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1. Introduction. The original purpose of this research was to employ the

theory of semi-groups of operators to obtain a solution of the Cauchy prob-

lem for dissipative hyperbolic systems of partial differential equations with

time invariant coefficients and boundary conditions. Here the term "dis-

sipative" is used to emphasize the basic assumption imposed on the system,

namely, that the energy is nonincreasing in time. As the work progressed, it

became clear that the argument could be given an abstract formulation and

that the results on hyperbolic systems should be treated as an application of

the general theory of dissipative operators^-).

Definition 1.1. Let Ho be a hilbert space with inner product (y°, z°). A linear

operator L with domain 33 (L-) is said to be dissipative if

(1.1) (Lyo, y°) + (y<>, Ly°) £ 0, 3,° G 3)(L)

and to be maximal dissipative if it is not the proper restriction of any other dis-

sipative operator.

The connection between dissipative operators and dissipative hyperbolic

systems is almost immediately evident. In fact, the dissipative assumption

on the hyperbolic system suggests that a natural setting of the problem would

be a hilbert space Ho where ||;y0||2 = {y°, y°) is a measure of the energy of the

system at a given time. A semi-group solution to the Cauchy problem (see,

for instance, E. Hille and R. S. Phillips [7]) would then consist of a one-

parameter family of linear bounded operators  [S(f); £i£0] such that

(i) S(ti+t2)=S(ti)S(t2), h, t2>0, 5(0)=/;

(ii) S(t) is strongly continuous for t^O;

(iii)  ||5(f)3»°]| is nonincreasing in t for each y0(EH0.

Condition (i) is a consequence of the initial-value problem being well set,

(ii) results from the requirement lim(^0+ S(t)ya=y°, and (iii) is a restatement

of the dissipative assumption. Condition (iii) can also be expressed by saying

that the S(t) are contraction operators, that is, operators of norm gl. If Z,

Received by the editors April 19, 1957.

(!) This paper was written under the sponsorship of the Office of Naval Research, United

States Navy, contract Nonr 228 (09).

(2) Dissipative operators are playing an increasingly important role as research on nonself-

adjoint operators proceeds. Already, M. S. LivSic [9] and B. R. Mukminov [10] have obtained

a remarkable expansion theorem for bounded dissipative operators having real parts of finite

trace.
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is the infinitesimal generator, the differential system will be satisfied in the

sense that

d
— S(t)y° = L[S(l)y°],        for all y° <G 55(1,) and / > 0,
dt

the derivative being taken in the norm topology of Ho. It turns out that an

operator L is the infinitesimal generator of a strongly continuous semi-group of

contraction operators on Ho if and only if L is a maximal dissipative operator

with dense domain.

In searching for a maximal dissipative generator for our problem, one

can start out with either a minimal operator Po or a maximal operator Pi,

each representing the spatial part of the hyperbolic operator, and then deter-

mine the maximal dissipative extensions of Lo and restrictions of Pi. These

two procedures are duals of one another; the first can lead to operators which

are no longer merely differential operators, whereas the second can result in

differential operators whose domains need not be restricted by simple bound-

ary conditions, but rather by "global" lateral conditions reminiscent of the

lateral conditions found by W. Feller [5] in his treatise on parabolic partial

differential equations. The maximal dissipative operators which are differ-

ential operators and whose domains are delimited by the usual type of bound-

ary conditions are precisely those which are at the same time extensions of

Po and restrictions of Pi. Chapter I is primarily concerned with giving an

abstract characterization of all maximal dissipative operators L such that

PoCPCPi- In order to motivate our operator-theoretic development we

shall now describe the hyperbolic system to which this theory will be applied

in Chapter II.

Let A be a domain in the w-dimensional real euclidean space with points

X = (x\ X2> ' ' ' » Xm) and let y°(x, I) be a function of (x, t) with values in a

^-dimensional complex euclidean space. We consider the initial value problem

y] = Liy   = E\lLy\ + By)}, xGi.OO,

y°(x,o) =/°(x);

here we use the tensor notation for summation, the subscript i denoting

differentiation with respect to x;- The symbols E, A\ and B representkXk

matrix-valued functions of x alone, E being positive definite, and Ai being

hermitian, and the A1 and B together satisfying the "dissipative" condition

(1.3) B + B*+A<i^@, XGA,

where B* is the adjoint of B relative to the inner product

(1.4) (y°, z°) = vV-

We further assume that in each compact subset of A the elements of E are
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continuous, the elements of A{ are absolutely continuous with respect to xl>

and the elements of A\, and B are square integrable; no restriction is placed

on the growth properties of these functions near the boundary of A. It will be

convenient to set

D = E~\B + B* + At].

If y°(xi t) is a solution of the system (1.2), then at a given time the energy

of the associated physical model is given by

(1.5) Energy = - f (Ey", y»)dx.
2 J A

Using the energy as a measure we are thus lead to the hilbert space Ho

= L2(A; E) with inner product

(1.6) (y°, 2°)=   f (Ey°, z°)dx.
J A

After an integration by parts we obtain, at least formally, the following rela-

tion for the rate of change of energy from (1.2):

(y°, y°)t = (Liy°, y°) + (y°, Zr/>

=  \  (EDy°, y°)dx +  f (Ay, y^da,

where n = (n1, n2, ■ ■ ■ , nm) is the outward normal to the boundary V of A

(supposing, for the moment, that n exists). The volume integral on the right

is the rate at which energy enters the system from interior sources, whereas

the surface integral is the rate at which energy enters the system through the

boundary. Since we shall require (y°, y0),^0, in particular, for all smooth

initial functions vanishing outside of compact subsets of A, the condition

(1.3) follows and has the physical significance of requiring that there be no

internal energy sources.

Solutions to (1.2) whose boundary values satisfy the condition

(1.8) f (AY, y^do- = 0

will clearly be dissipative. These are the solutions which are commonly asso-

ciated with (1.2) and they are characterized by the fact that the correspond-

ing generators lie between the previously defined minimal operator Z0 and

maximal operator L\\ we shall call such solutions properly dissipative. On the

other hand there are dissipative solutions of (1.2) which do not satisfy (1.8).

For such solutions the energy entering through the boundary is offset by the

energy losses due to internal sinks, and the domain of the corresponding gen-
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erator is delimited by global lateral conditions, as previously mentioned(3).

Solutions of this kind are treated in the appendix to Chapter II.

In general, of course, the above boundary integral is not well defined.

However, in situations where it is well defined, one sees that

(1.9) f (A y, y^n'da = (Lry°, y°> + <y°, iry°) -  f (EDy», y°)dx.
J r J a

The relation (1.9) provides us with a method for defining the boundary inte-

gral whenever the terms on the right are meaningful and accordingly we take

(1.9) as the definition of the boundary integral for an arbitrary domain A. That

the so-defined relation is actually a boundary functional can be seen from

the fact that it vanishes for all continuously differentiable functions y°(x)

with compact carriers in A(4).

The presence of the term f^EDy0, y°)d% in (1.9) gives rise to some diffi-

culty since this integral will in general not exist for all of the members of

55(Li) when this operator is suitably extended to be closed. We may avoid

this difficulty by treating Li as a transformation on Hi = L2(A; EF) to H2

= L2(A; EF~l), where F(x) is the matrix-valued function

(3) A simple example will serve to illustrate the kind of nonproperly dissipative extensions

of Lo which we have in mind. Let y° be a complex-valued function of Xi 0<X<1, and set

Liy<> = yx — y°, 2)(Li) = [y°; y° absolutely continuous with y" and yx in 1.2(0, 1)]. We further de-

fine LaCZL, by 35(L0) = [y°; y°£3DfZi) and y°(0) = 0 = y°(l)]. It is clear that L0 is dissipative, in
fact, (Uy«, y^A-iy", £131°)=-2 (y», y»)+ [| y"(l)\2- |y°(0) |»], which is obviously nonpositive

for y°£!D(Lo). The second term in the right member represents the boundary integral (1.8)

and one sees from this that a generator of properly dissipative solutions, say La, must be a

restriction of L\ with domain S)(L„) = [y°; y0££'£)(L1) and y°(l) =ay°(0) ] for fixed a of absolute

value i£l.

On the other hand, for arbitrary h"Q.Li{0, 1) with (h", A°)g2 the operator Ly° = Liy°

+y°(0)fe°, 35(1.) = \y°; y>€E35(Li) and y°(l) =0] is a maximal dissipative extension of L0 (but

not a restriction of Li). In fact, it is clearly dissipative since (Ly°, y°)A-(y°, Ly")= — ly°(0)

— (y°, ft°)[2 — [2(31°, y0}— I {y°, h°}\2]i=0. In order to show that L (or La) is maximal dissipative

it suffices to show, by the corollary to Theorem 1.1.1, that the range of I—L (or of I—La) is

1.2(0, 1); and this can be accomplished by the usual green's function solution of {I—L)y"=p.

The system corresponding to L requires a mechanism for feeding energy back into the interior

with density y"{0)h".

Since LT^Lq, the adjoint of L, namely M, is a restriction of the adjoint of Lo which we

denote by M\. It is readily seen that Mi3°= —2^.-2°, 35(Afi) = [z°; 2° absolutely continuous with

z° and z° in L,(0, 1)]. Moreover {Ly\ za)-(y«, Jkfiz»>= -y°(0) [2°(0)]-+y°(0)(/i0, 2°) and this

vanishes for all y£E35(L) (and hence for all y°(0)) if and only if 2°(0) = (z°, h"). This condition

determines the domain of MCZ.M1 and it follows from Theorem 1.1.2 that M is a maximal dis-

sipative restriction of Mi. M is thus an example of a maximal dissipative restriction of a maxi-

mal operator Mi with a domain delimited by global lateral conditions.

(4) If y(x) vanishes outside of a compact subset of A, one can replace A in the right member

of (1.9) by a large cube Ao containing A. If one then applies the Gauss theorem (see, for in-

stance, H. Federer [4, pp. 313-315]), the right side of (1.9) becomes equal to the left side with

r now replaced by the boundary r0 of Ao, and it is clear that the integrand vanishes on r0.
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(1.10) F = I - D^I, xG A.

In this case all of the volume integrals appearing in the right member of

(1.9) exist even for the closure of the so-defined Li.

With this in mind, we start with the transformation L™ on Hi to H2 defined

as

00   1 -lr,     i   1, 1-,
L2iy   = E   [(Ay )i + By ],

©(L21) = [y ; y  continuously differentiable with compact carrier],

and denote its strong closure by L\, and its weak closure(5) by L\\. The previ-

ously mentioned operators L0 and Li are the maximal restrictions of these

respective transformations which have their ranges in H0. We note that the

so-defined Li is the operator of largest domain and of type (1.2) for which the

boundary integral is meaningful in our extended sense. Consequently, any

generator of properly dissipative solutions of (1.2) is necessarily a restriction

of Li. On the other hand L0 is the largest restriction of Li whose domain con-

sists only of functions which are essentially zero on the boundary. Thus the

domain of an operator L such that L0QLCZL1 will be determined entirely

by the boundary values assumed by its member functions. It turns out that

each maximal dissipative operator of this type generates only properly dis-

sipative solutions of (1.2) and, conversely, any generator of properly dissipa-

tive solutions of (1.2) is maximal dissipative and of this type.

Our problem, then, is to characterize all maximal dissipative operators L

such that L0C.LCL1 and to this end we introduce the following.

Definition 1.2. Let Hi2 = HiXH2 denote the product space of elements

y— [yl> y2] where ^G-Hi and y2^H2 and set

(1.12) Q(y, z) = (y\ z2) + (y2, z1) - f^EDy1, zl)dX.

A linear subspace NCZH12 [or P(ZHi2] is said to be negative [positive] if

Q(y, y) ^ 0 for all y G N        [Q(z, z) = 0 for all i£P];

it is called maximal negative [maximal positive] if it is not the proper subspace

of a negative [positive ] subspace of Hi2. The Q-orthogonal complement of a set S

is defined as

[z;Q(y,z) = 0 for all y G S\.

Following J. W. Calkin [l] (cf. M. I. Visik [13] and Lars Hormander

(5) More precisely, the operator L21 is defined as follows. Set il72Iz1=£_1[ — (A*zl)i

+ (B*+At)z*] with ®CM™)=SD(Z,!!J) and let (AT™)* denote its adjoint (on 772 to fli). Then
L11 = F-1(m11)*F, where F is the multiplicative operator taking z'G77i into 7?(-)z1(-)Gff2.
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[8]), we represent the boundary data assumed by functions in 55(L|i) by the

cosets of the quotient space

(1.13) H = ®(L\i)/®(Ln),

where ©(£21) denotes the graph of L2i, t = 0, 1. As we shall see, the bilinear

form Q(y, z) depends only on the cosets to which y and z belong and hence

can be used to define the form Q(y°, z°) where y°, z°^H are the images of

y and z, respectively, under the natural homomorphism. Finally, there is a

one-to-one correspondence between the maximal negative subspaces N ol H

(relative to Q) and the maximal dissipative operators L such that LodLCZLi;

this correspondence is given by

(1-14) 55(L) = b°;b°,Liy°]^N].

This, then, is the sense in which we have been able to characterize all prop-

erly dissipative solutions of (1.2).

We note that the formal adjoint of Li is of the form

(1.15) MJ = E~\-(A**)i + (B* + A\)z],

and it is readily verified that

(1.16) zt = Miz

is again a dissipative hyperbolic system. If we denote the adjoint of L by

M, then we find that M is again maximal dissipative, MoQMCZMi, and

that M generates properly disipative solutions of (1.16). Moreover, the do-

main of M is determined by the Q-orthogonal complement of N in H.

Boundary conditions of the elastic type are not included in the above

development. In order to treat such boundary conditions we have coupled

the system (1.2) at the boundary to a relatively simple "dissipative" system.

As we shall see, the general theory developed in Chapter I applies as well to

the coupled system.

The present work is an outgrowth of an earlier paper by the author [12]

which treated the Cauchy problem (1.2) for the case of one spatial variable,

in essence, by a green's function method. Much of the motivation for the

ideas and concepts introduced here is to be found in [12]. However, the

operator-theoretic approach is new and we feel that it has enabled us to treat

(1.2) in the general case (wt^l) with much less work than was required by

the previous method for the case m = l. On the other hand, we have not been

able to obtain the wealth of detail which is to be found in [12]. K. Yosida

[14] has also written a paper treating the wave equation from the semi-group

point of view in which he establishes the existence of a single solution, as-

suming A to be the entire euclidean space; moreover Yosida has imposed

rather severe regularity conditions on the coefficients of the wave equation.
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Chapter I. Theory of dissipative operators

1.1. Basic properties of dissipative operators. The central problem treated

in this chapter is the extension of dissipative operators to maximal dissipa-

tive operators. The existence of such a maximal dissipative extension is a

simple consequence of the maximal principle; however, mere existence is by

no means sufficient for our purposes. The present section treats of certain

basic properties of dissipative operators obtained, for the most part, by

means of a variant of the von Neumann-Cayley transform theory (see, for

instance, [ll; §VI.3]). This transform theory furnishes some insight into the

extension problem by providing a construction for all possible maximal dis-

sipative extensions of a given dissipative operator with dense domain in

terms of corresponding extensions of an associated contraction operator.

Definition 1.1.1. If L is a transformation on H0 to itself, we denote the

range oi L by dt(L) and the graph by ®(L);

®(L) = [\y°, Ly°]; y° G S)(Z)] C #„ X H0.

Lemma 1.1.1. Let L be a dissipative operator and suppose X>0. Then for

f=\y°-Lya, y°ETi(L), we have

(i.i-D x||/N ||/°||.
Further, the map [y°, Ly0]—>/° of ®(L) onto 9t(X7 —L) is one-to-one and bi-

continuous.

Proof. It is clear that

2\<y°, y>> ̂  2A<y, 3>°> - [(Ly\ y°) + (y\ Ly°)]

= {f°,y0) + (y°J0)^ 2H/II ||/°||

from which (1.1.1) follows directly. Further, setting c'(X)=max (1, X), we

have

11/1 ̂  c'(X)[\\yo\\ + \\Ly>\\] ̂ c'(\)[\\y°\\ + (x||yo|| + ||/°||)]

^C'(A)[2 + \-i]||/°||,

and this proves the last assertion of the lemma.

We note that (1.1.1) implies that \I — L is one-to-one when X>0 so that

if 9c(X7 — L) =H0, then L is necessarily maximal dissipative. It also follows

from the lemma that L is closed if and only if 9t(X7 — L) is closed.

We now define the operator

(1.1.2) / = (/ + L)(I - L)-1    with    ©(7) = di(I - L).

It is easy to see that / is a contraction operator. For, setting

(1.1.3) u° = y° - Ly°    and    Ju" = y" + Ly°, y°££)(L),

we obtain
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||/Mo||2 = ||y,||2 + ||Lyo||a +  [(Ly0y yo) + (y0) £y>)]

g ||y»||» + ||7y°||2 - [<7y°, y°) + (y\ 7y°>] = ||M°||2;

here we have made use of the fact that L is dissipative. Further solving the

Equations (1.1.3) for y° and Ly° we get

1    r i If
(1.1.4) y<> = — [/«» + «°]    and    7;y0 = — [Ju° - u°], u° £ 55(7),

from which it follows that 7+7 is one-to-one and that 91(7+7) = 55(7). Since

J is bounded, it will be closed if and only if 55(7) =31(7 — L) is closed and

hence if and only if L is closed.

Conversely, suppose J is a given contraction operator such that 7+7 is

one-to-one. Then the operator L defined by means of (1.1.4) is linear (and

hence single-valued) with 55(7) =91(7+7). Moreover, for y°G55(7) we have

(Ly°, y°) + (y°, Ly°) = — [<(/«« - «•), (Ju° + u°)) + ((Jua + ua), (Ju° - u0))]
4

= — [||7w°||2 - ||«°||2] g 0,

so that 7 is a dissipative operator.

Finally we show that 7 + 7 will be one-to-one if 91(7 + 7) is dense in 770.

To this end, suppose that Ju°+u°=d, let v° he any element of 55(7), and

set g" = v° + Jvl). Then

||7(»° - aw°)||2 g ||»°- au°\\2

which reduces to

a(u«, g°> + a(g\ ««) ^ |M|2 - ||/^||2.

Since a is arbitrary, it follows that (w°, g°) = 0 and by assumption this must

hold for a dense set of g°. Consequently u°=6 and this proves that 7+7 is

one-to-one.

