
, 𝑧) =

√π

2
𝑒

𝑧

3 ∏(1 −
𝑧

𝑧𝑛
)𝑒𝑧/𝑧𝑛) with only complex 

valued zeros with Re(𝑧𝑛) > 1/2 and imaginary parts lying in the horizontal stripes (2n − 1)π < |Im(𝑧𝑛)| <
2πn, n ∈ N) in the form 
 

ξ̅(s) ≔
2

π

ξ∗∗(s)

𝑠(1−𝑠)

πs

sin(πs)
= π−

s

2
Γ(

s

2
)

1−𝑠
ζ(s) = ζ(s)M [ F1

⬚
1 (

1

2
;

3

2
, −πx)] (

𝑠

2
) ,  0 < Re(s) < 1 , 

 

i.e., the representation is in line with the concept of „a self-adjoint operator with transform 𝜉̅(𝑠)“, as 
provided in (EdH) 10.3, (*). 

 
 
 

 
 
 

(*) The concept is also in line with the proposed Kummer function based Zeta function theory and a related alternatively 
proposed two-semicircle method to the Hardy-Littewood (major/minor arcs based) circle method in (BrK).  
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1. Notations and Main Theorem 
 
For the notations we refer to (EdH). The baseline function for the Zeta function theory is 

given by ψ(x): = ∑ e−πn2x∞
n=1 , (EdH) 1.7. It is related to Jacobi‘s functional equation of the 

theta function 𝜗 enabling the symmetrical form of Riemann’s functional equation in the 
form, (EdH) 1.7, 
 

ξ∗(s) ≔
1

2
Γ (

s

2
) π−

s

2ζ(s) = ∫ ψ(x2)[xs + x1−s]
dx

x

∞

1
−

1

2

1

s(1−s)
= ξ∗(1 − s) . 

 

Riemann’s related entire Zeta function is given by ξ(s) =
s

2
(s − 1)Γ (

s

2
) π−

s

2ζ(s), (EdH) 1.8. 

Alternatively to ψ(x) we shall apply the function 
 

Φ(x): = φ(x) − ψ(𝑥2): = ∑ Φ𝑛(𝑥)∞
n=1 ≔ ∑ (e−2πnx − e−πn2x2

)∞
n=1  , 𝑥 ≥ 1 (*). 

 

The main result of our paper is an alternative ξ∗(s) −function representation with three 
𝑠 ↔ (1 − s) symmetric summands in the form 
 

ξ∗(s) =
ζ(s) sin(

π

2
(1−s))+ζ(1−s) sin(

π

2
s)

sin(πs)
+

1

π
∑ (−1)n [

ζ(2n)

2n−s
+

ζ(2n)

(2n−1)+s
]∞

n=0 − 2 ∑ b2n(s −
1

2
)2n∞

n=0 . 

 

A corresponding alternatively defined entire Zeta function ξ∗∗(s) is built by multiplication of 

ξ∗(s) with sin(πs) leading to ξ∗∗(s): = sin(πs) ξ∗(s) =
1

2
Γ (

s

2
) π−

s

2 sin(πs) ζ(s), resp. 

 

ξ̅(s) ≔
2

π

ξ∗∗(s)

𝑠(1−𝑠)

πs

sin(πs)
= π−

s

2
Γ(

s

2
)

1−𝑠
ζ(s) , 

 
which (in the critical stripe) can be representated as a Mellin transform in the form 
 

ξ̅(s) = ζ(s)M [ F1
⬚

1 (
1

2
;

3

2
, −πx)] (

𝑠

2
) (**) (***). 

 

(*) Note:  Φ𝑛(𝑥) ≥ 0  for 𝑛 ≥ 2, 𝑥 ≥ 1;  Φ1(𝑥) < 0 for 1 ≤ 𝑥 < 2;   Φ1(2) = 0 ;  Φ1(𝑥) > 0 for 𝑥 > 2. Putting Φ1,2
∗ (𝑥) ≔ −Φ1(𝑥), 

Φ0,1
∗ (𝑥) ≔ −Φ1 (

1

𝑥
), for 1 ≤ 𝑥 < 2, Φ1,2

∗ (𝑥) = Φ0,1
∗ (𝑥) = 0 for 𝑥 ≥ 2, Φ2,∞

∗ (𝑥) ≔ Φ(x) for 𝑥 ≥ 2, Φ2,∞
∗ (𝑥) = 0 for 𝑥 < 2, the three terms 

of the sum Φ0,1
∗ (𝑥) + Φ1,2

∗ (𝑥) + Φ2,∞
∗ (𝑥) > 0 have the disjunct domains 0 < 𝑥 < 1, 1 ≤ 𝑥 < 2, 2 ≤ 𝑥 < ∞ 

 

(**) In the critical stripe the term 
Γ(

s

2
)

1−𝑠
 is the Mellin transform of the Kummer function F1

⬚
1 (

1

2
;

