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Abstract. We construct projective unitary representations of (a) Map(S1;G), 
the group of smooth maps from the circle into a compact Lie group G, and 
(b) the group of diffeomorphisms of the circle. We show that a class of repre- 
sentations of Map(S 1 ; T), where T is a maximal torus of G, can be extended to 
representations of Map(S 1 ;G), 

Introduction 

One object of this paper is to describe a series of projective unitary representations 
of the group of (orientation preserving) diffeomorphisms of the circle. They are 
characterized, and distinguished from other known representations ([8], [13]), 
by the property of having "positive energy", which means that the rotation of the 
circle through an angle c~ is represented by e-  i,K where K is a positive operator. 

In their infinitesimal form, i.e. as representations of Vect(Si), the Lie algebra 
of smooth vector fields on the circle, the representations have been known for 
some time to physicists ([5], [3]) in connection with the quantization of strings 
moving relativistically. (Vect(S 1) is called by physicists the Virasoro algebra.) I 
have tried to explain briefly in an appendix to this paper how the representations 
are relevant to the theory of strings; but as a crude oversimplification one can say 
that one wants to describe unparametrized strings but finds it more convenient to 
describe parametrized strings: the group of diffeomorphisms acts on the Hilbert 
space of states of a parametrized string by changing parametrization. 

The infinitesimal version of the representations has also been described by 
Ka~ ( [7] [7a] ). 

My approach to the construction of the representations involves constructing 
irreducible representations of another family of groups. For any Lie group G the 
group Diff(S 1) of orientation preserving diffeomorphisms of the circle S t is a group 
of automorphisms of the group Map(S 1 ;G) of smooth maps from S ~ to G (under 
pointwise composition). Taking first G = T, the circle group, I shall construct an 
irreducible projective unitary representation of Map(S ~ ;T) on a Hilbert space H. 
Then I shall show, what seems to me rather surprising, that any representation 
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of Map(S 1 ;~-) belonging to a certain class extends canonically to a representation 
of Map(S 1 ;SU2) on the same Hilbert space H, when qF is identified with the dia- 
gonal matrices in S U  2 . The next step is to show that Diff(S 1) acts projectively 
on H, intertwining with the action of Map(S t ;SU2), so that we have a projective 
action of the semidirect product Diff(S l) ~ Map(S 1 ;SU2). This last group contains 
the product Diff(S 1) x S U z ,  where S U  z is identified with the constant maps 
S 1 ~ S U  2. We shall see that under the action of Diff(S 1) x S U  e the space H can 
be decomposed 

H = ~ Pq2 ® Dq, 
q = 0 , 1 , 2  . . . .  

where the Pqa a r e  distinct irreducible representations of Diff(St), and Dq is the 
(2q + 1)-dimensional irreducible representation of SU2 .1 

Defining the action of Diff(S 1) on H involves constructing the metaplectic re- 
presentation of a certain infinite dimensional symplectic group. This construction 
is due in essence to Shale [10], but has been developed more explicitly by Vergne 
[12]. My method is superficially, but not fundamentally, different from hers. 

The theorem that a suitable projective representation of Map(S 1 ;Y) can be 
extended to one of Map(S 1 ;SUz) can be generalized in the following way. If G is 
a simply connected and simply laced (cf. Sect. 4) compact Lie group with a maximal 
torus T then a class of projective representations of Map(S ~ ; T) can be extended 
to Map(S1;G). Among other things this gives one a new and interesting explicit 
construction of the fundamental irreducible projective representations of 
Map(S1;G). On these representations too the group Diff(S t) acts, and again they 
can be decomposed under Diff(S 1) x G. 

Since writing the present work I have learnt that the extension theorem has 
been proved independently by Frenkel and Ka6 [0], who have also observed 
that the essential ingredient is the "Veneziano vertex" of the theory of strings [5]. 

All the representations we shall be concerned with are projective, i.e. they are 
really representations of central extensions of the groups in question by the circle 
Y. The extensions are of some interest in their own right: they are described from 
various points of view in Sect. 7. 

To get some idea of the position of the representations constructed here among 
the totality of representations of Map(S 1 ;G) and Diff(S 1) one can consider the 
"orbits" in the coadjoint representation in the manner of Kiriltov and Kostant. 
That is done in Sect. 8. In the case of Map(S1;G) the results are very satisfactory, 
in that for projective representations with the cocycle we are considering the orbit 
method suggests that the unitary representations constructed in this paper are 
the only ones which exist. These representations are precisely the ones found by 
KaY, whose method, like mine, constructs only representations of positive energy 
(i.e. "with a lowest weight"). I should perhaps mention at this point that Gel'land 
and others have constructed non-projective representations of Map(S 1 ;G)of  a 
completely different type, not of positive energy (cf. [14].) 