We note that the Banach-Steinhaus theorem provides any contraction

operator 7 with a unique extension of the same kind having the closure of

55(7) as its domain. On the other hand, a contraction operator 7 with a closed

domain can always be extended in a trivial fashion to a contraction operator

7i on 770 by setting 7iy°=0 for all y1G55(7)-L. We summarize these results in

Theorem 1.1.1. If Lois a dissipative operator with dense domain, then the

operator Jo defined as in (1.1.3) is a contraction operator; Lo and 70 are closed

together. Conversely, if Jo is a contraction operator with 91(7+7o) dense in Ho,

then Lo defined as in (1.1.4) is a dissipative operator with dense domain and

Jo is again given by (1.1.3). The relations (1.1.3) and (1.1.4) establish a one-to-

one inclusion preserving correspondence between all dissipative extensions L of
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L0 and all contraction extensions J of Jo- In particular, the maximal dissipative

extensions of L0 correspond to the (closed) contraction extensions of Jo with do-

mains equal to H0.

Corollary. Let X > 0 and suppose that L is a dissipative operator with dense

domain. Then L is maximal dissipative if and only if 5R(X7 — L) =H0.

Proof. It is clear that L and X_1L are dissipative and maximal dissipative

together. It follows from the previous theorem that X-1L is maximal dissipa-

tive if and only if ^(/-X^L) =9t(XJ-L) fills out H0.
The nontrivial contraction extensions of Jo are governed by the following.

Lemma 1.1.2. Let J be a linear operator defined on the two-dimensional sub-

space generated by y" and s° where (y°, z°) =0. A necessary and sufficient condi-

tion that J be a contraction operator is that

(1.1.5) | {Jy°, Jz°)\2 g,8ya8z<>,

where 8u° = \\u0\\2-\\Ju°\\2.

Proof. The operator J will be a contraction operator if and only if

\\j(ay° + yz")\\2 ^ \\aya + yz°\\2 =  | a \2\\ya\\2 + | y \2\\z°\\2

ior all a, y. This is equivalent with

| a>\28y° +  | y \28z° - ay(Jy°, Jz°) - ay(Jz\ Jy°) ^ 0.

For fixed |a| and |7| the minimum of the left member is attained when

arg (ay) =arg ((Jz°, Jy°)) in which case

I ol \28y° + | y \28z° - 2 | a | | y | | (Jy°, Jz°) |   ^ 0

and this is easily seen to be true for all |a|, |y| if and only if (1.1.5) is satis-

fied.

It follows from Theorem 1.1.1 that a maximal dissipative operator with

dense domain is necessarily closed (6). We next prove a converse to this state-

ment.

Lemma 1.1.3. If L is maximal dissipative and closed, then it has a dense

domain.

(a) The following is an example of a maximal dissipative operator L which is not closed.

In view of the above correspondence theory, it is clear that for the construction of such an

L it suffices to define a contraction operator / with I+J one-to-one which has no proper ex-

tension with these same properties, and yet such that ©(/) is not closed. To this end suppose

that {<>„} is a complete orthonormal system for Ho and define /i with domain .ffo so that

7i0°= —<t>i and /i0„ = 0„ for all »>1. Then (I+J1)y° = 6 if and only if y" = a4>\. Thus the above

requirements for / will be satisfied by any restriction of /i for which D(/) is dense in Ho and

for which ®(/) is maximal with respect to the property of not including 0,. Now ®0=linear

extension of E„_i 2~"0„, <j>2, 0„ • • • ] is dense in H0 and does not include <)>,. Applying the

maximal principle to the subspaces of 77o containing ®o yet not containing </>„ yields a domain

with the desired properties.
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Proof. We first show that 91(7 — 7) =770. To this end we define 7 as in

(1.1.3). Then 7 is a contraction operator with 55(7) =91(7 — 7). Since 7 is a

closed operator, Lemma 1.1.1 implies that 91(7 — 7) is a closed subspace.

Consequently if 91(7 — 7) is a proper subspace of 770 there exists a nonzero

vector m°G55(7)-l. We can therefore extend 7 to a contraction operator 7i by

setting 7i(y°+aw°) =7y° for all y°G55(7). Now 7+7i is one-to-one. For

suppose 7i(y°+aM°) = — (y°+au°). Since 7 + 7 is one-to-one we see that cxt^O

and hence that

||y° + aw°|| = ||/i(:y0 + a«°)|| = ||7y°|| g ||y°|| < ||y° + a«°||,

which is impossible. It follows that 7 + 7i is one-to-one and hence that 7i

defines a proper dissipative extension of L as in (1.1.4). Since 7 was assumed

to be maximal dissipative, we conclude that 91(7 — 7) =55(7) =770. Next, sup-

pose that 55(7) =91(7+7) is not dense in 770. Then the adjoint of 7+7 takes

a nonzero vector, say v", into zero; that is, J*va= —v°. Now 7* is obviously

a contraction operator along with 7. Applying Lemma 1.1.2 to 7* (with

bv° = 0), we see that (7*y°, v°)= — (7*y°, J*v°) = Q whenever y° is orthogonal

to v°. It follows from this that Jv° = —v", contrary to 7 + 7 being one-to-one.

We therefore conclude that 55(7) =91(7+7) is dense in 770.

Theorem 1.1.2. If L is a maximal dissipative operator with dense domain,

then so is 7*, and if L corresponds as in Theorem 1.1.1 to the contraction oper-

ator J, then L* corresponds to the contraction operator 7*.

Proof. Since 7 is maximal dissipative with dense domain, the correspond-

ing contraction operator 7 will have 770 for its domain and 91(7+7) will be

dense. Hence 7* is well-defined and it is obviously a contraction operator.

Moreover, 91(7+7*) is also dense in 770. If this were not so, then its adjoint,

7 + 7, would take a nonzero vector into 6. However, as we have seen in the

proof of Theorem 1.1.1, this is contrary to 91(7 + 7) being dense. Consequently

91(7+7*) is dense and 7* corresponds as in Theorem 1.1.1 to a maximal dis-

sipative operator, say M, with dense domain. Further (Ju°, v°) = (ua, J*v°)

implies

(7«° - u\ J*v° + v°) = (Ju° + u°, J*v° - v°)

and hence (7y°, 2°) = (y°, Mz°) for all y°G55(7), 2°G55(M). As a consequence

MC7*. We further note that 91(7-if) =55(7*) =770. Thus if 7* were a

proper extension of M, then 7—7* would take a nonzero vector into 6 and

this is impossible when the range of its adjoint, 7 — 7, equals 770.

Corollary. Let Lo be a dissipative operator with dense domain and set

Mi = L*. Then there exist maximal dissipative operators L and M, adjoints of

each other and both having dense domains, such that

7 O 70    and    M C Mi.
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Proof. Let L be any maximal dissipative operator extending La and set

M = L*. According to the above theorem M is again maximal dissipative with

dense domain. Finally, since LoCLL, it follows that M = L*(ZL* = Mi.

The next theorem exhibits the importance of maximal dissipative oper-

ators in the theory of semi-groups.

Theorem 1.1.3. A necessary and sufficient condition for an operator L to

generate a strongly continuous semi-group of contraction operators on Ho to

itself is that L be a maximal dissipative operator with dense domain.

Proof. If L is the infinitesimal generator of a strongly continuous semi-

group of contraction operators, say [S(t)\ t^O], then ||.S(f)3'0|| ^||;y0|| and for

y°e®(L)

(y\ Ly°) + (Ly<>, y°) = — {S(t)y\ S(t)y°)       ^ 0.
dt i=o

It follows that L is dissipative. According to the general theory of semigroups

(see, for instance, Hille and Phillips [7]), 3)(L) is dense in H0 and the re-

solvent set of L contains all real X>0. This implies, in particular, that

9? (XI — L) =Ho for X>0 so that L is maximal dissipative by the corollary to

Theorem 1.1.1. Conversely, if L is maximal dissipative with dense domain

and X>0, then the same corollary implies that 9t(XJ — L) =Ha. This together

with the inequality (1.1.1) shows that the resolvent of L, namely 3t(X; L)

= (\I — L)~1, exists and satisfies the inequality ||X9t(X; L)||0^l, X>0. Thus

the hypothesis of the Hille-Yosida theorem (see [7]) is satisfied, and it follows

that L generates a strongly continuous semi-group of contraction operators.

Semi-groups of isometries form a particularly interesting subclass of the

semi-groups of contraction operators since they correspond to energy con-

serving solutions of the Cauchy problem. They were first studied by J. L. B.

Cooper [2; 3] who gave a penetrating characterization of them. As we shall

see, the generators of such semi-groups satisfy the following property.

Definition 1.1.2. An operator L is called conservative if

(1.1.6) (Ly\ y°) + (y\ Ly°) = 0, y° G ®(L).

Lemma 1.1.4. The operator L is conservative if and only if iL is symmetric.

If L is conservative and maximal dissipative with dense domain, then iL is

maximal symmetric. Conversely, if iL is maximal symmetric with dense domain,

then either L or —L is conservative and maximal dissipative. Finally, L and L*

are conservative with dense domains if and only if iL is self-adjoint.

Proof. If L is conservative, then replacing ya in (1.1.6) by u°+ev°, e= +1,

+ i, in turn and combining the resulting relations in the usual way, one ob-

tains

(1.1.7) (Lu°, v°) + (u°, Lv°) = 0, u\ v° G £>(£).
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It follows that iL is symmetric whenever 7 is conservative; the converse

assertion is obvious. On the other hand if 7 is conservative and maximal dis-

sipative with dense domain, then 91(t7 —17) =91(7 — 7) =770 by the corollary

to Theorem 1.1.1. This shows that one of the deficiency indices of iL is zero

and hence that t7 is maximal symmetric. Conversely if iL is maximal sym-

metric with dense domain then 91(7 + 7) =91 (H±iL) =Ha lor one of the

indicated signs and since 7 and —7 are conservative together it follows from

the above cited corollary that one of these operators is maximal dissipative.

Finally if 7 and 7* are conservative with dense domains, then iL and (i7)*

= —iL* are symmetric and hence iL is self-adjoint; again the converse is

obvious.

Lemma 1.1.5. Suppose Lois a closed conservative operator with dense domain

and set 7i = —7*. Then each maximal dissipative extension of Lo is a restriction

ofLi.

Proof. Since t70 is symmetric, it is clear that 70C7i. Suppose 7 is a

maximal dissipative extension of 70 and let 7o and 7 be the contraction oper-

ators corresponding to 70 and 7, respectively, as in Theorem 1.1.1. Then 7 is

an extension of 70 with 55(7) =770, and it is readily seen that 70 is an isom-

etry with closed domain. Hence by Lemma 1.1.2, z)° = 7m°G91(7o)"l whenever

w°G55(7o)-L. In other words, if

<y° - 70y°, «"> = 0, y° G 55(70),

then

(y° + 70^°, v°) = 0, y°e 55(70).

In this case LiU°=-L%u°= -u° and LlV° = -L*v° = v° so that by (1.1.4)

L(v° + u") = v" - u° = Li(v<> + u°).

Since 55(7) is the linear extension of 55(70) and vectors of the kind (va+u°),

it follows that LQLi.
The next theorem is due to Cooper [3], however the argument is new.

Theorem 1.1.4. A necessary and sufficient condition for an operator L to

generate a strongly continuous semi-group of isometries is that 7 be conservative

and maximal dissipative with dense domain.

Proof. If [S(t)] is a semi-group of isometries, then ||S(2)y°|l = \\y°\\ for all

t^O. Thus for y°G55(7)

(7y°, y°> + (y°, Ly°) = - (S(t)y«, S(t)y°)       = 0
dt co

and we see that 7 is conservative. In addition, it follows from Theorem 1.1.3

that 7 is also maximal dissipative with dense domain. Conversely, suppose
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L is known to be conservative and maximal dissipative with dense domain.

Then Theorem 1.1.3 also asserts that L generates a strongly continuous semi-

group of contraction operators, say [5(f)]. For y°(E.'£)(L), Sfyy® lies in T)(L)

for all t >0 and, making use of the fact that L is conservative, we get

- (S(t)y°,S(t)y°) = {LS(t)y°,S(t)y") + {S(t)y°, LS(t)y°) = 0.
at

Consequently ||5(/)y°|| =||y°||, t>0, for each ;y°G2)(£) and since £)(L) is dense

in Ho, this relation holds for all ;y0G7^o; thus S(t) is an isometry. This com-

pletes the proof.

Theorem 1.1.5. A necessary and sufficient condition for a conservative

maximal dissipative operator with dense domain to generate a strongly continuous

group is that iL be self-adjoint. In this case the group consists of unitary oper-

ators.

The argument can be taken verbatim from [12, Theorem 8.2].

1.2. Dual hilbert spaces. The theory which we are about to present re-

quires two auxiliary dual hilbert spaces in addition to the basic hilbert space

H0. These are defined by means of a positive definite self-adjoint operator F

with (dense) domain 3)(F) satisfying the condition

(1.2.1) (Fy°, y°) ^ (y\ y"), y° G ®(F).

It is clear that F~x exists and is a positive definite operator with domain Ho

and norm Sjl.

We now define two new inner products

(1.2.2) <y, z°)i m (Ff, *<>>, y\ 2° G ®(F),

and

(1.2.3) <y>, 2°>2 m (F-y, s°), y>, 2° g h0.

Finally Hi and H2 are the respective completions of the two pre-hilbert spaces

defined by these inner products. A Cauchy sequence consisting of repetitions

of a fixed element y° of %)(F) will, of course, define an element, say y1, of Hi

and for the sake of clarity we will write y° = Ioiy1- Likewise a Cauchy sequence

consisting of a single element y° of i?0 will define an element y2 in II2 and we

shall write y2 = I2oy°. Both of these maps are one-to-one.

Lemma 1.2.1. The map Ioi can be uniquely extended to be one-to-one on Hi

into Ho and of norm ^ 1. Similarly the map I2o is one-to-one and of norm £*1.

Proof. The elements of Hi are defined in the usual manner as classes of

Cauchy sequences in <£)(F). Suppose that {y„} is such a sequence defining an

element y1 of Hi. Then
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ir    0 On |i    0 0 ||

\\yn — ym\\ ^ \\yn — ym||i—»0

as n, m—><*>. Thus {y„} is also a Cauchy sequence in 77o and converges to

some element, say y°G770. We define 70iy1=y°. It is clear that this extends

our previously defined 70i and that the so-defined 70i is linear and of norm

gl. To show that the extended 70i is one-to-one, we suppose that the above

y"=8. Then for arbitrary z0G55(F) with z1 = 70~i1z°, we have

11. 0       0 0 0 0 0
(y , 2 )i = km (Fyn, z ) = lim (yn, Fz ) = (y , Fz ) = 0.

n—»« n—»«

Thus (y1, z1)i = 0 for a set of zl dense in 77i and it follows that y1=6. The

uniqueness of this extension is a consequence of the fact that I0~i [55(F)] is

dense in 77i. The assertions about 72o follow directly from the properties of

F-K

Lemma 1.2.2. There is a unitary map of Hi onto H2 which takes the Cauchy

sequence {y°}C55(F), defining an element of IIU into the Cauchy sequence

{ Fyn}, defining an element of II2. This map can be thought of as an extension of

F and we shall denote it by F2i, with Fu = F^1. For y1G771 and z2£H2 we define

(1.2 A) (y\ z2) = (y\ 71222)1 = (Fny1, z2)2.

For Cauchy sequences {yn} C 55(F) defining yi£Hi and {zt}C770 defining

22G772 we have

(1.2.5) (y , 2 ) =    lim   (yn, zk).
n,k—> oo

In particular if y1 = 70"!^° and z2 = 72o2°, then (y1, z2) = (y°, z°).

Proof. The unitary character of Fi2 follows immediately from two relations

oo -i       o o oo oo
(Fy„, Fyn)2 = (F   (Fyn), Fyn) = (Fyn, yn) = (yn, yn)i

and

0       0 -10       0 — 1   0 -1  0 —10 — 1   0

\Zn, zn)2 = (F   zn, zn) = (F(F   2„), F   zne) = (F   Zn, Fl 2„)l.

Further, since {F^'z"} defines the element 7i2z2 in 77i, we have

(y , z ) = (y , Fi2z )i =   lim   (Fyn, F   zk) =   lim   (y„, zk).
n,k—>°o n,k—.»

By choosing zj = 20 for all k, we see that 22 = 72o2° and y° =lim„ y" = 70iy1, which

proves the last assertion of the lemma.

One sees from the unitary nature of Fn that

\(y\z2)\   =   I <y\ Fuz2)i |   ^ ||y'|| i\\Fi2z2\\i = |M|i||*a||s.
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Definition 1.2.1. Let C2i be a bounded linear transformation on Hi to H2.

Then C21 will be called symmetric if (day1, z1) = (y1, C21Z1) for all y1, z^-Hi, and

it will be called positive if (C2iy1, y^^O for all yl^H, in symbols, Cn^®.

Lemma 1.2.3. Let C be a linear operator on II0 with 5D(C) =3)(F) and such

that

(1.2.6) (F-'Cy0, Cy°) ^ k(Fy°, y°), y° G ®(F).

Then C takes each Cauchy sequence {yn} d'£>(F), defining an element of Hi,

into a Cauchy sequence { Cyn], defining an element of H2, and in this way defines

a bounded linear transformation C2i on Hi to H2 of norm ^k1'2. If C is sym-

metric (or positive), then C21 will likewise be symmetric (or positive).

Proof. The condition (1.2.6) implies that {Cy°} is a Cauchy sequence

defining an element of H2 and hence that

(Cny , C2iy )2 = lim (F   Cyn, Cyn) g k lim (Fyn, yn) g k(y , y )i.
n—*<x> n—><*>

It follows from this that C2i is a linear transformation on Hi to H2 of bound

^k112. Let y1 and z1 be defined by the Cauchy sequences {y°} and |z°}

d'£)(F), respectively. Then if C is symmetric

(C2iy , z ) = lim (Cyn, zn) = lim (yn, Czn) = {y , C21z ),
n—> 00 n—* 00

whereas if C is positive

(C2iy , y ) = lim (Cyn, yn) ^ 0.
rt —* w

Corollary. The operators I, D = I—F, and F(\)=\I — D, X>0, each
with domain S)(F), have bounded linear extensions on H to H2. If we denote

these extensions by hi, D21 and 7T(X)2i, respectively, then I2i = l2dln, D2i = l2i

— Fn, and 7?(X)2i=X/2i — D2i- Further Ja, —D2i and F(X)2i are positive sym-

metric.

Proof. Let C denote 7, —D, and F(X) in turn. In each case C is positive

symmetric and there exists a k such that

0 ^ (Cy°, y°) ^ kV^Fy0, y°), y° G 2)(F).

Applying the Schwarz inequality with respect to the inner product (Cz°, z°),

we obtain

[(F-KCy0), Cy0)}2 ^ (Cy0, y^CF^Cy0, F^Cy0)

^ k(Fy°, y°)(FF-1Cy°, F^Cy0),
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and this implies (1.2.6). Thus the operators have bounded linear extensions

on 77i to 772 and the asserted relations follow if we merely consider the Cauchy

sequences used in defining these extensions. We note, incidently, for both

72i and —D2X that k^l.