3

2
, −x); the zeros 𝑠𝜈, 𝜈 ∈ 𝑍 − {0}, of the 

function 𝐹1
⬚

1 (
1

2
,

3

2
, 𝑧) are all simple, complex valued with Re(z)>1/2, and lie in the horizontal stripes (2𝑛 − 1)𝜋 < |𝐼𝑚(𝑧)| < 2𝜋𝑛, 𝑛 ∈ 𝑁, 

(SeA); we note that the latter property is strongly related to the Digamma function, (BrK). The related product representation is given by 

𝐹1
⬚

1 (
1

2
,

3

2
, 𝑧) =

√π

2
𝑒

𝑧

3 ∏(1 −
𝑧

𝑧𝑛
)𝑒𝑧/𝑧𝑛, (BuH) p.184; regarding Riemann’s method deriving the formula for J(x), EdH) 1.13, we note the series 

representation  ln (sin(πx) = ln (πx) + ∑
(−1)n

2n

(2π)2n

(2n)!
B2nx2n∞

n=1 , x2 < 1, (GrI) 1.518 
 

(***) see also (EdH) 10.3 „A self-adjoint operator with transform 𝜉(𝑠)“, and (10.5) „
2ξ(s)

s(s−1)
 as a transform“. The connection between ζ(s) and 

primes is given by Riemann’s formula for J(x) =
1

2𝜋𝑖
∫ logζ(s)𝑥𝑠 𝑑𝑠

𝑠

𝑎+𝑖∞

𝑎−𝑖∞
, (𝑎 > 1). The term log(s − 1) results into the 𝑙𝑖1(𝑥) − function 

𝑙𝑖1(𝑥): = 𝑙𝑖𝑚
𝜀→0

∫
𝑑𝑡

𝑙𝑜𝑔 𝑡

1−𝜀

0
+ ∫

𝑑𝑡

𝑙𝑜𝑔 𝑡

𝑥

1+𝜀
=

1

2𝜋𝑖

1

𝑙𝑜𝑔 𝑥
∫

𝑑

𝑑𝑠
[

𝑙𝑜𝑔(𝑠−1)

𝑠
]

𝑎+𝑖∞

𝑎−𝑖∞
𝑥𝑠𝑑𝑠  (𝑎 > 1), (EdH) 1.14. Riemann built his famous power series 

representation of his entire Zeta function  ξ(s): = π−
s

2
s

2
Γ (

s

2
) (s − 1)ζ(s) by multiplication of  ξ∗(s) = ∫ ψ(x2)[xs + x1−s]

dx

x

∞

1
−

1

2

1

s(1−s)
 

with s(s − 1) to govern the two poles of the term  −
1

2

1

s(1−s)
. Then, by partial integration he derived the representation of ξ(s) in the form 

ξ(s) = ∑ a2n(s −
1

2
)2n∞

n=0   where    a2n ≔ 4 ∫
𝑑[𝑥

3
2ψ′(𝑥)]

𝑑𝑥
𝑥−1/4 (

1

2
𝑙𝑜𝑔𝑥)2𝑛

(2𝑛)!
𝑑𝑥

∞

1
. He claimed that the series as an even function of s −

1

2
 

„converges very rapidly“ without giving explicit estimates. …. Hadamard proved that the rapid decrease of the coefficients a2n is neccessary 

and sufficient for the validity of the product formula ξ(s) = ξ(0) ∏ ∏ (1 −
𝑠

𝜌𝜌 )∞
n=1 , (EdH) 1.8. 
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Main Theorem: For s ≠ 𝜈, 𝜈 ∈ Z, it holds 
 

ξ∗(s) =
ζ(s) sin(

π

2
(1−s))+ζ(1−s) sin(

π

2
s)

sin(πs)
+

1

π
∑ (−1)n [

ζ(2n)

2n−s
+

ζ(2n)

(2n−1)+s
]∞

n=0 − 2 ∑ b2n(s −
1

2
)2n∞

n=0   

 
with 

b2n ≔ ∫ Φ(x) [∑
log2n(x)

(2n)!
∞
n=0 ]

dx

√x

∞

1
 . 

 
 
In proving the Main Theorem the essential step (which is proven in the next section) is  
 
Lemma MT: For s ≠ 𝜈, 𝜈 ∈ Z, it holds 
 

−
1

2

1

s(1−s)
=

1

2
[

ζ(s)

sin(
π

2
s)

+
ζ(1−s)

cos(
π

2
s)

] +
1

π
∑ (−1)n [

ζ(2n)

2n−s
+

ζ(2n)

(2n−1)+s
]∞

n=0 − ∫ [xs + x1−s]
1

2

e−πx

sinh(πx)

dx

x

∞

1
.  

 
 
 

Corollary: The set of non-trivial zeros {sn =
1

2
+ itn} of the zeta function are characterized by 

the identity of two convergent series representations 
 

∑ b2n(sn −
1

2
)2n∞

n=0 =
1

2π
∑ (−1)n [

ζ(2n)

2n−zn
+

ζ(2n)

(2n−1)+sn
]∞

n=0   

resp. 

∑ (−1)nb2ntn
2n∞

n=0 =
1

2π
∑ (−1)nζ(2n) [

4n−1

(2n−
1

2
)2+tn

2
]∞

n=0  . 