In the case of Diff(S 1) the predictions of the orbit method are not so clear. The 

1 To avoid misunderstanding I should emphasize that in this paper the irreducibility of P~2 is proved 
only when q = 0 (cf. Sect. 6). The irreducibility has been proved in general by Ka6 
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coadjoint representation of Diff(S ~) has a natural interpretation in terms of second- 
order differential equations on the circle--so-called "Hill's equations"--and the 
orbits are classified by their monodromy. There seems to be at least a rough cor- 
respondence between the orbits and the unitary representations. 

My interest in the subject of this paper was aroused by Goldstone, and all the 
results about the decomposition of the irreducible representations of Map(S ~ ;T) 
under the action of Diff(S ~) were told to me by him. I am most grateful for the sti- 
mulus and instruction he has given me. 

The decomposition of the representation of Map(S t ;G) in the general case was 
explained to me by Macdonald. I have also been greatly helped in connection with 
the metaplectic representation by Kazhdan and Vergne, and in understanding the 
action of Diff(S1) on Hill's equations by Hitchin. 

It will be obvious that the results of this paper have mostly already been obtain- 
ed, at least on the infinitesimal level, by KaY. I hope nevertheless that my methods 
and point of view are sufficiently different to justify their publication. My methods, 
on the other hand, are in some sense familiar among physicists: in connection with 
Sect. 5 1 should mention the work of Goddard and Horsley [3], and for the con- 
struction of Sect. 4 the volume [5], passim. 

2. The Central Extension of Map (S1; T) 

The group M = Map(S 1 ;T) is disconnected, with its connected components 
indexed by the winding number. There is an exact sequence 

x2~ w 
0--,Z ,,, ,Map(S1;~)- - ,Map(Sl ;T)- -~Z-~0,  

where the middle map is f ~-~ eil, and w is the winding number. Our first task is to 
define a central extension M of M by T. 

Let F denote the vector space of smooth functions f : R ~ ~ such that 

A f  = l ( f (O + 2r0 - f (0 ) )  

is constant. The subgroup of F consisting of f such that AIeZ will be denoted by 
F~. Any element of M can be written e ~-r, with f e F ~ ,  when S 1 is thought of as 

There is a skew bilinear form S : F x F ~ ~ defined by 

1 
S ( f  g) = ~ ! (f'(O)g(O) - f(O)g'(O) )dO + ~:~(f(Zrc)g(0) -f(0)g(Zr0). 

(Observe that S(f ,  1) = At.) We define the group M as the space T x M with the 
composition law 

( ;~, eil  ) " (#, e ~°) = ( 2 #e - is(f ,~), el(l+ g)). 

It is fundamental for our purposes that the group Diff(S l) acts on M as a group 
of automorphisms. That is true because the cocycle c :M x M-+ T given by 
c(e if, e ig) = e - is( f  '°) which defines ~t is invariant under Diff(S1). 
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It is not hard to determine all the central extensions of M by IF which are 
invariant under Diff(S1). Indeed any such extension 5~r can be identified with 
T x M as a space. Let C denote the circle of constant function in M, and let e denote 
any element of M of winding number 1. Then c ~ ece- l c -  1 where the multiplica- 
tion is in M, is a map C ~ T. 

Proposition (2.1) The central extensions qF ~ ffl ~ M which are invariant under 
DifJ~S 1) are completely classified by the winding number of the map C ~ qF just 
described. Any integral winding number can occur. 

I shall omit the proof. The extension we are denoting by ~Q has winding number 
2. To obtain an extension with winding number 1 one can replace the skew form 
S used to define M with the (non-skew) bilinear form s : F x F ~ ~ defined by 

1 2~ 
s(f, g) = ~ ~.f'(O)g(O)dO + ½ A lg(O ). 

o 

(Notice that s(.£ g) - s(g,f)  = S(f, g)') The form s is not invariant under Diff(Sl), 
but nevertheless a double covering of Diff(S 1) acts on the associated extension 

by 

¢*(.L ?) = { 

3. The Projective Representation of Map (S 1 ; T) 

We shall construct a unitary representation of M on a Hilbert space H. It is more 
convenient notationally, however, to describe it as a projective representation of 
M, i.e. to associate to each V in M an operator T(7) :H ~ H such that 

T(7)T(T') = c(7, 7')T(77'), 

where c : M × M ~ T is the cocycle described in the previous section. 
We begin with the identity component M 0 of M. If C ~ M 0 is the constants, then 

Mo/C can be identified with the vector space V =  Map(S1 ; ~)/(constants). We 
shall construct a projective unitary representation of V on a Hilbert space H 0 ; 
then, regarding H o as a representation of M 0 , we shall define H as the representa- 
tion of M induced from H o. 