1.3. Negative subspaces. Next let 77i2=77iX772 denote the product space

of elements y= [y1, y2], y'G77i and y2G772 with inner product

(1.3.1) (y, 2) = (y\ 21)! + (y2, 22)2.

When 7 = 7 we note that 77i=77o = 772 and 77i2 becomes 770X770.

Definition 1.3.1. If Ln is a transformation on Hi to H2 with domain

5)(72i), then its graph is a subspace of Hu defined as

®(Ln) = [\y\Lny1]; y1 G 5)(721)].

As we shall see, the graphs of the dissipative operators in which we are

interested correspond to negative subspaces of 77i2 relative to the hermitian

symmetric bilinear form

(1.3.2) Q(y, z) =. (y\ z2) + (y2, z1) - <721y\ z*>.

It is at any rate clear in the case 7 = 7 (and hence 7>2i = ©) that the graph of a

dissipative operator is negative.

It is easy to see that Q is a continuous form; in fact

(1.3.3) | Q(y, z) | ̂  IMUMIj + IMMMIi + IMMkHi ^ 2||y||||z||.
The continuity of Q shows that the closure of a negative (or positive) subspace

is again negative (or positive). It follows from the maximal principle that each

negative (positive) subspace is contained in a maximal negative (maximal

positive) subspace, which is necessarily closed since otherwise its closure

would again be negative (positive). Moreover the continuity of Q also requires

that the (^-orthogonal complement of a set be a closed linear subspace.

It is convenient at this point to introduce the following operators on 77i2 to

itself:

ub1, y2] = b\ -y2 + D„y*\,

(1.3.4) V[y\y2]=[Fuy2,-Fiiy1],

W[y\ y2] = UV[y\ y2] = [712y2, Fny1 + DnFny2].

The corollary to Lemma 1.2.3 shows that U, V, and W are all linear bounded

operators. Moreover

(1.3.5) U2 = I   and    V2 = - I,

so that the inverses of these operators are likewise bounded operators on 77i2.

A simple calculation gives
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Q(Uy, Uz) = - Q(y, z),

(1.3.6)      Q(y, Uz) = -(y\z2)+(y2,z1),

Q(Wy, z) = Q(y, Wz) = (F2iy\ z1) + (Fi2y2,z2) = (y, z).

The first of the identities (1.3.6) shows that the mapping y—>Uy of Hi2

on itself defines a one-to-one correspondence between the negative subspaces

and the positive subspaces and it is clear that this correspondence preserves

inclusion and Q-orthogonality. As a consequence, a statement about negative

subspaces will, in general, imply a dual statement about positive subspaces.

Definition 1.3.2. Given a subset S(ZHi2, we define its domain 35(5) and

range 9t(5) by

£>(5) = [/; [yVy2] G 5],

ms) = [y2; [y\ y2] G 5].

We further set

3M5) = [X/2.3'1 - y2; [y\ y2] G 5].

A linear subspace 5 of H2 is the graph of a linear transformation on

Hi to H2 if and only if 5 contains no element y= [y1, y2] of the form y1=d,

y29i6. It follows from this that 5 is a graph if and only if U[S] is a graph.

We note that 3)(5) =£)((7[5]). The graph of a closed linear transformation

is by definition a closed subspace. It should be observed that the graph of a

linear transformation on Hi to 7J2 may be negative and the transformation

may even be maximal in this respect, yet the graph itself may be the proper

subset of some other negative subspace. As the following lemma shows, this

situation will not occur if the domain of the transformation is dense in H\.

Lemma 1.3.1. A negative (or positive) subspace with dense domain is the

graph of a linear transformation on Hi to H2.

Proof. From the above remarks, it is clear that it suffices to consider only

the case of a negative subspace N with dense domain. Suppose there were a

u= [6, u2]E.N, u29*9; we note that Q(u, u) =0. Since 35(iV) is dense in Hu

there is a y = [y1, y2]G.N such that (y1, u2) = (y1, Fi2w2)i^0. Now y+auQ.N

and hence

Q(y + au,y + au) = Q(y, y) + aQ(u, y) + a.Q(y, u) S 0.

As this holds for all at, we conclude that Q(y, u) = (y1, u2) must equal zero,

contrary to our choice of y.

Corollary. // the negative (positive) subspace N is the graph of a linear

transformation on H to i?2 with dense domain, then the same is true of each

maximal negative (maximal positive) subspace containing N.

Next we obtain some properties of negative subspaces.
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Lemma 1.3.2. Let N be a negative subspace and suppose X>0. Then for

p =\Inyl — y2, [y\ y2]G7Y, we have

(1-3.7) c(X)|M|i ̂ \\P\U

where c(X)=min (1/2, X).

Proof. We obtain directly from the definition of f2 that X(72iy1, y1)

~~{y2, 3|1)==(/2> yl) and adding this to its complex conjugate we get

(1.3.8)   2X(721y1,y1) - (Dny1^1) - Q(y,y) = (y\f) + (/2, y>> g 2||yi||1||/2||2.

According to the corollary to Lemma 1.2.3 both 72i and — 7>2i are positive

symmetric and 72i = 721 — 7>2i; this together with the fact that Q(y, y) ^0 for

y(E.N implies

c(X)\\y1\\l = c(X)(Fiiy1,y1)^\\y)\i\\f)\2,

so that (1.3.7) follows.

Lemma 1.3.3. Let X>0 and suppose Nis a negative subspace. Then the map-

ping

y = b1, y2] ~^P - XIny1 - y2

of N onto 91x(7V') is one-to-one and bicontinuous.

Proof. Making use of the inequality (1.3.7) we have

IMM kx)]il/1U
||y2||2 =§ \\p\U + \\U2MU = \\r\U + xll/lli ̂ [i + x/c(\)]\\p\\i,

and

||/2!|2 ^ X||721y1|[2 + ||y2||2 ^ \\\y1\\1 + ||y2||2 ^ c'(\)[\\y^\\i + ||y2||2],

where c'(X) =max (1, X). The result now follows directly.

Corollary. Let X>0. Then a negative subspace N is closed if and only if

91x(iV) is a closed subspace of H2.

Lemma 1.3.4. Let X>0 and suppose N is a negative subspace. Then N is

maximal negative if and only if 91x(7V) =772.

Proof. Suppose first that TV is maximal negative but that 91x(7V) is a

proper subspace of 772. Since N is closed, we see from the previous lemma

that 91x(7V) is also closed. Thus there is a w2^0 such that (Fi2u2,p) = 0 lor all

/2G91x(Ar). Now we set

21 = 712m2,        22 = - 7(X)21712«2,        2 = [z\ z2],

where 7(X)2i=X72i — Dn as in Lemma 1.2.3. Clearly zGT712. For any yG7712

we_have
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Q(y, 2) = - (y\ F(\)2iFi2U2) + (y2, F12u2) - (D2iy\ Fi2u2)

= - (XIny1 - y2, F12U2).

Hence if y(E.N, then Q(y, z) =0. On the other hand

Q(z, z) = - 2\(l2iFi2U2, F12U2) + (D21F12U2, F12U2)

^ - 2c(\)(Fi2U2, u2) < 0.

Thus z(£N and consequently 7Vi= [y +az; yGTV] contains TV properly. More-

over

Q(y + az, y + az) = Q(y, y) + \ a \2Q(z, z) g 0,

and this shows that Ni is a negative subspace, contrary to N being maximal

negative.

Conversely, suppose TV is a negative subspace with $t\(N)=H2. Lemma

1.3.3 asserts that the mapping y—»/* of TV onto 9?x(7V) is one-to-one and that

this remains true for any negative subspace containing N. Since N already

maps onto H2, it follows that N is maximal negative.

Specializing the above result to the case F = I and dissipative operators

we readily obtain another proof of the corollary to Theorem 1.1.1. In fact,

we have only to note that if L is dissipative then its graph is negative, and if

3)(L) is dense then any negative subspace containing ®(L) is the graph of a

dissipative extension of L.

The foregoing lemmas can be used to connect maximal negative subspaces

of H12 with maximal dissipative operators on Ha. To this end we introduce the

following

Definition 1.3.3. A transformation 7L2i on H to H2 will be said to engender

the operator L on Ho to itself if

3)(L) = [/or/; y1 G £>(L21) and Z.^1 G Iv>[HB]],
(1.3.9) _i        -1

Ly° = l2oL2iIoiy°.

Theorem 1.3.1. Let L2i be a linear transformation on Hi to H2 whose graph

is a maximal negative subspace of Hx2 and let L denote the operator on Ho en-

gendered by L21. Then L is a closed maximal dissipative operator with dense

domain, and the graph of I20LI01 is dense in the graph of L2i.

Proof. According to Lemma 1.3.4, the set [\I2iy1—L2iy1; yG3)(£2i)] fills

out H2. Further one sees from Definition 1.3.3 that XT^rV1— L^^GT^o[H0] ii

and only if 7oi3'1GS)(i). Consequently,

9t(X7 - L) = ho{\hi - Jm}/m [©(£)] = Bo.

On the other hand, setting y= [y1, Liiy1] and 3'° = /oi>'1, y°€;'£)(L), we see that
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(y°, 7y°> + (Ly", y»> = (y\ L^y1) + (Lny\ y1)

= Q(y, y) + (Dny\ y1) ^ 0,

so that 7 is a dissipative operator. Lemma 1.1.1 now implies that 7 is closed

and maximal dissipative and Lemma 1.1.3 asserts that 55(7) is dense in 770.

Next suppose that y=[y1, y2]G®(72i), in which case y2 = 72iy1. Then p

=X72ry1— y2G772 is determined by a Cauchy sequence {/£} C770 such that

fl = Iwfl~P- Since 91 (X7 — 7) =770, there exists a sequence {u„} G55(7) such

that fi=\un — Lu°n for all w. Setting un = I^iUn, we see that /^=X72iW^ — L2iu\;

hence the relation (1.3.7) implies that the sequence {un} converges in 77i to

say u1. Thus [u\, L2iUn=\I2iUn—fl] converges in 77i2 to [u1, X721mx —f2] and

since 72i is closed it follows that m1G55(721) and 72iM1=X721m1— p. Conse-

quently wl = ul—yx is a solution of \lnwl — Lnw1 =6 and (1.3.7) requires that

wl=6. In other words [u„, L2iun}—>[y', Z^iy1] in 7712, and since

{ui} C 7o"i1[55(7)]

and Lnun = IioLIoiUn, the last assertion of the theorem has now been verified.

1.4. Duality theory. The present section contains a duality theory for

maximal negative and maximal positive subspaces of 77i2. As we shall see,

this theory is intimately related to an adjoint theory for maximal dissipative

operators. Our central result is

Theorem 1.4.1. Let N be a maximal negative subspace and let P denote its

Q-orthogonal complement. Then P is maximal positive and N is the Q-orthogonal

complement of P.

We shall prove this theorem with the help of the following two lemmas.

Lemma 1.4.1. Let N be a closed subspace and let P denote its Q-orthogonal

complement. Then N is again the Q-orthogonal complement of P.

Proof. The relation (1.3.6) shows that

(1.4.1) Q(y, z) = (W-*y, z).

Consequently P is the ordinary orthogonal complement of IF_1[iV]. Since IF

is a continuous operator IF-1 [N] is a closed subspace and hence IF-1 [N] is

again the orthogonal complement of P. This being so, the relation (1.4.1)

now implies that N is the (5-orthogonal complement of P.

Lemma 1.4.2. If N is a negative and P a positive subspace of Hu, and if N

and P are Q-orthogonal complements of one another, then both are maximal.

Proof. It is clear that N and P are both closed linear subspaces of 77i2.

Moreover, because of the U isomorphism between positive and negative sub-

spaces, it suffices to show that N is maximal negative. If this were not so,

there would be a closed negative subspace, say Nt, which properly contains
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TV. Choose wGTViHTV-1-, u?*0. Then Q(u, u) ^0 and (y, u)=0 for all yGN.
According to (1.3.6), (y, u) = Q(y, Wu) so that Wu(E.P and therefore

Q(Wu, Wu) ^0. We now have

(u\ u2) + (u2, u1) - (D21U1, u1) = Q(u,  u) ^ 0,

(u1, u2) + (u2, u1) + (D21F12u2, Fnu2) = Q(Wu, Wu) ^ 0.

As a consequence

-{D2iu\ tt1) - (D2iFi2u2, Fi2u2) ^ 0

and since D2i^@, we obtain

(D2lu\ u1) = 0 = (D2iFi2u2, F12u2).

Combining this with the inequalities (1.4.2) yields

Q(u, u) = 0 = Q(Wu, Wu).

Now Q is a nonpositive quadratic form on TVj and hence the Schwarz inequal-

ity (relative to — Q on TVi) implies that Q(y, u)=0 for all yGTVi. It follows

that u belongs to the (7-orthogonal complement of TV, namely P. Similarly,

P positive, WuGP, and Q(Wu, Wu) =0 imply that Q(Wu, z) =0 for all zEP;

thus PTwGTV. Consequently u and Wu are Q-orthogonal so that we obtain

from (1.3.6) the result (u, u) = Q(Wu, u) =0. This being contrary to our choice

of m, we conclude that TV is maximal negative.

Proof of Theorem 1.4.1. We are given that TV is maximal negative and

that P is its Q-orthogonal complement. We first show that P is a positive

subspace. If this were not so, there would exist a z^P such that Q(z, z) <0.

Since Q(y, z) =0 for all tGTV, we see that z does not belong to TV and further

that

Q(y + az,y + az) = Q(y, y) +  \ a \2Q(z, z) :g 0, y G TV.

It follows that TVi= [y+az; yGTV] is a negative subspace which contains TV

properly. This being impossible, we conclude that P is indeed positive. By

Lemma 1.4.1, TV and P are Q-orthogonal complements of one another so that

it follows from Lemma 1.4.2 that P is a maximal positive subspace.

Lemma 1.4.3. If TV has a dense domain then its Q-orthogonal complement is

a graph and, conversely, if TV is closed graph then its Q-orthogonal complement

has a dense domain.

Proof. Let P denote the Q-orthogonal complement of TV. If P has an ele-

ment of the form z= [d, z2], then Q(y, z) = (y1, z2) = 0 for all yGTVand, assum-

ing 2)(TV) to be dense, this implies z2=6. It follows that P is a graph if 35(TV)

is dense. Suppose next that TV is a closed graph but that J)(P) is not dense in

Hi. Then there is a u2£-H2, «V0, such that (u2, z1) = 0 for all z1ET>(P). We

see as above that u= [6, u2] is Q-orthogonal to P and hence by Lemma 1.4.1
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that u£N, contrary to TV being a graph. This establishes the second half of

the lemma.

A somewhat deeper result in this direction is given by

Lemma 1.4.4. Suppose TV is both a maximal negative (maximal positive)

subspace and a graph. Then 5)(TV) is dense in Hi and the Q-orthogonal comple-

ment of TV is also a graph with dense domain.

Proof. Let P denote the Q-orthogonal complement of TV. Since TV is

maximal negative, P will be positive by Theorem 1.4.1 and since A7 is a

closed graph, 55(7) will be dense by the previous lemma. As a consequence,

Lemma 1.3.1 asserts that P is also a graph. Applying Lemma 1.4.3 once more

we see that 55 (TV) is dense.

Incidental to the above development is a new proof of Theorem 1.1.2.

Theorem 1.4.2. 7/7 is a maximal dissipative operator with dense domain,

then so is its adjoint operator.

Proof. In this case we suppose 7 = 7 so that 77i = 77o = 772. The graph of 7,

say TV, is by hypothesis negative with dense domain and since 7 is maximal

dissipative, it follows from Lemma 1.3.1 that TV is maximal negative. Denot-

ing the Q-orthogonal complement of TV in T70X770 by P, we see that P is a

maximal positive subspace by Theorem 1.4.1. and a graph with dense domain

by Lemma 1.4.3. Consequently U[P] is a maximal negative subspace and a

graph with dense domain. Now z£U[P] if and only if

0 = Q(y, Uz) = - (y\ z2) + (y2, z1),        y2 = Ly\

for all y1G55(7), that is, if and only if z2=7*zx. Thus U[P]=®(L*) and 7*
is a maximal dissipative operator with dense domain.

Most essential for our purposes is the following

Theorem 1.4.3. Let L2i be a linear transformation on Hi to 772 whose graph

N is a maximal negative subspace of Hu and let P be the Q-orthogonal comple-

ment of TV. In this case U[P] is also the graph of a linear transformation, say

Mn. Next let L and M denote the operators on 770 engendered by 72l and Mn,

respectively. Then L and M are maximal dissipative operators, with dense do-

mains, and adjoints of each other.

Proof. Since TV is maximal negative and a graph, it follows from Theorem

1.4.1 and Lemma 1.4.4 that P is maximal positive and a graph. Consequently

U[P] is maximal negative and a graph. Theorem 1.3.1 therefore implies that

7 and M are both closed maximal dissipative operators with dense domains.

Employing the previous theorem we see that 7* is maximal dissipative with

dense domain. Now for y°G55(7), z°G55(M), y1 = 70"11y°, and z1 = 70"11z°, it is

clear that y=[y1, 721yJ]GTV and z=[z1, MnZl}(£ U[P]. Thus Uz<EP and

(y°, Mz°) - (7y°, 2°) = <y\ MnZ1) - (721y1, 21) = - Q(y, Uz) = 0.
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Consequently MQL* and since M is itself maximal dissipative, it follows

that M = L*.
1.5. The boundary space. As we have already mentioned in the introduc-

tion, the boundary data assumed by functions in the domain of our differen-

tial operator will be represented by a certain space of cosets which we will

call the boundary space. We now give an abstract formulation of such a space.

Definition 1.5.1. A closed subspace TV0 of H2 will be called a null space if

(1.5.1) Q(y, u) = 0 for all y, u G TV0.

Suppose TVo is a null space and let TVi denote its Q-orthogonal complement;

clearly TVoCTVi. The quotient space

(1.5.2) H=Ni/No

will be called a boundary space.

It is easy to see that the boundary space H can be made into a hilbert

space. In fact, if (3 denotes the projection operator TVi—>TVir>\TV0J-, then @y=(3u

if and only if y— «GTV0. Thus His algebraically isomorphic with TVtf^TVo and

the inner product defined on NiC\Nq can be used to implement an inner prod-

uct in H. We shall denote the points of H by y, z, ■ ■ • , and we shall indicate

that 3>GTVi belongs to the coset yGH by writing $y=y. It will be clear from

the context whether j3y is to be thought of as an element of H or as an ele-

ment of TViHTVo1.