 
 

Remark: In case of existing negative values tn
2n < 0 the two series would be no longer 

alternating, and, while the affected term on the left side changes its sign, the term on the 
corresponding right side would not. 
 
 

Proof of the Main Theorem:  
 

With ξ∗(s) = ∫ ψ(x2)[xs + x1−s]
dx

x

∞

1
−

1

2

1

s(1−s)
  and Φ(x) = φ(x) − ψ(x2) one gets 

 

ξ∗(s) = − ∫ Φ(x)[xs + x1−s]
dx

x

∞

1
+

1

2
[

ζ(s)

sin(
π

2
s)

+
ζ(1−s)

cos(
π

2
s)

] +
1

π
∑ (−1)n [

ζ(2n)

2n−s
+

ζ(2n)

(2n−1)+s
]∞

n=0  . 

  
Analogue to Riemann’s approach deriving his famous power series representation for ξ(s), 

(EdH) 1.8 (*), with b2n ≔ ∫ Φ(x) [∑
log2n(x)

(2n)!
∞
n=0 ]

dx

√x

∞

1
   the first term allows the power series 

representation in the form 
 

− ∫ Φ(x)[xs + x1−s]
dx

x

∞

1
= −2 ∑ b2n(s −

1

2
)2n∞

n=0  . 

 
 

(*)    [xs + x1−s] = 2√x [cosh (s −
1

2
) logx] and cosh (y) = ∑

y2n

(2n)!

∞
n=0  with y: = (s −

1

2
) logx . 
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2. Proof of the Lemma MT 
 
With 
 

φ(x) =
1

2

e−πx

sinh(πx)
=

1

e2πx−1
= ∑ e−2πnx∞

n=1 , x > 1 , (*) 

 

the Lemma MT takes the form 
 
Lemma MT: For s ≠ 𝜈, 𝜈 ∈ Z, it holds 
 

−
1

2

1

s(1−s)
= − ∫ [xs + x1−s]φ(x)

∞

1
+

1

2
[

ζ(s)

sin(
π

2
s)

+
ζ(1−s)

cos(
π

2
s)

] +
1

π
∑ (−1)n [

ζ(2n)

2n−s
+

ζ(2n)

(2n−1)+s
]∞

n=0 .  

 
Proof:  
 

As 
1

s−1
+

1

−s
=

1

s(s−1)
  the Lemma MT is a consequence of the integral and series 

representations as provided in (MiM) in section 4 (**): 
 

      
ζ(s)

sin(
π

2
s)

=
1

s−1
−

2

π
∑ (−1)n ζ(2n)

2n−s
+ ∫ x1−s e−πx

sinh(πx)

dx

x

∞

1
∞
n=0   

 
ζ(1−s)

sin(
π

2
(1−s))

=
1

−s
−

2

π
∑ (−1)n ζ(2n)

(2n−1)+s
∞
n=0 + ∫ xs e−πx

sinh(πx)

dx

x

∞

1
 . 

 
 
 
 
 

 
 
 
 
 
 
 
 
(*)  ∫ 𝑥2𝑚𝜑(𝑥)

𝑑𝑥

𝑥

∞

1
=

|𝐵2𝑚|

2𝑚
 , (GrI) 3.552 

 

Lemma, (PoG) p. 65: let f(𝑡) > 0, 𝑓′(𝑡) < 0, 𝑓′′(𝑡) < 0 for 0 ≤ 𝑡 ≤ 1, then the even function 𝐹(𝑧) = ∫ 𝑓(𝑡)cos (𝑧𝑡)𝑑𝑡
1

0
 has infinite many, 

only real zeros 

 
(**) (MiM):              Special cases, 4.1 The case 𝑐 = 0 

 
For the special case 𝑐 = 0 the integral 
 

𝜁(𝑠) = −𝜋𝑠−1 𝑠𝑖𝑛 (
𝜋

2
𝑠)

𝑠−1
∫

𝑥1−𝑠

𝑠𝑖𝑛ℎ2(𝑥)
𝑑𝑥

∞

0
 ,           𝑅𝑒(𝑠) < 0   (MiM) (4.1) 

 

 can be broken into two parts 𝜁(𝑠) = 𝜁0(𝑠) + 𝜁1(𝑠) where 
 

𝜁1(𝑠) =
𝑠𝑖𝑛 (

𝜋

2
𝑠)

𝑠−1
+ 𝑠𝑖𝑛 (

𝜋

2
𝑠) ∫ 𝑥1−𝑠 𝑒−𝜋𝑥

𝑠𝑖𝑛ℎ(𝜋𝑥)

𝑑𝑥

𝑥

∞

1
    (MiM) (4.6) 

  

𝜁0(𝑠) = −
2

𝜋
𝑠𝑖𝑛 (

𝜋

2
𝑠) ∑ (−1)𝑛 𝜁(2𝑛)

2𝑛−𝑠

∞
𝑛=0         (MiM) (4.8) 

 

which are both valid for all 𝑠.  
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