The following lemma gives a simple characterization of NiC^Nq.

Lemma 1.5.1. Let TV0 be a null space and let TVi denote its Q-orthogonal com-

plement. Then y(ENiC\Nk if and only if both y and Wy belong to TVi.

Proof. By definition a necessary and sufficient condition for yENiCsN^

is that y belong to N\ and be orthogonal to TV0. By (1.3.6) the last half of

this condition is equivalent with Wy being Q-orthogonal to TV0, in other words,

it is equivalent with Wy belonging to TVi.

Lemma 1.5.2. Let TV0 be a null space and let TVi denote its Q-orthogonal com-

plement. If y, mGTVi, then

(1.5.3) Q(y, u) = Q(/3y, l3u),

(1.5.4) |O(fty,0«)|   ^ 2||/?3,||||/3M||,

and if Q(fiy, /3m) = 0 for all ^GTVifWo1, then 07=0.

Proof. It follows from the definition of TVi that Q(y, u)=0 for all yGTVi

and uE.No- Since y—fiy and u—fiu both belong to TV0, we have

Q(y, «) = Q({Py +[y- Py]}, {/3« + [u - /3u]}) = Q(py, du).

The relation (1.5.4) is an immediate consequence of (1.3.3). Finally if

Q(/?y, fiu) =0 for all £«, then by (1.5.3), Q($y, u) =0 for all uE.Nl This means
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that j3y belongs to the Q-orthogonal complement of TVi and hence, by Lemma

1.4.1, that /3y belongs to TV0. Thus /3y is orthogonal to itself and therefore

fy=d.
It follows that the value of Q(y, u) depends only on the cosets to which y

and u belong. This suggests that we introduce the

Definition 1.5.2. We define the form Q on H as

Q(Py,l3u) = Q(/3y,/3«).

It is clear that Q is a continuous bilinear form and it follows from the

preceding lemma that it is nonsingular in the sense that Q(y, u) =0 lor all

uGTf implies that y = 8.

Lemma 1.5.3. Let TV0 be a null space and let TVi denote its Q-orthogonal com-

plement. The mapping N = /37V defines a one-to-one correspondence between sub-

spaces of TVi which contain TVo and subspaces of H. This correspondence pre-

serves negativity, positivity, inclusion, and Q-orthogonal subspaces correspond to

Q-orthogonal subspaces. In particular, subspaces of TV. which are maximal nega-

tive (maximal positive) relative to the subspaces of TVi contain TV0 and correspond

to maximal negative (maximal positive) subspaces of H.

Proof. All the assertions of the lemma save the last, follow directly from

properties of the homomorphism /3 established in Lemma 1.5.2. Actually even

the last assertion is evident, once it has been shown that a subspace TV which

is maximal negative, say, relative to the subspaces of TVi necessarily contains

TVo. However, if TV is negative, so is N = (3N and /3-17V. Since j3_17V is a negative

subspace of TVi containing TV and TV0, it follows from the maximal property

that TV contains TV0.

Lemma 1.5.4. Suppose TV0 is a null space and let TVi denote its Q-orthogonal

complement. Then any negative (positive) subspace TV of TVi which is maximal

negative (maximal positive) relative to the subspaces of TV. is also maximal nega-

tive (maximal positive) relative to the subspaces of Hu. Further if P is the Q-

orthogonal complement relative to TVi of such an TV, then P is also Q-orthogonal to

TV relative to Hu and maximal positive (maximal negative) relative to the sub-

spaces of Hu (and a fortiori maximal relative to the subspaces of TVi).

Proof. Suppose first that TVGTVi is a maximal negative subspace relative

to the subspaces of TVi. It follows from the previous lemma that TV consists

of cosets of TVo and, in particular that TV contains TV0. On the other hand if

TV' is any negative subspace of 7712 containing TV0, then since Q is negative

on TV' we obtain as a simple consequence of the Schwarz inequality that

each element of TV0 is Q-orthogonal to every element in TV'; in other words

TV' is contained in the Q-orthogonal complement of TV0, namely TVi. It follows

that any negative extension in 7712 of the given TV necessarily lies in TVi so

that TV is also maximal negative relative to the subspaces of 77i2. Likewise we
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note that the Q-orthogonal complement of TV relative to Hi2 is necessarily a

subspace of TVi since TVi is the Q-orthogonal complement of a subspace of TV,

namely TV0. Thus P is the Q-orthogonal complement of a maximal negative

subspace and therefore is itself maximal positive by Theorem 1.4.1. Finally,

if TV had been maximal positive (instead of maximal negative) relative to the

subspaces of TVX, then 7/[TV] would be maximal negative relative to the sub-

spaces of C/[TVi]. Since t7[TVi] is the Q-orthogonal complement of the null

space C/[TV0], the above argument applies and we see that U[N] is maximal

negative in Hi2 and hence that TV is maximal positive in Hi2. It then follows

as above that P is maximal negative in Hn.

Remark. If in the above lemma, the null space TV0 had possessed a dense

domain, then the relations

TV0 C TV, P C TVi

imply that S)(TV), S)(P), and 5D(TVi) are also dense, and hence by Lemmas

1.3.1 and 1.4.3 that TV, P, and TVi are graphs.

Lemma 1.5.5. Let N be a maximal negative (maximal positive) subspace of

H and let P be its Q-orthogonal complement. Then P is maximal positive (max-

imal negative) and Nis the Q-orthogonal complement of P. In addition, N = (3~1N

and P =j3~1P are subspaces of TVi, maximal with respect to Hi2, and Q-orthogonal

complements.

Proof. Suppose TV is, say, maximal negative in H. Then according to

Lemma 1.5.3, N = (3~1N will be maximal negative relative to the subspaces

of ^ and hence, by Lemma 1.5.4, maximal negative relative to the sub-

spaces of Hi2. Lemma 1.5.4 also asserts that the Q-orthogonal complement

of TV, say P, is maximal positive and a subset of TVi. It now follows from

Lemma 1.5.3 that P = @P is maximal positive as well as the Q-orthogonal com-

plement of N. Likewise, since TV is the Q-orthogonal complement of P by

Theorem 1.4.1, we see that TV will be the Q-orthogonal complement of P.

We now state one of our principal results.

Theorem 1.5.1. Let TV0 be a null space with dense domain, let TVi be its Q-

orthogonal complement, let H=Ni/N0. In this case TV0 and TVi will be graphs of

linear transformations, say, L2l and L\u respectively, which engender the oper-

ators Lo and Li, respectively. Suppose, in addition, that ^)(I2oLoIoi) is dense in

Hi. Then there is a one-to-one correspondence between the maximal negative sub-

spaces [N] of H, taken with respect to the form Q, and the maximal dissipative

operators [L] such that LqELELi, this correspondence being defined by

(1.5.6) ©(L) = [y; p[lny, I2oLiy] E N],

which is dense in H0.

The adjoint operator M = L* is again maximal dissipative with dense domain
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and can be described as follows: U[N0] and U[Ni] are graphs of linear trans-

formations, say, M2i and M2\, respectively, which engender the operators Mo and

Mi, respectively. Let P be the Q-orthogonal complement of N. Then P is maximal

positive, M0CMCIM1, and

(1.5.7) 55(M) = [z°; 0U[hiz\ IiaMiz} G P}.

Proof. According to Lemma 1.5.3 there is a one-to-one correspondence be-

tween the maximal negative subspaces [N] of H and the subspaces of TVi

which are maximal negative relative to the subspaces of TVi, this correspond-

ence being given by N = ft~xN. By Lemma 1.5.4 each such TV is maximal nega-

tive in 77i2 and a graph, say of Ln. Theorem 1.3.1 now asserts that 72i

engenders a maximal dissipative operator 7 with dense domain and that the

graph of 720770i is dense in TV. It follows that each 7 obtained in this way

can correspond to only one maximal negative subspace in TVi and hence to

only one maximal negative subspace of H. Since 72,1C72iC72li, it is further

clear that 70C7C7i. Finally, 7 is a restriction of Lx and hence is completely

determined once its domain is given. By Definition 1.3.3

55(7) = [y°; [Cy\ I2oLxy] G TV],

or, equivalently, 55(7) can be given by (1.5.6).

The adjoint of 7 is described in Theorem 1.4.3. If P is the Q-orthogonal

complement of TV and if Tl72i is the transformation whose graph is U[P],

then T17 = 7* is engendered by Tl72i. It also follows from Theorem 1.4.3 that

M is maximal dissipative and has a dense domain. According to Lemma 1.5.4,

N0CPCN1 so that MnCMnCMn and hence MoCMCMi. In particular,

then M is a restriction of Tkfi with domain

5)(M) = [2°; U[hiz°, lioMiz"] G P].

With P denoting the Q-orthogonal complement of TV, we see by Lemma 1.5.5

that P is maximal positive and that 7=/3_1P. Consequently, 5)(M) may also

be described as in (1.5.7).

It remains to show that any maximal dissipative operator 7', such that

7oC7'G7i, corresponds as above to some maximal negative subspace N of

H. Suppose, therefore, that 7' is such an operator and set 721 = 7207'7oi and

TV' = @(721). By assumption 721D 7207070i. We now show that TV' is a negative

subspace of 77i2. In the first place, since 7' is dissipative,

(L'ny1, y1) + (y\ L'ny1) = <7701y\ hiy1) + (701y\ 7'7oiyx) =g 0

for all y1G55(721). Suppose then that Q(y, y)>0 for some yGTV'. Choosing

a sequence  {un}  in 55(72o707oi) with  the property that un—>yl and setting
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un= [ul, L'2lun], we see that u„ENa and hence that

0 < Q(y, y) = Q(y - un,y - un)

= ((y  — un), L2i(y  — un)) + (L2[(y  — un), (y  — un))

— (D2i(y  — un), (y  — un)) ^ — (D2i(y  — un), (y  — un))

1 11 1 ii     1 li, 2

^ (Pn(y  — un), (y  — un)) = \\y  — un\\i.

However, this is impossible since the last term tends to zero as n—*a>. It fol-

lows that TV' is a negative subspace, obviously contained in TVi. There there-

fore exists a subspace TVCTVi, maximal negative with respect to all subspaces

of TVi which contains TV'. Now TV is the graph of a transformation L2i and as

in the first part of the proof, Z2i engenders a maximal dissipative operator

LELi which corresponds to the maximal negative subspace TV = (3TV as in

(1.5.6). It is clear from the construction that L'EL and since L' is maximal

dissipative we conclude that L' =L. In other words, L' corresponds as above

to the maximal negative subspace TV.

Corollary. Theorem 1.5.1 characterizes all maximal and properly dissipa-

tive restrictions of Li, that is, all maximal restrictions such that Q(y, y) ^=0 for

eachy= [i^y0, hoLy0] with y°G35(L).

Proof. It is clear that if L is characterized as in (1.5.6), then Q(y, y) ^0

for all y=[l0i1y°, hoLy0] with y°E'£>(L). Conversely, suppose that I is a

maximal and properly dissipative restriction of L\. Then (3[©(I\oLIq1)] is a

negative subspace of H and hence contained in some maximal negative sub-

space, say TV'. Let L'ELi be defined by (1.5.6) with TV replaced by TV'. Then

clearly LEL' and since both L and V are maximal dissipative it follows that

L = L', which was to be proved.

The following remarks are of interest in connection with the boundary

space for L\. According to Lemma 1.5.1, the elements of NiC\No are just the

elements y of @(L2i) f°r which WyE®(Lli), in other words, the [y1, L^y1]

such that Fi2L\iyx as well as y1 belong to £>(Z4i) and for which

£2i[T7i2Z.2i:y ] = F2vy  + D2iFi2L2iy .

Since £>(Tk721) =T>(Lli) and Mn= —L^+Dn, the above relation can be re-

written as

(1.5.8) M\iF12L2iy  = - F„y.

Thus we can represent H as the subspace of ®(L\{) which corresponds to the

solution space of (1.5.8). We shall not pursue this matter any further; never-

the-less it should be remarked that this is clearly a starting point for an in-

vestigation of the_boundary space of L\.
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The next two lemmas deal with properties of 70 and L\. For one spatial

variable it was shown in [12] that both 70 and 7i are closed; in the many

variable case 70 is closed, but it seems doubtful that 7t is closed. Our best

result in this direction is the following.

Lemma 1.5.6. Let Ln be a closed transformation on Hx to Hi whose graph is

negative and let L denote the operator engendered by Ln. Then L is closed.

Proof. Suppose [y°, Z/y2]->[y°, g°] in 770X770 and set yn = I^yn and

fl = hiyl-Lnyn. Then 721yJ = 720y^720y°, L2xy\ = 7207y^720g°, and /*-^720y°

— 72og°. Consequently Lemma 1.3.2 applies and we see that {yn} is a Cauchy

sequence in 77i converging to some element, say y1. Since 70i is continuous it

follows that 70iy1=y°. Thus [yn, 72iyi]—>[yl, hog0] in 77i2 and, 72i being

closed, we see that y*G55(721) and that 72iy1 = 72og°. According to Definition

1.3.3, y° = 700^55(7) and 7y° = 72"0172iy1=g°; the operator 7 is therefore

closed.

Lemma 1.5.7. In the notation of Theorem 1.5.1, 55(7o) is dense in Ho and

MiCLt.

Proof. According to Lemma 1.2.1, 7oi is a continuous map of 77i into 77o

and it is clear from this construction that 91(7oi) contains 55(7). Since

55(72o707oi) is dense in 77i, it follows that 55(70) =7oi[55(72o707oi)] is dense in

55(7)- = 77o. On the other hand for y°G55(70), z°G55(Mi), y1 = 70";1y0. and

z1 = I0~11z°, we have

(70y , 2 ) — (y , Ttfi2 ) = (72ry ,z) — (y , Muz )

= Q(b\ lW], [z\ lW]) = o

so that MiCL*.

Lemma 1.5.8. Let TV0 be a null space and the graph of a linear transformation,

say Ln, which engenders the operator L0. Suppose, in addition, that 55(720707oi)

is a dense in Hi. Then L0 is conservative if and only if 7=7.

Proof. For y0G55(70) and y1=70"11y° we have

(1.5.9) (7„y», y°) + (y°, 70y°) = (T^y*, y1).

If 70 is conservative, then (Dny1, yx) = 0 for all y1G55(720707oi), which is as-

sumed to be dense in 77i. Thus this relation holds for all y1G77i; replacing

y1 by u^+ev1, e = l, t, in turn and adding, we obtain (Di2ul, i;1) = 0 for all

u1, viEHi, from which it follows that Dn = ©. Now for y°GS5(7), it is readily

seen that

(7- F)y°= InDnhly   = 6
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so that 7 = 7. Conversely, if 7 = 7 then the relation (1.5.9) shows that 70 is

conservative.

Now if 7 = 7 we have Hi=H0 = H2 and there is no longer any distinction

between an operator 72i and the operator 7 which it engenders. Thus, in this

case, the operators 7o and 7i of Theorem 1.5.1 are closed and it follows from

Q(y, z) = (y1, z2) + (y2, z1) that Lx= —L*. If 7 is a conservative extension of

7o, then

Li = - 70* D - L* D 7;

whereas if iL is a self-adjoint restriction of iLi, then

7o = - Li* C - L* = L.

In either case LoC.LC.Li. Conditions that 7Z)70 be a conservative maximal

dissipative operator have been given by J. W. Calkin [l, Theorems 2.9 and

4.1]. For the sake of completeness we now give another version of this result

which is slightly more general in that it includes all maximal dissipative ex-

tensions of 70. In view of Lemma 1.5.8, we may, without loss of generality,

assume that 7 = 7.

Theorem 1.5.2. Suppose 7 = 7 and let Lo be a closed conservative operator

with dense domain. Set 7i= —7* and Jf= ®(7o)/©(7i). Then there is a one-to-

one correspondence between the maximal negative subspaces [TV] of H, taken with

respect to the form Q, and the maximal dissipative operators [7] such that LoCL,

this correspondence being defined by the fact that L is necessarily a restriction of

Li and

55(7) = [y°;/3[y°, 7!y»]G7V].

Moreover, L will be conservative if and only if N is a null subspace of H, whereas

iL will be self-adjoint if and only if N= P, where P is the Q-orthogonal comple-

ment of the maximal negative subspace TV.

Proof. Since 7 = 7 it is easy to see that TV0 = ®(70) is a null space with

dense domain and that TVi = ®(7i) is its Q-orthogonal complement. Accord-

ing to Lemma 1.1.5 each maximal dissipative extension of 7o is also a restric-

tion of Li. Consequently the first assertion of the theorem is a special case of

Theorem 1.5.1. For y = [y°, 7iy°]

(1.5.10) (7iy», y°) + <y°, 7ry°) = Q(y, y) = Q(fiy, fty).

Therefore, if 7 is conservative, then Q(y, y) =0 for all y£N. Replacing

y by u+ev, e = 1, i, in turn, and adding, we obtain Q(u, v)=0 for all u, v£N;

hence TV is a null space. Conversely, if TV is a null space, then (1.5.10) shows

that 7 is conservative. On the other hand, Lemma 1.1.4 asserts that iL is

self-adjoint if and only if 7 and M = L* are conservative. The above argument

shows that if 7 is conservative that TV is a null space. Further, if P denotes the
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Q-orthogonally complement of ®(L), then ®(M) = U[P], as in the proof of

Theorem 1.5.1. For z= [z°, Mz°]EU[P] we have

(1.5.11) (Mz°, z°) + <z°, Ifz0) = Q(Uz, Uz) = QifiUz, fiUz).

Since U maps U[P] in a one-to-one fashion on P, we see as above that M

being conservative is equivalent with P and hence P=j3P being null. Finally

if TV and P are null, then each is contained in its Q-orthogonal complement,

namely P and TV, respectively; consequently N=P. Conversely, it N=P then

this subspace is both positive and negative, and hence it is a null space. The

relations (1.5.10) and (1.5.11) then imply that L and M are conservative,

and thus that iL is self-adjoint.

It will be observed that there is a lack of symmetry between the expres-

sion (1.5.6) for S)(L) and (1.5.7) for 3)(M). This is a consequence of the fact

that both domains are delimited by means of the boundary space for L,

whereas symmetry requires that SD(M) be delimited in terms of the boundary

space for M. The purpose of the next section is to rectify this situation.

1.6. The dual boundary space. Throughout this section TV0 will be a fixed

null space with Q-orthogonal complement TVi and H= TVi/TV0 will denote the

associated boundary space. It is clear that TV0' = c7[TV0] is also a null space

and the relation Q(Uy, Uz) = —Q(y, z) shows that N{ = U[Ni] is the Q-

orthogonal complement of TV0'. Thus

(1.6.1) H' = N[/N'o

is again a boundary space, and we refer to this space as the dual boundary

space. We proceed to study the relation between these two boundary spaces.

As before H' is isomorphic with TV/ f^A7^ and we shall denote the Q-

induced bilinear form on H' by Q'. Likewise, we shall let /3' denote both the

natural homomorphism of TV/ onto H' and the projection operator of TV/

onto TV/ OTVo"1-. Given an operator T on Hi2 we shall symbolize its restriction

on Nif^No1 by T0 and its restriction on TV/ PliVi1 by Ti.

In view of the way in which H' has been defined, one should expect the

operator U to provide the principal link between H and H'. The following

lemma shows that this is the case.

Lemma 1.6.1. The transformation j3'Uo is one-to-one and bicontinuous on

TViPiTVq1 to TV/HTVo"1- with inverse fiUi. Moreover

(1.6.2) Q(l3'Uoy, P'Uoz) = - Q(y, z), y, z E Ni^No .

Proof. Given zGTV/ PiTV^C U[Ni], there exists a yGTViHTV^ and a wGTV0

such that z= Uy+Uu. Since UuENi, we see that z = fi'z = B'Uy; this shows

that p" Uo is onto TV/ nTVo1. On the other hand, given yEN^N^, set z =/3' U0y

and v = z— Uy. Then fi'v = z — z=6 from which it follows that vENi. Conse-

quently  Uv=Uiz-yENa and y=py=pUiz; in other words (BUi)(B'U0)
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= 7o. Since ft t/o was onto, we infer that j3U0' =(/3'T7o)_1 and hence that ft77o

is one-to-one and bicontinuous. Finally the relation (1.6.2) follows from

(1.3.6) and (1.5.3).

Lemma 1.6.2. V0is a unitary map on TViHTV^ to TV/ fWo"1 with Vg1 = — Vo.

Proof. It is clear from (1.3.4) that V is a unitary map on 7712 to itself

with V~l= — V. It therefore suffices to show that F0 maps TVif^TVjj- onto

N{ r^No1. To this end let yCzNxr\No and suppose u is an arbitrary element of

TVo. Then by (1.3.6)

0 = (y, «) = Q(UVy, u) = - Q(Vy, Uu);

since TV0' = £/[TV0] it follows that Foy belongs to the Q-orthogonal complement

of TVo', that is to TV/. Further

(Vy, Uu) = Q(WVy, Uu) = Q(UVVy, Uu) = - Q(VVy, u) = Q(y, u) = 0

so that Foy is orthogonal to TVo' • Together these results imply that Foy

GTV/ PiTVqX. Similarly, it can be shown that F0' maps TV/ HTVo1 into Nxr\N^.

On the other hand F2= — 7 implies VaVo = — 70', and this shows that the

map is onto.

Lemma 1.6.3. /3JF0 is symmetric, one-to-one, and bicontinuous on NxC\Nq

to itself with ($Wo)~l= - Vo^'Uo=^x(W~l)o- Similarly 0'WO' is symmetric,

one-to-one, bicontinuous on TV/nTVo1 to itself with (fl'Wo)~1= — VoflUo

= ft' (W-l)o - Here ft and ft are projections on Hu to TV^A^ and TV/ f^N^f-,
respectively.

Proof. Since IF= UV, it is an immediate consequence of Lemmas 1.6.1

and 1.6.2 that /3JFo= (PUo) V0 is one-to-one and bicontinuous on TVi^TV^ to

itself. Further 0W0(V0'ft<70) =0UO' V0VJf3'Uo= -h so that (pWo)~l

= -Fo'ftc/o. Now for yGTViHTV,}-, (7-ft) 7/oyGTV0' and since F is unitary

and maps N{ HNtf- onto Nxr\Nfr, we see that F(7-ft) Z70yG(TV1PiA^)J-.

Hence ftF(7-ft)T7oy=0 and -ft(JF-1)o=ftF<70=ftFft<70= Fo'ft<7„. Fi-
nally we see from (1.3.6) that for y, zGTVi/OTVo" we have

(fiWoy, z) = (Wy, z) = Q(W2y, z) = Q(y, W2z)  = (y, Wz) =  (y, /3W0z)

and hence /3IFo is symmetric. The results for ft IFo' follow in a similar fashion.

Corollary. For y, zCzNxf^N^ we have

(1.6.3) ((/SiFo)-^, 2) = Q(y, 2) = (y, (pWo)-h).

Proof. It suffices to note that for y, zETVifW^-

Q(y, 2) = (W-*y, z) = (ftdF-^y, 2) = ((fiWo^y. z).

It is clear that the transformations ftc70, j3U0', fiWo, and ftlFo' induce

corresponding transformations on H and H' which we denote by U, U', W,
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and W, respectively. These transformations are all one-to-one and bicon-

tinuous, U'=U~1, Q'(Uy, Uz) = —Q(y, z), and Wand W are symmetric

with

6 Q(Wy, z) = (y, z) = Q(y, Wz),

Q'(W'y', z') = (y', z') = Q'(y',W'z').

It readily follows that negative (maximal negative, positive, maximal posi-

tive) subspaces of H correspond under the U mapping to positive (maximal

positive, negative, maximal negative) subspaces of H'.

Returning to Theorem 1.5.1, we can now define 3)(M) in a manner com-

pletely analogous with jD(L).

Theorem 1.6.1. In the notation of Theorem 1.5.1., we have

(1.6.5) S)(Jf) = [z°; P'[folz\ I20M1Z0] E U[P]},

and U[P] is a maximal negative subspace of H'.

Proof. As was noted above, P being maximal positive in H implies that

U[P] is maximal negative in H'. Further, each zGTV/ has the representation

z = B'z+v where vENi. Thus Uz= Ui&'z+Uv and since UvEN0, we have

8Uz=BUiB'z. Consequently BUzEP if and only UBUiB'zEP and hence by

Lemma 1.6.1, if and only if B'z = B'U0(BUiB'z) belongs to B'UB[P] = U[P].
The relation (1.6.5) now follows directly from (1.5.7).

The previous result can also be used to characterize the negative and

maximal negative subspaces of H. In fact, W~x being symmetric, we see that

H splits into two orthogonal manifolds H+ and H~, H=H+@H~; these are

respectively the positive and negative eigenspaces of W~1. Ii we define

(y, z)+ = (W-iy, z) for y, z E H+,

(y, z)- = (W^y, z) iory,zEH-,

then H+ and H~ are again hilbert spaces. In view of the fact that W and its

inverse are bounded operators, the new topologies are equivalent with the

original H topologies for each subspace. Suppose next that TV is a negative

subspace of Hand for yE TV set y=y++y~, where y+ EH+ and y~E H~. Then

Q(y,y) = (w-y^) = \\y+\\2+ - \\y-\\2- g 0.

As a consequence of this inequality Jy~ =y+ defines a contraction transforma-

tion on H~~ to H+ with

N= [y- + Jy-,y-E®(J)]-

Conversely if / is a contraction transformation of this kind, then the set of

vectors [y~+Jy~; y~E^>(J)] is a negative subspace of H. We have there-

fore defined an inclusion preserving correspondence between negative sub-
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spaces of H and contraction transformations on H~ to H+. It is clear that TV

will be maximal negative if and only if the corresponding contraction trans-

formation is defined on all of 77".

Chapter II. Dissipative hyperbolic systems

2.1. Properly dissipative generators of the basic system. We return now

to the dissipative hyperbolic system described in the introduction. By apply-

ing the foregoing theory we shall obtain a characterization of the properly

dissipative generators first of the system (1.2) and later of this system coupled

at the boundary to an auxiliary dissipative system. In the appendix to this

chapter we shall construct a class of maximal dissipative extensions of our

minimal operator and the dual class of maximal dissipative restrictions of our

maximal operator, neither class being generators of properly dissipative solu-

tions.

As remarked in the introduction, energy considerations require that the

basic hilbert space be 770 = 72(A; E) and the desire to work with a finite

boundary integral motivates our use of the auxiliary hilbert spaces Hx and

772. We construct 77i and 772 as in §1.2 by means of the self-adjoint operator

7 defined as

(2.1.1) Fy° = F(-)y°(-)

where 7(x)=7-7(x) and 7>(x)^0 for all %GA;

(2.1.2) 55(7) = [y»;   y°(-)    and   7(-)y°(-) G 72(A; 7)].

It is readily verified that 7 is self-adjoint and satisfies the condition (1.2.1).

Since the functions in 55(7) are dense in 72(A; EF) and those in 91(7)

= 72(A; E) are dense in 72(A; EF~l), we see at once that 77i and 772 are

unitarily equivalent with 72(A; EF) and 72(A; EF~l), respectively. In what

follows we shall not distinguish between the abstractly defined 77i and 772

and their realizations 72(A; EF) and 72(A; EF~l). Thus for y1G72(A; EF)

and z2G72(A; EF-1) we have

(y\ 22)=   C (Ey1, z2)dx;
J A

and the bilinear form Q is defined equivalently by (1.3.2) and (1.12).

Next we define the transformation 72J as in (1.11). Then 55(721) is dense

in Hx and an integration by parts shows that Q(y, z) =0 for all y, zG©(721).

Thus ®(72i) is a negative subspace of 7712 with dense domain and hence, by

Lemma 1.3.1, its closure, which we denote by TV0, is also a graph, say of the

transformation 721. It follows from the continuity of Q that TV0 is a null space

in the sense of Definition 1.5.1. In the present development, the operator 70

engendered (see Definition 1.3.3) by 721 will be called the minimal operator

of the spatial part of the hyperbolic operator (1.2). Lemma 1.5.6 shows that
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Lo is closed. Further, it is clear that L0 is an extension of

(2 13)     V^MWn+^L
£)(Loo) = [y°; y° continuously differentiable with compact carrier in A],

as can be seen from the fact that Loo = I20lL2KlIo1. This latter relation also

shows that 3)(/2o71o/oi)D35(7L2i) and hence that $D(I2iZ,o7"oi) is dense in Hi.

Incidently, we conjecture that L0 is not the smallest closed extension of

Loo(7). However, from our point of view this is all to the good since we want

Lo to be the largest operator on II0 (and L\\ to be the largest transformation

on Hi to H2) of the type E^^Ay^+By'], j = 0 (and 1), for which the do-

main functions have "essentially" zero boundary data. Finally we note that

©(Z-oo) is dense in H0 and consequently so is D(L0).

We also define the formal adjoints of these operators in an entirely anal-

ogous manner and it is clear that corresponding operators will possess the

same properties. For instance, we define

(2.1.4) MHz1 = E~\-(Aiz1)i + (B* + A'Az1]

with ®(AfS?)=SD(LS1). It is readily verified that ®(M%) = U[®(L%)] and,
since U is bicontinuous, this relation continues to hold for the closures of

these graphs. Thus if M2i denotes the smallest closed linear extension of M™,

then ©(Mai) = U[®(Ll{)] and it follows that ®(M21) is also a null space along

with ®(L°i). It is also evident from the definition of U that 1)(M2l) ='£)(L21).

However, the domain of the operator Mo engendered by Tkf2i will in general

not coincide with the domain of Lo, engendered by L2l. We note that T)(Mo)

is dense in H0 and that ^)(I2oMoIoi) is dense in Hi.

We now define TVi to be the Q-orthogonal complement of TV0. Since S)(TV0)

is dense in Hi, it follows from Lemma 1.4.3 that TVi is also a graph, say of the

transformation L\\. Further, TV0 being a null space, we conclude that 7VOTV0

and hence, that Z^iDT^i- For 3*= [yl< J^l an<^ z~ t2l> z2l we see that yENi

if and only if

0 = Q(y, z) = (y, LU) + (y, z1) - (D2iy\ z)

= - (y, m\iZ1) + (y, z1), z1 E ®(m\i).

Thus L\x can be thought of as the "adjoint" of M\\ relative to this mixed

inner product; in the usual notation for adjoint we have L\\ = F2i(M\\)*F2i

(7) Assuming the above conjecture to be correct, our use of the term "minimal operator"

differs from the customary usage (cf. L. Hormander [8]), which applies the term to the smallest

closure of Loo, say L'o . On the other hand, Lo would be a more appropriate minimal operator

than our Lo if we wished to determine all maximal dissipative extensions of a minimal operator;

likewise, Ll = (Mo )* would be a more appropriate maximal operator than ourLi if we wished to

determine all maximal dissipative restrictions of a maximal operator.
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since Mn is the smallest closed extension of M°£, it is clear that y will belong

to ®(721) if and only if (2.1.5) merely holds for all z1G55(M2°1°). Now if

yxG72(A; EF) is continuously differentiable on A and if

y2 = T-'fUy),- + By1] G 72(A; EF-1),

then one sees by direct computation that (2.1.5) will be satisfied for all

z1G55(Tl721); thusy= [y1, y2] belongs to @(721) and so does the closure of this

set of function pairs. A complete description of 721 is given in the following.

Lemma 2.1.1. Suppose that the elements of E, the Ai, and B are continuously

differentiable in A. Then [y1, y2] G77i2 belongs to ®(721) if and only if there is a

sequence {yn} C55(721) such that

[yi, Lllyi] -+ [y, y] in 72(A; 77) X 72(A; EF'1)

for each compact AC A.

Proof. The sufficiency argument is trivial in view of the fact that (2.1.5)

need only be verified for z1G55(Tl72^>) and each such z1 has a compact support

in A. The necessity can be established by a method developed by K. O.

Friedrichs [6, pp. 365-373]. The reduction of the present problem to that

treated by Friedrichs is readily accomplished by means of the following

unitary transformations:

S:    y1-^y = (EFyy, L2(A; EF)     onto 72(A; 7),

7:   z2 -^ z = (77)-1'2£z2,       72(A: 77"1) onto 72(A; 7).

These are multiplicative transformations and since the factors are continu-

ously differentiable, it is clear that continuously differentiable functions map

onto functions of the same kind and likewise functions with compact support

map onto functions having the same support. Setting

i      —-i _-i
£   — TL2Xo    ,
00 00-1 ,    «'

£ y = TL2XS   y = (ay),- + «y,
00 00   —1 i i

gn z = TM2XS z = - (az)i + (03* + a,)z,

where

a' = (EFyv'A^EF)-1'2 and

ffi = (EF)-1'2B(EF)-1'2 - [(EFyv^iA^EF)-1'2,

it is clear that

55(3Tl00) = 55(£00) = [y-,y continuously differentiable with compact support in A].

Moreover, [y,f ]G®(£1) if and only if
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(2.1.6) f (y, yd00z)dx =   f  (/, z)cTX        for all Z G £(311°°).

The main steps in Friedrichs' argument are as follows. He begins with a

function j(x1) possessing derivatives of all orders and such that j(x1)=Q,

7-(x1)=0 for | x1! £1, and /Lt/(xW = 1- Setting

m

Mx) = e""1 IL"(e~V),
1-1

he defines the mollifier operator

\$.y](x) = \Mx - x)y(x)dx.
J A

It is easy to show that both $t and g* approximate the identity in L2(A; 7)

as e^0 + . For zG3)(3TC00) and e sufficiently small, g*zET)("3\l00) so that

(2.1.6) becomes

(2-1.7) (J, 311°°^fz) = (/, g*z) = (Stf, z).

Now 9TC°°$* and £00g( are integral operators with kernels k\(x, x) and

K(x, x)> respectively. Setting

(2.1.8) [x.y](x) = f [kl(x, x)* - K(x, x)]y(x)dx
J A

and considering 3Ce as a transformation on L2(A; I) to L2(A; I), Friedrichs

shows that 3Cey—>0 as e—>0 for each compact A GA. To complete the proof, we

choose a sequence of domains {A„} such that A„CA„+iCA and A = U„ A„.

Suppose that A„ is a distance greater than 5„>0 from the complement of A

and suppose further that 5„—»0. For en = 6»/4, we define

yn(x)   =   [3tj](x), XEAn,

=   0, X G An+l,

and elsewhere y„(x) is defined so as to be continuously differentiable in A.

Then {y„) C®(£00) and yn-^y inL2(A; I) for each compact ACA. Moreover,

according to (2.1.7)

«&./ -   £°°yn), Z)   =   (KtJ, Z)

tor each zG3)(9Tl°0) with support contained in A„. It follows that £°°yn

= 3tnf ~ 3w„v for all xGA„and hence that £°°y„—»/in Z2(A; 7), again for each

compact A GA. It readily follows that the sequence {T5-1yn} C3X-L-2?) satisfies

the assertion of the lemma.

Returning to the main thread of our argument, M\x is defined in a manner

analogous to L21 as the transformation  whose graph is the Q-orthogonal
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complement of ®(M$X). It is clear from the properties of U that ®(T1721)

= 77[®(72i)] and it follows from this that the analogue of Lemma 2.1.1

holds for T1721. Finally let 7i and Mx be the operators engendered by 72l and

Mlx, respectively. According to Lemma 1.5.7, LXCM* and MXCL* and we

suspect that in general these inclusions are proper. We shall call 7i the

maximal operator of the spatial part of the hyperbolic operator (1.2). It

follows from the way in which Lx was defined, that among the differential

operators of this type it possesses the largest domain to which the boundary

integral (1.9) can be meaningfully extended. Consequently, any generator of

properly dissipative solutions of (1.2) must necessarily be a restriction of Lx.

An analogous assertion holds for Mx.

Next we introduce the boundary spaces for Lx and Mx, namely the quo-

tient spaces

77 = ®(721)/®(721)    and    77' = ®(T172i)/®(iI721),

respectively. These cosets- correspond to sets of functions in 55(72i) and

55(T1721), respectively, which exhibit the same boundary behavior. Now 77

can be represented by ®(721)P\®(721)X and under this representation the

homomorphism is simply the projection /3 of ®(721) onto ®(721)Pi®(721)±.

Similarly 77' has the representation ®(M21)0®(M21)x and under this repre-

sentation the homomorphism takes the form of the projection ft of ®(M21)

onto ®(M21)n®(M?1)-L.

As shown in §1.5, the bilinear form Q induces the bilinear forms Q and

Q' on 77 and 77', respectively. Finally we recall that the transformation U

(see §1.6) on H to H' is one-to-one, bicontinuous, and takes maximal nega-

tive (maximal positive) subspaces of 77 into maximal positive (maximal nega-

tive) subspaces of 77' in a one-to-one fashion. With all this in mind, we now

state our principal result.

Theorem 2.1.1. There is a one-to-one correspondence between the maximal

negative subspaces [N} of H, taken with respect to Q, and the closed maximal

dissipative operators [L] on 770 such that L0CLCLX, the correspondence being

defined by

(2.1.9) 55(7) = [y°; y° G 5>(7i) and [i[lo~ly , I2oLxy] G N],

which is dense in H0. The adjoint operator M = L* is again maximal dissipative

with dense domain, MoCMCMx, and

(2.1.10) 5)(i7) = [2°; 2° G 5XT170  and j8'[/7iV, I20MiZ°] G U[P]],

where P is the Q-orthogonal complement of TV and U[P] is a maximal negative

subspace of 77'.

This theorem merely paraphrases Theorems 1.5.1 and 1.6.1. It also char-
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acterizes all maximal and properly dissipative restrictions of Lx as can be

seen from the corollary to Theorem 1.5.1.

According to Lemma 1.5.8 we can obtain a conservative extension of L0

only if F = I, that is, only if D(x) = © for all xGA. In this case Lo is the small-

est closed extension of Loo and Li = —L* Theorem 1.5.2 then gives a char-

acterization of the conservative maximal dissipative extensions of Lo as

well as the self-adjoint extensions of iLB.

2.2. Coupled systems. In order to treat dissipative hyperbolic systems

with boundary conditions of the "elastic" type by the above method, it is

necessary to take into account the interchange of energy between the main

system and the boundary system. Because of this energy interchange the

central system by itself is no longer dissipative. Nevertheless the coupled

system is dissipative and hence one is lead to treat the entire coupled system

as a unit. This is our starting point; the reader will find further motivation

for the material in this section in [12, §7].

Much work remains to be done before one can be sure that the problems

treated in this chapter and especially those treated in this section have been

correctly formulated. In view of this fact we have been content to study a

rather simple boundary system.

The uncoupled components of our system will consist of the central sys-

tem considered in the previous section, acting in the space JLo, and a boundary

system acting in a hilbert space H0 and governed by the equation

(2.2.1) y°t=By, t>0,

where B is a bounded linear operator.

To the right member of (2.2.1) we now add a coupling term of the form

Cy1 where C is a closed linear operator acting on the boundary value assumed

at the time in the central system, namely

(2.2.2) y  = P[itty\ hoLiy].

Thus the coupled system acts in the space §o — H0X.Ho with elements t)°

— [y°> y°] and inner product

<t)°, 3°) = <y°, z°> + if, 2°),

and it is governed by the equation

(2.2.3) h = %$, *>0,

where

(2.2.4) 8i^° = [Liy°, By° + Cy*]

and, roughly speaking, 2)(?i) consists of those elements 1)° for which y°G£)(Li),

y*GS)(C), and y°ES0. A precise description of 35(Si) will appear in the
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course of the subsequent development.

We shall impose the following conditions on C:

(i) There exists a subset S of 55(CWC*) with [[f, WC*f]; fES] dense
in the graph of WC* such that WC* [S] CP [®(hoLJoi) ];

(ii) B + B*- CWC* ̂  6 on 55(CWC*).
When 7 = 7 Condition (i) is not very restrictive. For in this case

|3 [® (72o7!70i) ]= 77 and the condition simply requires that the set [ [y°, WC*f ];

y°G55(CWC*)] be dense in the graph of WC*. However if 55(CWC*) is

merely dense in 770, then we can take a restriction G0 of WC* with domain

T)(CWC*) and redefine Cas G*VF_1. It is readily verified that the so-defined

C is a closed extension of the original C and satisfied (i) in its entirety.

Condition (ii) is a dissipative condition similar to (1.3). In fact, let us

imagine the central system as extending beyond the boundary of A. Then

at the boundary of A there will be a discontinuity in y° due to the back reac-

tion of the coupling. Thus to a given y° there is associated an interior boundary

value yl defined by (2.2.2) and an exterior boundary value y" given by

(2.2.5) ye=yi + Gf,

where G can be thought of as a back coupling operator describing the effect

of the boundary system on the central system.

Next we assume that C and G are so related that no energy is lost in the

coupling itself. In order to see what this means, let 1)°(j) be a solution of

(2.2.3). Then the rate of increase of energy in the system is readily computed

as

,„ o «n   w> *°>« = f (EL>y°' y0^ + Q(y{' **> + «* + B*w> *°>
(2.2.6) J a

+ (Cy*, y°) + (y°, Cy*}.

Replacing Q(y{, y') by its equivalent,

Q(ye,ye) - Q(Gf, Gy") - Q(y\ ®y°) - Q(Gy°,y'),

we see that (i)°, ti°)t is expressible in terms of the rate of increase of energy

in the interior of the central and boundary systems plus the flow of energy

through the exterior boundary provided that the cross product terms nullify

each other. Thus our assumption amounts to setting

(2.2.7) Q(y\ Gf) + Q(Gf, y>) = (Cy\ f) + (y°, Cy')

for all y£G55(C) and y°G55(G). We shall see below that this requires that

G = WC* and hence the rate of increase of energy due to sources interior to

the boundary system is

((B + B*)y°, y°) - Q(Gy°, Gf) = ((B + B* - CWC*)f, f).

Finally if we assume that the boundary system is dissipative, we arrive at

Condition (ii).
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Lemma 2.2.1. The assumption (2.2.7) is equivalent with

(2.2.8) C = G*W~1    and    G = WC*.

Proof. Since (2.2.7) holds for both y°, y* and iy°, y\ it is equivalent with

Q(y\ Gy°) = (Cy\ y°) and hence by (1.6.4) with

(2.2.9) (W-^, Gy°) = (Cy\ y°)

for all y{G£>(C) and y°E^)(G). However the relation (2.2.9) is valid if and

only if C = G*W~1, or, what amounts to the same thing, if and only if

G = WC*.
After this digression, we return to the main line of argument. The oper-

ator

Do = B + B* - CWC*

with domain ^)(CWC*) is clearly symmetric and by assumption negative.

We can therefore apply the Friedrichs' extension theorem to obtain a self-

adjoint extension D^=® (see, for instance, [ll, §VI.2]). Then, proceeding

as in §1.2, we construct the dual hilbert spaces Hi and H2 from the positive

definite operator F = I — D and define the transformations Fn, Fu, D-ii, /oi, I2o,

and i~2i. It follows from the manner in which the Friedrichs' extension is ob-

tained that %)(CWC*) Ehi[Hi] and further that ^[^(CWC*)] is dense in

Hi. Moreover <A)(G)EIoi[Hi]. In fact according to Condition (i), for each

y°E^)(G) there exists a sequence {y°n} ES)(CWC*) such that [y°n, Gyl]

->[y°, Gy0}. Thus

ilO On 2 • • 0 0 0 0
\\% - y»||i = {(/ - B - B*)(yn - ym), (% - ym))

[2.2.lu) _io o o o  ,
- (W   G(% - ym), G(yn - ym)) -» 0

so that {%\ defines an element of Hi whose /oi image is just y°.

Setting

(2.2.11) 7321 = /20737oi    and    B*i = 72o73*/0i,

it readily follows that 732i and B2i are bounded operators satisfying the rela-

tion

(2.2.12) (B2iy\ z1) = (y1, Bnz1), y\ zl G Hi.

Further it is clear that 732i and B*i engender, respectively, restrictions of B

and B* with domain /oi[Z?i]. We also note that the operator

(2.2.13) [CG]iX m F21 - 721 + 7321 + B*tl

is bounded and symmetric on 7?i to 7J2 and extends i2oCWC*I0'11 whose do-

main, as we have already remarked, is dense in Hi. Finally we set
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(2.2.14) D2X = B2X + B*n - [CG]2X

and define the quadratic form Q on HX2 = HXXH2 as

(2.2.15) Q(y, z) = (f, z2) + (f, z1) - (7)21y\ z1).

We now define

(2.2.16) Gi = Gioi.

Then G is engendered by Gi (since 55(G) Chi[Hi]), 55(Gi) is dense in 77i with

7oi1[5)(CWC*)], and Gi is closed with G. Next we set

(2.2.17) Cx = FiXG*xW-\

Then Ci is also closed by virtue of the fact that W-1 is bounded, G* is closed,

and 72i is unitary. It is clear that G*Z)i*xG*. On the other hand F2xi*x = iia

as can be seen from

0     1 0.1 .*    0      1. .  •       ■*    0      1
(720y , 2 ) = (y , 70iz ) = (70iy , z )i = (72170iy , z >;

and therefore Ci D 72oC. Hereafter we shall denote the operator engendered

by Ci by the symbol C0. It follows that CoDC and also that CiGxZ)I2oCGi
= 720CG70i. Finally we show that

(2.2.18) 55(d) D 91(Gi).

In fact, we conclude from Condition (i) that each element in the graph of

Gi can be approximated by a sequence [fn, GiyJ] where {fn} C70~i1[55(CG)]

and since 720CGi has the bounded extension [CG]2i, we see that lim CiGiy1

also exists and hence that lim GiyiG55(&). It also follows that GGiC [GG]2i.

With these preliminaries out of the way, we now proceed to apply the

theory set forth in Chapter I. The operator 5 on Jp0 is defined as

if  e\

<2219) He t)
where 55(5) =55(7) X 55 (F). The dual spaces $i and §2 are constructed as in

§1.2 and it is readily verified that §i=77iX77i and §2 = 772X772. We denote

the elements of §i and §2 by t)1 = [y1, y1] and t)2= [y2, f], respectively. We

also obtain the transformations %2X, gi2, 552i, 3oi, 32o, 32i, which are all of the

form

- = (e'S,,)-

Finally we define the quadratic form on §u=§iX§2 as

(2.2.20)    Ofo, j) = (i)\ & + <D2, ji> - (Qnti1, i1) = Q(y, z) + Q(y, z)

and the operator
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(2.2.21) U[DM?2] = [t>1, -l)2 + 2W].

Next we define the transformation

(2.2.22) 2W = [L\xy\ B2Xyl + cV]

where yi = /3[y1, Lny1] and

(2.2.23) 5)(?2i) = [b\ y1]; y1 G 5)(721), y G 55(G0,y* = - Gj].

We set 91o = @(82i) and let So denote the transformation engendered by £21.

It follows directly that

(2.2.24) Sol)0 = [7iy», 7y° + Coy']

where y* is defined as in (2.2.2) and

(2.2.25) 55(So) = [[f, f];f G 55(70, f G 55(G), y< = - ®y° G 55(C0)].

Lemma 2.2.2. 91o is a closed null space.

Proof. Suppose {*£} C©(&), tf-M)1, and 8M-*g2=[g2, g2]. Then

y^y1 and L\xyn—>g2, and since 721 is a closed transformation it follows that

y1G55(721), and L\xy1 = g2, and yn-*y\ Thus yn-^f and Gxfn= -yn-^-y\ and

since Gx is closed y1G5)(G1) and Gxy1=-y\ Finally Ciy^= [?21^]2-721yi

also converges and since Ci is closed the limit is Gy\ Consequently tylG55(?21)

and S2ii)1 = 92- This proves that 91o is closed.

In order to show that 91o is a null space, let 1), jGSto- Then

(2.2.26) Oft, j) = (2(y, z) + (y1, C^*> + (Ciy\ z1) + (f, [CG]^1).

Now

Q(y, *) = 9(y{, **) = (dy1, tt^dz1) = (yi, ddz1) = (yi, [CG],^1).

Further

(f, Cxz>) = - (f, Cidi1) = - (y1, [CG]2iz>>,

<dy', z1) = - (CiGif, z1) = - ([CG]2if, z1) = - Q\[CG\«P).

Combining these relations with (2.2.26) we see that O(t), g) =0, which was to

be proved.

Lemma 2.2.3. 55(32o?<$oi) and 55(910) are dense in Qi.

Proof. Since 55(3202o3oi)C55(91o), it suffices to show that 55(320?o3oi) is

dense in £>i. To this end let g1 = [g1, g1} be an arbitrary element of §i and let

e>0 be given. As we have already noted, there is a m1G55(GGi) such that

\\gl — ti1||i<e. According to Condition (i) there will exist a ylG55(CGx) with

GrylG|3[®(hoLihi)]H55(C) such that l/oit^-Zory1!! <eand HGn*1 —Giy1]! <e.
It therefore follows as in (2.2.10) that | y1-M1||1g(l+2||5||)e2 + ||lF-I||e2. For
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such a y1 there is a v1E'S)(L\oLiIoi) such that v*= — Giy1. We now approximate

(g1—v1) in Hi by an element of £)(L21), say w1. Thus w' = d and hence on set-

ting y1=v1+w1, we see thaty'= — Giy1GS)(Co) and that y1 approximates g1.

It follows that t)1 = [y1, y1]G2)(32o8o3oi) and approximates g1.

We now define % to be the Q-orthogonal complement of 9to. As before

we see by Lemma 1.4.3 that 5ti is a graph, say of the transformation £21.

Obviously ?2iD?2i and somewhat less obviously we have

Lemma 2.2.4. The transformation 82i can be represented as

(2.2.27) &V = [Lliy\ B^y1 + dy]

whereyi = B[y1, L^y1] and

(2.2.28) 3)(L21) = [[y\ y1]; y1 E®(Lli),y E®(Ci), S E Hi].

Proof. Suppose yE^li- Then for each zGSfto

0 = Oft, a) - Q(y, z) + Q(y, z).

It is clear that TVoX0C9?o and hence that Q(y, z) =0 for each zGTV0. Conse-

quently yENi = ®(L\f), y« exists, and Q(y, z) = 0(y'', zJ) = -GO'S Giz1). On

the other hand

Q(y, z) = (y2, z1) + (y\ B21Z1 - Cidz1) - ((7321 + B*2i - [CG]n)y\ z1)

and since

(y\ C1G1Z1) = (y\ [CG]^1) = ([CG^y1, z1),

we see that

0 = - (W-y, dz1) + (y2 - B2Xy\ z1)

for all z'E^Gi). It follows that W-1y«'GS(G1*), that is y'G£)(Ci) and
(W-y,1 Gii,1) = (Ciyi, z1). Making use of the fact that £>(&) is dense in Hi,

we conclude that y2 = 732i;yl + Ciy\ Thus each tyG^fti lies in the graph of 821

as given by (2.2.27) and (2.2.28); the converse assertion is readily verified by

retracing the above steps.

As before we let Si denote the operator engendered by Sji- It is readily

seen that

(2.2.29) 8rf)<> = [Liy°, Bf + Coy']

where

(2.2.30) 5D(8,) = [[y°,f];y° E^(Li),y E^(Co),f Ei*i[Hi]].

Having determined 9t0 and % we next study the boundary space §

= 9ti/9(c"o defined as in §1.5 with generic element t). We denote the natural
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mapping tyG91i—H)G4? by 3 and again we see that the quadratic form O

induces a quadratic form on $ with the property 0(ty, 3) = 0((5ty, (3g).

The boundary spaces Q and 77 are not unrelated and under certain con-

ditions they are equivalent. In order to study this relationship we first set

(2.2.31) 5R„ = [ty; ty G ^7' G 55(d), y1 G 55(d)] and $0 = fj[iW0].

Since 910 consists only of cosets of 910 we see that 9c0 = /3-1[^?<>]. Further it is

easy to show that 910 is dense in 91i and it follows from this that §0 is dense

in £.

Lemma 2.2.5. The mapping (5ty—y'^y' + Giy1 is a one-to-one linear map of

Qo onto 55(d) C77, under which

(2.2.32) ||NI2 = IH|2 + ||Ciyi|2,

and

(2.2.33) O(0ty, fjj) = Q(y,y°).

Proof. The first assertion follows directly from the fact that ty—>ye is a

linear map on 91„ with kernel 910 and, by (2.2.18), with image set 55(Ci). For

a particular yeG55(Ci) choose tyG9c0 such that yl=ye and f=d. Then

IN!2 = NI2 = NI2 + |]dH!2.
Minimizing this expression over all yGTVi with y'=ye we obtain the inequal-

ity (2.2.32). Finally for ty, 3G910 we have

0(ty, 3) = Q(y\ »*) + (Ciy\ z1) + (f, Ciz<) + ([CG]nf, z1)

and in view of the fact that

(Ciy\ z1) = (W-^, Giz1) = Q(y\ dz1),

([CG]i2y!, 21) = (ddy\ z1) = (W^G.f, dz1) = ©(dy1, dz1),

we see that 0((Jty, gg) =0(ty, i)=Q(ye, z»).

Corollary. If C is bounded, then 910 = 91i and (5ty—>ye t'5 o bicontinuous

isomorphism of ^p om<o 77 under which (2.2.33) is valid.

Proof. If C is bounded, then 7 is bounded and 77 and 772 are equivalent

with 770 under the respective mappings 7oi and 72o. As a consequence, Ci and

Gi are bounded with 55(Ci) =77 and 5)(Gi) =77i. The above lemma therefore

implies that (5ty—>y" is one-to-one and linear on all of § to all of 77. Further

the inequality (2.2.32) shows that the inverse map is continuous and this

together with the closed graph theorem yields bicontinuity. Finally the

lemma asserts that (2.2.33) is valid under this correspondence.

The full statement of our result contains a description of the adjoint

system and we therefore proceed to the associated adjoint transformations.

According   to   the   general   theory   developed   in   §1.5   the   maximal   and
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minimal adjoint transformations Will and Wl2i, respectively, are defined by the

relations

(2.2.34) ®(2»li) = U[®(8«)]    and    ®(Wlu) = U[®(*&)].

Consequently

(2.2.35) WcW = [Mnz\ 73*i z- [CG^ii  - cj]

where ©(2J&) = ©(821) and z4 = B[z\ L^z1]. Furthermore 2J& is the restric-

tion of ffili with domain £)(9)(-21) =3)(?2i) and hence can be represented simply

as

(2.2.36) Willi   = [M\J, B*2iz1].

It is easy to see that the operator Wlo engendered by Wl2i is

(2.2.37) Wloi0 = [Miz°, B*z°]

where

(2.2.38) 3)(3tto) = [[z°, z°];z° E ©(Mi), z° G ©(G), z* = - Gz0];

here again zi = B[l0~11z°, L^I^z0]. The operator Wli engendered by 9)?21 re-

quires a somewhat more complicated description. We have

(2.2.39) Wlii° = [Miz°, 73*z° - i^{ [CG]2iL7iY + dz }]

where

3X2R,) = [[20, 2°]; 2° G ©(Mi), *< E iD(Ci), z° G /oi[#i],

{[CG]2i70"i1z° + Cur'} G /2o[/Jo]].

By now we have not only verified the hypothesis of Theorem 1.5.1 but

characterized the pertinent maximal and minimal operators as well. The

conclusions of Theorems 1.5.1 and 1.6.1 are therefore valid and represent the

principal result of this section. It will be noticed that the coupling trans-

formation in the adjoint operator Wl\ acts on the boundary space of L\\. By

employing the transformation theory developed in §1.6, this defect is easily

rectified. In fact setting

(2.2.41) z1' = Uz\       Ci = CiU',    and    G' = UG,

it is clear that Wlo and Wli can be represented by the equivalent operators

Wlii0 = [Miz°, B*z°],

(2.2.42)
®(2Wo') = [[z°, z°];z° E ©(Mi), z° E ©(G'), z*' = - G'z0];

and
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2KiY = [Mxz\ 7*2° - fil{ [CG]2xhli  + Clz'}},

(2.2.43) 55(501/) = [[z\ i];z G 5D(Jfi), z   G 5)(d'), z° G 7oi[5i],

{[CG]2i7o"iY + Clz'} G 720[77o]].

It was shown in the proof of Theorem 1.6.1 for zG®(Tkf2l) that /3Uz = /3t/0'ftz

or, equivalently, ftz=ft T7o/37/z. Consequently z*' = Uzi=P'Uo[PUz}=P'z,

that is

(2.2.44) *•' = ft [7m z° , /,oJf ia° ].

When C is bounded, the Corollary to Lemma 2.2.5 permits us to state

the boundary conditions on 8 and 9)1 in terms of the 7i and Tl7i boundary

spaces, namely Hand 77' respectively. Thus in this case Theorem 1.5.1 takes

the form: There is a one-to-one correspondence between the maximal nega-

tive subspaces [TV] of 77, taken with respect to Q, and the closed maximal

dissipative operators 8 on 77 such that 80C8C81, this correspondence being

defined by

(2.2.45) 55(8)= [ty°;ty°G 55(20,y«G TV],

where ye=y*+Gy°. Moreover the adjoint operator 9)1 = 8* is again a maximal

dissipative operator with dense domain, 9JloC9)lC9)li, and

(2.2.46) 55(9)1) = [30; g° G 55(2)1!), z'£P],

where ze = zi+Gz<> and P is the Q-orthogonal complement of TV. As in the

proof of Theorem 1.6.1, zeCP if and only if

(2.2.47) z'' = Uz° = zv + G'z°

belongs to l/[7]. Hence (2.2.46) is equivalent with

(2.2.48) 55(501) = [30; g° G 55(501i), z" G U[P]].

We note that U[P] is a maximal negative subspace of H'.

By way of illustrating the above development, we now sketch a treatment

for the vibrating membrane on a unit disk. The equation of motion being

2 2

(2.2.49) uit = uxlXl + uXiX2, xi + X2 < 1, t > 0,

we set Ux^r)1, uxi = ri2, and Ut = rf, and obtain the system (1.2) where

0    0    1] fO    0    0

^i=ooo,     a2 =   o o  i ,     e = i,     b = e.

.1   0   OJ to    1   0.

It is clear that 7 = 0 so that 77i = 770 = 772 = 72(A; 7), 70=-M0, and 7i

= — Mi.  According to  (1.5.8) each element of the boundary space 77 is
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represented by a solution of

2   0 0

(2.2.50) Liy   = y ,

or, equivalently, by a weak solution of the system

1      .    2 x

IxiXl "T" 1xiX2   —   1   !

12 2

1X1X2   +   1X2X2   =   1   I

3 3 g

IxiXl + 1X2X2  =  1  •

It can be shown that weak solutions correspond to regular solutions for such

a system and further that the first two equations are equivalent to

(2.2.51) n1 = <pXl,        v2 = <Px2>        <t>xixi + 0X2X2 = 4>-

Representing the boundary values of v% and dc/>/6V (here r2 = xi+X2) by

Fourier series

(2.2.52) 77s — (27T)-1'2   S  ate*', d<p/dr ~ fa)-1'2   £  foe*",
k=~ao k=—co

the Bessel function expansions for tj3 and <£ are simply

V3(r,o-) = (27T)-1'2  £  a*{/*(l)}-ij*(r)e«',

(2.2.53)

<fr(r, <t) = (2x)-!'2   £ ftk{tf(l)}-V*(r)e«';
&=— oo

and the norm of y= [i3, d(j>/dr] is given by

||y||2 - <y°, y°> + (Ly,Ly) = f V*(dr?/dr)- + <f(d<l>/dr)-d*
(2.2.54) ^ r

=     X)    (p* I  a* I2 + Pk'1] bk |2),
/;=—oo

where pt = Ik (1)/Ik(l). It follows that the boundary space H is the direct

product of hilbert spaces hi and 7i2 with elements n1 = i3 and n2 = dc/>/6V, and

norms

j.    1||2 ^—* I |2 II    2n2 ^—v     _1   | 2

(2.2.55) ||n ||i = 2^, Pk | ak |     and   ||n||2=2^pJ:   \bk\ ,

respectively. These are dual spaces and the transformation

(2.2.56) fn{bk} = {pir'h}

on h2 to Tii is unitary with inverse /2i {ak} — {pkak}.
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In the present example the third relation in (1.3.4) becomes W[yY, y2}

= [y2, y1]. We also recall that y= [y\ 71y1]GTVifW0L if and only if 72y1 = y1.

On the other hand for such a y, Wy=[Lxyl, y1]=[7iy1, 7i[7iy1]] and

(7i)271y1 = 71[72y1]=7iyl so that W maps Nxf~\N£ on itself. Moreover in

going from y1 to 7ry[ we see that vl^V%, V2^^, and rj3—>7iXl + rfX2=A<p=(p.

Hence W[rj3, d<p/dr}= [<p, dnz/dr}. In other words

(2.2.57) W[n\ n2} = [fun2, fun1].

Finally the relevant quadratic form on H is

Q{y,y) = j W(d<p/dr)~ + [n3]-d4>/dr}da = (n1, n2) + (n2, n1)

(2.2.58)
1     ,ii    1 2ii2 ii   1 2||2)

= — ||jn  +/i2n||i— [| n   — /i2n||ij,

and the general boundary condition given by a maximal negative subspace

TV of 77 is characterized by an arbitrary contraction operator / on hx to itself

as

(2.2.59) n1 + 712n2 +/[n1 - /12n2].

We next impose an elastic type boundary condition on the membrane by

adjoining to the membrane system the equation

(2.2.60) -nt = Kn1

which governs the boundary system; here k is a multiplicative operator on hi

(considered as a space of functions on the circle Y) to 770 = 72(r). Assuming

the multiplier k( ■) to be measurable and bounded, it is easy to see that k is a

bounded linear transformation. Further

(2.2.61) 7 = 0    and    C = (k      0).

Now (Kn1, Tj) = (n1, /i2/cnj)i, where Ki is the bounded multiplicative trans-

formation on 77o to 7i2 defined by the function [k()]~. It follows that

(2.2.62) C* = ( "j    and    G = WC* = (   V

The transformations C and G being bounded, we conclude that the mapping

ty-+ye=yi-\-QyO is an isomorphism of ^ onto 77 under which Q(ye, y')

= 0(ty, ty). In this case

(2.2.63) ye = [n\ n2 + «}].

The maximal negative subspaces of .§ are defined by contraction operators

7 as in (2.2.59) and in particular 7 = 7 gives (ye)2 = n2 + Kir)=6 as a boundary

condition. On the other hand, n2 = du/dr| r=1 and by (2.2.60) TJi = Kn1 = kul\ r=i
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so that we have in essence

(2. 2.64) du/dr | r=i + kxku \ ̂  = 0,

the familiar boundary condition associated with an elastic constraint on the

boundary.

A somewhat more interesting boundary problem is obtained when we

couple a spring with mass attached to the membrane in which case we require

an unbounded coupling operator. The boundary space is now 77o = L2(r)

XL2(T) and the boundary system is governed by the equations

.1 2
vt = "i ,

(2.2.65) 2 1-12
it = — ut]   — v   n ,

where u and v are multiplicative operators corresponding to real measurable

bounded functions /*(■) and v(-), in fact we even assume that v(-) is bounded

away from zero. As such u is clearly a bounded operator on L2(T) to itself.

On the other hand v is bounded on L2(T) to h2 and hence v1 is closed on

h2 to L2(T) with a dense domain consisting of those functions whose Fourier

coefficients are square summable (without the pkx factor). We now have

/  0      A /20        0 \
(2.2.66) 73 = ( )    and    C=(l ).

Again (vi)2, n2)2=(i2, vifnn2) where vi is the bounded linear multiplicative

operator on hi to L2(T) defined by v(-). Thus (v~y)* = (v*)~1=fnvi1 and

/©       0    \ /0   -i-rn
(2.2.67) C* = I )     and     G=WC* = ( ).

\0    -/21^-V \0       0    /

Finally we note that CWC* = &, with domain ©(C*), and this together with

the fact that 7^ = 1 shows that Condition (i) is satisfied. Likewise (ii) is satis-

fied since B + B* — CWC* = & and we see, incidentally, that Hi = H0 = H2.

The boundary space elements are represented in the present instance by

solutions of 9Wi?il)1= — t)1 or, equivalently, by solutions of (2.2.50) plus

(2.2.68) B*[Bf + Cyi]-Czi=-y\

where y*=j8[yS Liy1]=[i3, <3cA/dr] and z{ = B[Liy\ y1]=[<^, <V/r>]. The

Equations (2.2.50) are solved as before and, in terms of the functions 13 and

(j>, we obtain as the solution of (2.2.68)

2 I1 =  - P(l + M2)-V-Wr>,

jj2 = - (1 + u2)-lv-ldr,3/dr.

From this one readily computes for t)= [ty1, Sfi'q1]
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(2 2 70)       "t'"2 = SyW/dr)~ + *(3*/ar)"

+ (1 + M2)~K | v-idti'/dr}* +  | ir-'a^/df |*)}Ar,

and

(2.2.71) 0(ty,ty) = 2 Re j   C [,rf + (1 + nr)-hr1dr,'/dr}{v-1d4>/dr}-d<r~\.

Finally since w3 and <f> are mutually independent and since the range of v^1 is

72(r), we see that a maximal negative subspace is determined by the relation

vxnz + (l+p2)-1v-1dni/dr = 0 on Y, in other words i]2 = vXT]i on Y. Now by

virtue of (2.2.65) we have A»'i««|r-i=A*»'i'?8 = i?«. In essence then jj1 = pviu\ r=i

and hence by (2.2.65)

(2.2.72) viutt\r=i + u2pxu\r-x = — v^du/dr |r_i,

which is the boundary condition associated with a spring plus mass con-

straint at the boundary.

Appendix

2.3. General maximal dissipative extensions of 70 and restrictions of Lx.

The body of this chapter has dealt with maximal and properly dissipative

extensions of 70, that is, maximal dissipative extensions of 70 which are at

the same time restrictions of 7i. If 7 = 7, then 70 is conservative, Lx= —L*,

and we see from Lemma 1.1.5 that the properly dissipative operators are the

only maximal dissipative extensions of 70. However in the general case, 7^7,

other maximal dissipative extensions of 7o exist and, dually, there are maxi-

mal dissipative restrictions of Lx whose domains do not contain 55(7o)(7).

Such extensions of 70 need not be differential operators; the physical models

associated with operators of this kind allow for part of the energy which

leaves the system through the boundary to be redistributed in the interior(3).

The adjoint M of such an operator is a restriction of Mx with 55(Tkf^55(Tl7o)

and, in the associated model, energy may enter through the boundary, but

only to an extent which can be compensated for by internal energy losses.

In this section we shall make an exploratory study of these nonproperly-

dissipative operators; however, the problem of determining the most general

maximal dissipative extension of 70 or restriction of 7i is left open.

We shall assume that L is a maximal dissipative extension of Lo with domain

contained in 55(7i). In this case L — Lx annihilates 55(70) and hence (L —7i)y°

depends only on the coset of 55(7)/55(70) to which y° belongs. Now

55(7)/55(7o)

is isomorphic to a subspace TV of 77 under the mapping
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(2.3.1) y.y -*y = 8[hiy, Lnhly°].

Thus L — Li defines a linear transformation T on TV to 7L0 such that

(2.3.2) Ly° = Lry° + Tyy0, y" E ©(L).

We shall soon restrict T further; however first it will be instructive to deduce

certain properties of T and TV implied by the above basic assumption.

Lemma 2.3.1. TV is a negative subspace of H.

Proof. Suppose there were a y°E£)(L) such that Q(7y°, 7y°)>0. Then

since ©(Z20L0/01) is dense in Hi, we can choose a sequence {un} C©(Lo) with

the property LJi1^—►T'cuVin Hi. Setting w„ = y°-u°), we see that {w°} C©(L),

yw°=yy°, I^w®—>6 in H, and wn—>d in L7o. Consequently(8)

00 0        0 00 00

(Lwn, wn) + (wn, Lwn) = Q(yy , yy ) + (Dwn, wn)

(2.3.3) + (Tyy , wn) + (wn, Tyy )

and this converges to Q(7y°, 7y°) >0 as n—-> co . However this is contrary to

L being dissipative.

Since Q(7y°, 7y°) is a measure of the rate at which energy enters through

the boundary, the above lemma shows for the model associated with L that

energy does not enter through the boundary. On the other hand, T has the

effect of channeling energy directly into the interior at a rate depending on

the boundary data.

Lemma 2.3.2. If 3t(L) C7oi[7Li], then Ty = 6 whenever yEN and Q(y,y)
= 0.

Proof. If the assertion were false, there would exist a y°E^)(L) such that

Q(yy°, yy°) = 0 and Tyy09^9. For a given e>0, choose a sequence {u\\}

C©(L0) with the property I0~iUn-^lQi(eTyy0-y0). Setting w° = y°+ul we see

that {w°n} C©(L), yw°n = yy°, IoM^I^^TyyO) in Hu and w0n^eTyy° in H0.

Thus (2.3.3) holds and

0 0 0 0 2 0 0 |, 0|,2

(Lwn, wn) + (w„, Lwn) -* e (DTyy , Tyy ) + 2e|| Tyy \\ ,

which is positive for a sufficiently small choice of e. Again this is contrary to

L being dissipative.

The physical interpretation of Lemma 2.3.2 is that T transports energy

into the interior only when energy leaves through the boundary. This is

reasonable enough and suggests that it would be better to define T as a trans-

formation on the quotient space

(8) Here we use the notadon (Dw", z0)=fA(EDw0, z°)dx= (Dul^w", 70^1z»>, valid for all

a>0,z0G/oi[77,].
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(2.3.4) TV„= TV/TV,

where

(2-3.5) N0=[y;Q(y,y) = O,yCN}.

According to Lemma 2.3.1, —0 is a positive hermitian bilinear form on TV.

It follows that — Q defines a positive definite bilinear form on TV„, namely

— Q, where we set Q(y, z) = Q(y, z) for any yCy and zCzz. Letting

(2.3.6) <?,'*/ = -0(y,^),

TVo becomes a pre-hilbert space whose completion we denote by TV. We shall

denote the mapping which sends y°G5)(7) into the cosety containing yy° by

the symbol y.

With this preliminary discussion as motivation, we now suppose that 7

is of the form

(2.3.7) 7y° = 7ry° + fyf, f G 55(7),

where 7 is a linear bounded transformation on TV to 770. This amounts to a

rather strong assumption on 7 and implies, for instance, that the adjoint

transformation T* on 770 to TV exists. Thus for y°G55(7) and 2°G770 we have

(2.3.8) (fyf, 2°) = (yf, fV) = - Q(yf, 7*2°).

Consequently for y°, z°G55(7) we can write

<7y°, z°) + (f, Lz»)

(2.3.9) = Q(yf, 72°) + {Df, z°) - Q(yf, 7*2°) - 0(7*y°, yz°)

= Q(yf ~ f*f, yz° - f*z°) + ((D + ff*)f, z°>;

here we have used the identity Q(f*y°, 7*z°) = -(77*y°, z°>.

Lemma 2.3.3. Considered as a quadratic form on 70i[77i],

(2.3.10) 7+77g0.

Proof. Suppose the contrary were the case. Then since I^1 [55(70) ] is dense

in 77i, there is a y°G55(7o) such that

((D + ff*)f, y°> > 0.

Further, since 7*y°GTV and y [55(7>) ] is dense in TV (by construction), we can

find a sequence {w°} C55(7) such that yu„—>7*y° in TV and again making

use of the fact that 70~11[55(70)] is dense in 77i, we may further suppose that

70~i1tt£—>0 in 77i- Then

0 0 0 0 0^0 -10—10.
wn = y  + un G 55(7),       jwn = yu„ -* T*y ,       Ioxwn —» 70iy  in 77i,

and
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o o
wn —> y in Ho.

It now follows from (2.3.9) that

(Lwl, wl) + (wl, Lwl) -* ((D + ff*)y, y) > 0,

which is impossible for L dissipative.

Lemma 2.3.4. Let N~ denote the closure of TV = 7[©(L)]. Then N~ is a

maximal negative subspace of H and

(2.3.11) ©(L) = [y<>; y° G ©(Li)  and yy° E N~].

Proof. By assumption ©(L0) C©(L) C©(Li), and it follows from this

fact alone that ©(L) is of the form (2.3.11) with TV~ replaced by TV = y [©(L)].

According to Lemma 2.3.1, TV is a negative subspace of H. Hence if TV is not

maximal negative, it is certainly contained in some maximal negative sub-

space, say TV-. We set

©~ = b°; y° G ©(Li) and 7y° G TV-]

and show that ©(L) =©-. Obviously ©(L) C©-- Again defining

TV„-= [y,Q(y,y) = 0,yEN~],

we proceed as before and construct the pre-hilbert space

N7= N~/No

of residue classes y~, z~ having as inner produce (y-, z~)= —Q~~(y~, z~),

where Q~(y~, z~) = Q(y, z) for all yEy~ and zEz~. Likewise we denote the

mapping which takes y°G©_ into the coset y~ containing 7y° by the symbol

y~. It is clear that No — No~(~\N and it follows from this that TVo can be em-

bedded in No under the mapping which takes y into y~ if the residue class y

is contained in the residue class y~; in particular, the inner product is pre-

served under this mapping. Moreover, y~ is in this sense an extension of y.

Finally, if TV- denotes the completion of TV0-, then it is clear that TV can be

thought of as a closed subspace of TV-, and that t can be thought of as a

transformation of this subspace to H0. We note that each y~GTV- has a

unique representation y_=yr+yY, where yfGTV and yrGTV-nTVx. We now

extend T onto TV" by setting

f-y- = TyT.

Then Z"- is a bounded linear transformation on TV- to 7L0. Next we define

what is clearly an extension of L, namely,

L-y° = Lry° + t~y~y\ y° E ©-,

and we show that L~ is dissipative. In fact, suppose y°G©~ and let f-y°

=y~=yr+yf- Then
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Q~(y~, y~) = Q(yr, yr) + Q~(yr, yr)

and

(f-?-, y°> = (7yf, f) = (yr, 7*y°> = - Q(yr, 7*y°).

Consequently, we obtain in analogy to (2.3.9)

(7-y°, y°) + (f, L-y°)

= Q'{?¥, yr) + QGT - f*f, yr - 7*y°) + {(D + ff*)f, y°>

which is 5S0 since each term in the right member is nonpositive, the last

being so by Lemma 2.3.3. Thus L~ is dissipative and it follows from the fact

that 7 was assumed to be maximal dissipative that L=L~ and hence that

55(7) =55~. Thus 55(7) is of the type considered in Theorem 1.5.1 and hence

there is a maximal dissipative operator 7' such that 55(7) =55(7') and

70C7'C7i. However, 7' is engendered from a transformation 721 for which

ft[@(721)] =TV_ and, according to Theorem 1.3.1, ®(7207'70i) is dense in

®(721). It follows that 7[7(7)J = ft[®(7207'701)] isjdense in TV". Incidently,

this shows that TVo is dense in TVo" and hence that TV=TV~.

We summarize these results in

Theorem 2.3.1. Let L be a maximal dissipative extension of L0 with 55(7)

C55(7i). Then TV = 7 [55(7)] is a negative subspace of 77 and we can construct

the hilbert space TV from the pre-hilbert space defined by (2.3.4) and (2.3.6).

Suppose further that L is of the form (2.3.7), where f is a bounded linear trans-

formation on TV to Ho. Then f necessarily satisfies the Condition (2.3.10), the

closure of TV, namely TV-, is a maximal negative subspace of H defining the same

hilbert space N as TV, and 55(7) is given by (2.3.11).

In the converse direction we have

Theorem 2.3.2. Suppose TV is a maximal negative subspace of H and con-

struct the hilbert space TV from the pre-hilbert space defined by (2.3.4) and (2.3.6).

Let T be a bounded linear transformation on TV to Ho satisfying the Condition

(2.3.10). Then

Lf = Lxf + fyf,
(2 3 12)

55(7) = [y°; y° G 55(7i) and yf G TV]

defines a maximal dissipative extension of Lo.

Proof. Since 7[55(70)] = 0, it is clear that 7370 and it follows from

(2.3.9) that 7 is dissipative. It remains, therefore, to show that 7 is maximal

dissipative and for this it suffices to prove that 9i(X7 —7)=770 for some

\>0, according to the corollary to Theorem 1.1.1. We shall establish this

fact with the help of the maximal dissipative operator 7' defined in Theorem

1.5.1 with 55(7') =55(7) and L0CL'CLX. We show, first of all, that R(\; L')
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can be thought of as defining a bounded linear transformation on H0 to TV

which we shall denote by T5\; more precisely

(2.3.13) 5x/° = <?[2e(X; L')f].

Making use of the relation Q(SKf>, Sx/°) = Q(yR(X; L')f>, yR(\; L')/°) and the
identity (\I-L')R(\; L')=I, we have

Q(Sx/°, S,f) = (R(\; L')/°, L'R(\; L')/°)

+ (L'R(X; L')f, R(\; L')f) - (DR(\; L')f, R(\; L')f)

= 2\(R(X; L')f, R(\; L')/°> - (R(\; L')f, f)

- </°, R(\; L')/°> - (DR(X; L')/°, R(X; L')f).

If L21 denotes the transformation with maximal negative graph which en-

genders L' and if y1 = I^R^; L')/°, then \I2iy1-L'2xy1 = 7~20/° and Lemma 1.3.2

implies that

C(X)2| (DR(\; L')f, R(\; L')f) \   tk c(X))\y)\l

(2.3.14) ., On 2 ii   Oi ■ 2
^||/*>f||i   ̂ ||/||    •

It readily follows that

||Sx/°||2 = - Q(5x/°, Sx/°) ^ £(A)||/°||2.

We now show that k(k) g (2X)_1/2 by estimating the bound of the adjoint

transformation 5* on TV to 77o. To this end, let f°EH0 and yENo so that

9=fy° for some y"E1)(L'). Then Q(S^a, y) = Q(yR(\, L')f°, yy°) and hence

Q(Sx/°,y) = (R(\; L')/°, L'y") + (L'R(\; L')f, y°> - (DR(\; L')f°, y°).

As the relation (2.3.14) shows T?i0(X; L^^I^RQ^; L') is a bounded linear

transformation on H0 to Hx. Hence we can rewrite the above equation as

(2.3.15) Q(V> 9) = <*io(A 5 L')f, (X/21 - M\i)hly) - (f , y);

here we have again made use of the identity (\I — L')R(k; L') =1. Next set

M' = (L')*. Then R*(\; U) =R(\; M') so that if z°G©(M') then

(f, z°) = (R(\; L')f,    (XI - M')z) = <2?10(X; L')/°,    (X/21 - M\i)hlz\

It is seen from the proof of Theorem 1.5.1 that M' is engendered from a trans-

formation M21 whose graph is a maximal negative subspace of iL2; in fact L'

is similarly engendered from L21 and U[®(M2l)] is the Q-orthogonal comple-

ment to @(L21) and hence maximal positive. Moreover ©(720M'70i) is dense

in @(M2i) and it follows from this and the above displayed relation that

(j, /oiz1) = (Rio(\; L')f, (X72i - MW)
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for all z1G55(Tlf21). On the other hand, the 9?(X721-T1721) =772 by Lemma

1.3.4. Hence there is a z1G55(M21) such that

(X721 - 7kf21)70iy   = (\I2X - M2X)z .

Combining this with (2.3.15) we obtain

(2.3.16) (Sx/o, y> = " Q(SxP,7) = - if, u°),

where m° = 70i21—y°. Setting m1 = 70~11m° we see that T1721m1=X72iM1G720[770],

from which it follows that w°G55(Mi) and hence that Mxu°=\u°. Finally

(2.3.16) shows that Sfy= —u°.
Next we set 2° = 70iZ1,y =yy0, z=7Z°, and u=7M°. Then yG/3[@(721)] and

^G(3[7r[@(T1721)]]. Consequently y and z are 0-orthogonal and

0(u, u) = Q(y,y) + Q(z,z),

(2.3.17)
Q(y,y) <0^Q(z,z).

Further

— Q(u, u) = (M2Xu , u) + (u , M2Xu ) — (D2Xu , u )

(2.3.18) = 2\(I2Xu, u) - (D2xu, u) ^ 2\(ii , u) ^ 0.

Combining (2.3.17) and (2.3.18) we obtain

2\(w°, «•) ^ - Q(u, u) £ - Q(y, y) = - Q(y, y) = (y, y)

which shows that 2X||5*y[|2^||y|[2 for all yCN„. Since TVo is dense in TV, this

gives the required estimate on ||S*|| and it follows that the same estimate

holds for 115x11 =||S*[|. As a consequence ||z\Sx||<l for X>||t1]2/2 and it is
easy to prove from this that 7(X; 7) exists for such values of X (see, for in-

stance, E. Hille and R. S. Phillips [7, Theorem 5.10.4]). In fact,

CO

(2.3.19) R(\; L) = R(\; L') T [fSx]n,        X>||f||2/2,
n=0

and for such X, 9?(X7 —7) =55[7(X; 7)]=770. This concludes the proof of

Theorem 2.3.2.

Corollary. 9i[5^]C70i[55(T1721)].

Proof. In the course of the proof of the above theorem, it was shown for

each yGTV0 that m° = 5*9G55(Mi) and that MiU°=\u°. Combining (2.3.17)
and (2.3.18), we see that

0 =S - (Du\ w°) g - Q(u, u) ^ - Q(y,y) = (y, y).
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Thus if {yn} EN0 converges to yGTV, then un = S*y„—>m° = 5*y in Ho and,

by the above inequality,

0 0 0 0

(D(Un  —   Um),(un  —   Um)) —» 0

as n, m—>&>. Setting u\ = Iqiu\\, it follows that {uxn} converges in 77i, say to

u1, and that

[uH, M2iun] = [u„, X72iM„] —> [u , \I21U ] in 77i2.

It is clear that m° = 701m1 and, since M\\ is closed, we see that u1E<^)(M\i).

We next characterize the adjoint M of the maximal dissipative operator

L defined as in Theorem 2.3.2. According to Theorem 1.1.2, M is again a

maximal dissipative operator with dense domain. Further, 7c(X; M) =T?*(X; L)

and this together with (2.3.19) implies

(2.3.20) R(\; M) = R(\; M') + Sit*    £ [Sxf*]     R(X;M'),   X>||f||2/2,
_ n—0

where M' is the adjoint of L', defined as in the proof of Theorem 2.3.2. Since

MoCM'CMi, it follows from the corollary to Theorem 2.3.2 that

(2.3.21) ©(J7) = dl[R(\; M)] C 7oi[©(M2i)].

On the other hand, L0CL so that for y°ET>(L0), z°E,A)(M), y1 = 70"i1y°, and

z1 = Io1z° (well defined by (2.3.21)), we have

<720Mz ,y)= (Mz ,y)=(z,Loy) = (z, L2iy ).

Since ®(72oL07oi) is dense in ®(L2l), we conclude that M^z1 = 720Mz° and

hence that MGMi.

Comparing the relations (2.3.2) and (2.3.7) we see that

(2.3.22) T = Try-1-

Now for yGTV we have

<77_1y, TY-'y) = - Q(77_1y, yy~xy) = - Q(y, y) ^ 2(y, y).

It follows that 77_1 is a bounded linear transformation on TV to TV and hence

that T is bounded on TV to 770. Since NEH, the adjoint transformation T*

can be thought of as a bounded transformation on 7T"0 to H, and for y°E'S)(L)

and z°G770

(L-yy0, z°) = (7y°, 7*z°) = Q(7y°, WT*z°)

by (1.6.4). Finally for y°E^)(L) and z°G©(Mi)
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(7y°, 2°) - (f, Miz°) = Q(yf, 72°) + <77y°, z°>

= 0(7y°, 720 + WT*z"),

and this vanishes for all y°G55(7) if and only if yz0 + VF7*z° belongs to the

Q-orthogonal complement of TV. We have therefore proved

Theorem 2.3.3. Let 7 be defined as in Theorem 2.3.2 and set M = L*. Then

M is a maximal dissipative restriction of Mi with dense domain and

(2.3.23) 55(M) = [z°; 20 G SD(Afi) and 72° + WT*za G P],

where P is the Q-orthogonal complement of TV.

The relation (2.3.23) shows that the presence of 7 permits the rate at

which energy enters the system through the boundary, namely Q(Uyz°, Uyz°)

= —Q(yz°, 72°), to be positive. However the inequality (2.3.10) together with

the condition 7Z° + W7*z°GP require that the rate at which energy is dis-

sipated in the interior of the system be at least as large as the flow in through

the boundary.

2.4. An example. It will be instructive to carry through the previous

development for the case of the telegraphist's equation

(2.4.1) utt + ut — uxx = 0, a < x < b, I > 0.

This can be brought into the form of a system by setting

■n1 = ux + ut,

(2.4.2)
■n2 = ux — ut,

in which case

1        J      o-V 1        \(2.4.3) l.-*-2    <»-,),

vt = — vx + 2   (n  — v )■

In our usual notation with y°= [ij1, n2],

this system is of the form (1.2). Since I<F = I — D<37, we see that the

spaces 770, 77i, and 772 are essentially the same and in the following we shall

not distinguish between them. The boundary integral takes the form

(2.4.4) (Aya,y°)     = { \ vKx) |2 -  \v2(x)\2}   -
a a

It can be shown (see [12]) that
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©(Li) = [y ; y (x) absolutely continuous, y  and yx E L2[(a, b); /]],

(2"4"5)   ©(Lo) = [y°; y° G ©(7i), y(a) = e = y(b)}.

Moreover if y°G©(Li) and a= — <*> [b= oo ], then of necessity

yo(a) = d[yo(b) = £?].

Thus for (a, &)=(—«>, <»), ©(L0)=©(Li), the boundary space H consists

of only the zero element, and L=L0=Li is the only maximal dissipative ex-

tension of Lo as well as the only maximal dissipative restriction of L\.

When (a, b) = (0, °°) the problem becomes more interesting. The boundary

space H is now two dimensional and y =T3[y°, Lry0] can be represented com-

ponentwise by [77'(0), 12(0)], in which case

(2.4.6) Q(y, z) = i2(0)[f2(0)]- - v\0)[f»(0)h

It is readily seen that each maximum negative subspace TV of H is determined

by an a of absolute value ^ 1 and is of the form

(2.4.7) TV = [W(0), n2(0)}; „2(0) = «,>(0)}.

The hilbert space TV is one dimensional unless |a| =1, in which case it con-

sists of only the zero element. Representing fy° by i:(0) we see that

(2.4.8) Q(yy°, fz°) = (| a\2 - 1W(0)[^(0)]-.

It is clear that the most general form of T is given by

f-pyo = c^i(o)    where    c = ( )
Wx)/

and CiGL2(0, oo). Condition (2.3.10) becomes

(2.4.9) (1 -  I « I2)"1 j <c, y°> |2 g - (Df, y°>, y° G 770.

In order to see what restriction this imposes on c we diagonalize D, say by

the rotation U, and obtain

U*DU = ( j    where    U = (ujk) = 2-"4    ~ Y

Setting w°= U*ya, the relation (2.4.9) takes the form

(2.4.10) I (cii, «!>+ (ds, co2) |2 g 2(1 -   |a|2)(co2, co2)

where dk= ^2, Ujifij, k = l, 2. It follows that (2.3.10) is equivalent with cfi = 0

and (d2, d2) fs 2(1 — | a\2) and hence with

(2.4.11) a = - c2   and    (cu ci) ^ 1 -  | a |2.

According to Theorem 2.3.2, the operator

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



252 R. S. PHILLIPS [February

Ly° = Lxy° + ci,»(0),
(2.4.12) ' '

55(7) = [y°; f G 7(70, 12(0) = cxV\0)}

where c=[cx, — cx] and (cx, cx)^l — \a\ 2^0, defines a maximal dissipative

extension of 70. The adjoint operator M = 7* is described in Theorem 2.3.3.

Thus M is a restriction of

Miz° = - (Az°)x + 7*z°, 55(Tlfi) = 5)(7i),

in fact the domain of Af is readily found from the relation

(Lf, 2°) - (y°, Ml2°) = v2(0)[j;2(0)]- - ,>(<>) [T(0)]- + (c, *V(0)

= ,1(0)[a[f2(0)]"- [^(0)]-+^, 2°)];

and this vanishes for all y°G55(7) (and hence for all rj^O)) if and only if

(2.4.13) (z°, c) = ((f1 - f2), ci) = f'(O) - 5f2(0).

The global lateral Condition (2.4.13) serves to define 55(Af) C55(Afi) and

assuming (cx, cx)ijs 1 — | a\ 2^0, Af is a maximal dissipative restriction of Afi

by Theorem 2.3.3.

The case —<*> <a<b<<x is slightly more complex. Here the boundary

space 77 is four dimensional and y=j3[y°, 7iy°] can be represented com-

ponentwise by [nl(b), n2(b), ^(a), n2(a)], in which case

(2.4.14) Q(y,z) = VW^'Wh - V2{b)[t2(b)}~ - ^[^(a)}- + r(a)[f2(a)h

Each maximal negative subspace TV of 77 is now two dimensional and can be

characterized by four constants 5, e, p, v as

4 V\b)  = 8r,2(b) + «,*(«),

„2(a) = ^2(T>) + mKa),

provided

(2.4.16)    | dV2(b) + en^a) |2 +   | nV2(b) + vn^a) \2 -   \ rj2(b) \2 -   \ v\a) \2

is a negative quadratic form in n2(b), ^(a). Necessary and sufficient condi-

tions for this are

U|2+  UI* ^ 1,
(2-4-17) ,    ,        ,   , i i

| S |2 +  | e |2 +  U |2 +  | v I2 ̂  1 +  \Sv - eM |2.

Replacing the ^ signs by < signs, the Conditions (2.4.17) become necessary

and sufficient for the form to be negative definite. It is convenient at this

point to diagonalize the form (2.4.16) by a rotation of coordinates: [77], v2]

= V[n2(b), ^(a)], in terms of which we have for 7y°, 72°GTV

(2.4.18) 0(7y°, 72°) =  - [qiv)[fi]~ + qm\f*<]-].

If TV is (maximal) negative, then gy^O, j = l, 2. The hilbert space TV will now
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be two, one, or zero dimensional according as the q/s are both positive, only

one is positive, or both are zero. If both q/s are positive we may write fy°

= 7y° and define

ii
*J   ,    where    C = (ckj(x)).
Vi J

Actually this formalism creates no difficulty even if say c/y = 0 provided we

then set ckj = 0 for k = l, 2. Condition (2.3.10) now becomes

2 2 2

(2.4.20) E qj1  E <1*, eu)    ^ ~ (Dy°, y°>.
j=i *=i

Again, diagonalizing D with w°= U*y°, the Condition (2.4.20) becomes

2 2 2

(2.4.21) £ 8T1   E (W, fty>    =§ 2(co2, co2).
y=i k,i=i

For co2 = 0 we see that this implies E* "*ic*i = 2_1/2(ci,-+c2y) =0, providing

that 9,5^0. Hence setting Ci= —Cu, c2 = c22, (2.4.21) becomes

gr11 (co2, Ci) |2 + qr1 | (co2, c2) |2 ^ (co2, co2).

If, say, qi=09£q2, then as above Ci=0 and the Condition (2.3.10) becomes

(2.4.22) (c2,c2)^q2.

On the other hand if both q/s are positive, then Condition (2.3.10) is equiva-

lent with

(2.4.23) du + d22 + [(du + d22)2 - id]1'2 ^ 2,

where d,j= (qiqj)~ll2(ci, cf) and d = dud22— \ dn\2. Assuming C\ and c2 to be so

restricted, assuming TV to be a maximal negative subspace defined as above,

and assuming f to be given by (2.4.19), then the operator L defined as in

Theorem 2.3.2 is a maximal dissipative extension of Lo.

The adjoint operator M = L* is again maximal dissipative and a restriction

of Mi. Moreover ©(M) is delimited by global lateral conditions and again

these conditions are readily obtained from the relation

(Ly<>, z°) - <y°, Miz°) = (8V2(b) + ^(^ifWh - 12W[f2(6)]"

" V^a^Ka)]- + (uV2(b) + V(«))[f2(«)]-

+ V2(b)[(c'll, f1) +  (C21, f2)]

+ 11(«)[^i2,f1) + <4,f2)],

where (c'v) = CV. The left member vanishes for all y°G©(L) (and hence for

all [r)2(b), vKa)]) if and only if
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(2 4 24) (rS °'n) + <r' C'*l) = m ~ l^{b) ~ HKa)'

<S\ cu) + (f2, en) = fK*) ~ «*(*) - «*(«)•

These are the required lateral conditions determining 55(M) C55(Afi). We

recall that c,- = 0 if ffj=0 and hence when both g/s vanish, then G= 0 and the

left members of (2.4.24) are each zero so that the lateral conditions become

boundary conditions; in this case both 7 and Af are properly dissipative

operators.
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