The skew form S induces a skew form S : V  x V ~  ~. To represent the Lie 
algebra of the desired central extension of Vis to associate linearly to eachf~ Van 
operator A(f )  so that 

[A(f),  A(g)] = 2i S(f, g). 

(Then the group element e ~y in M o will be represented by e~A{Y).) That is, we must 
represent the "canonical commutation relations" associated to V and S. We do 
this using the standard representation on Fock space. 

A complex polarization of Vfor the form S means a decomposition V c = W@ 1~, 
where V c is the complexification of V, such that S is identically zero on W. (W 
denotes the complex conjugate of W.) Then 

(w 1 , w2) ~--~ (w  1 , w2 ) = 2i S(~1, w 2) 
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is a hermitian form on W. If this is positive definite, making Wa pre-Hilbert-space, 
we shall call Wa positive polarization. 

In our case, where V=  Map(S 1 ;~)/(constants), there is a canonical positive 
polarization, in which Wis the space of smooth maps f :S 1 ~ C which extend to 
holomorphic functions on the disk D={zEC:lz [ _-<1} (modulo constants). 
The spaces Wand if 'are isotropic for S by Cauchy's theorem, and the form ( , ) is 
positive-definite. In fact if f(z) = ~ a z" and g(z) = ~ b,z" then 

n>O n>O 

( f,, g > = ~ 2na, b, 

=2ff'(z)¢(z)a~e) 
D 

- / x  dg 
rci 

D 

where # is Lebesgue measure on D. 
Let us consider the symmetric algebra S(W) of W. The elements of W act on 

this by multiplication: we write A(w):Sk(W)~ S k+ I(W) for multiplication by w. 
For  each ~ in lTV there is a unique derivation A(~) : sk(w) ~ S k- I(W) of the algebra 
S(W) whose action on SI(W) = Wis given by 

A(fv)'u = ( w, u>. 

For  any f i n  Vwe define A f t )  :S(W)--, S(W) by 

a( f )  = Aft+) + Aft_), 

where f= f+  +f_ with f+ e W and f_ e I~. The relation 

[A(f ) ,  A(g)] = 2iS(f,, g) 

follows at once from the fact that A(f_) and A(9_) are derivations. 
The inner product ( , ) on Wextends to S(W) by 

(w,w~. . .  wk, wlw~ ... wk > = Y,(wi, ,  wl > (w,, ,  w2 > ... ( % ,  wk>, 
where the sum is over all permutations (i 1 . . . .  , ik) o f  (1, . . . ,  k). With respect to this 
inner product the operators A(w) and A(~) are adjoint for any w in W, and so A(f)  
is self-adjoint for real f i n  V. 

We define H o as the Hilbert space completion S(W) of S(W). The A(f)  f o r f  
in V can be thought of as unbounded operators in H 0 ; we have to show that they 
are self-adjoint in the appropriate sense so that they define unitary operators 
e ia(f) in H 0 . 

It is easy to check that the following estimates hold: 

tl A(w)" ¢II <= x/k + ~" II w II II ¢ II, 

[I a(~)'¢ II _-< ~/k, II wll I1¢11, 
when we W and ~eSk(W). From these we deduce 

I lA( . f )¢ l l<2  kx/~l-]IfH11411 
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when J~ Vand 4eS°(W) G . . .  0 Sk(W), and li f II is defined as tI f+ II. It follows that 
the series 

~ ~. ( iA( f  ) ) k" 4 

converges in H o for each 4eS(W), and defines 

e iA(:) :S(W) ~ H o . 

But if 4, rlsS(W) then 

( e iA(:, 4, eiA(f)rl ) = k~m ( 4, ( - iA(f)ki )k(iA(f)mV. )my]~ 

= ( 4 , , 7 ) ,  

because ~ ( -  1)k/k!m! = 0  w h e n n > 0 .  
k+m=n 

So e ~a(:) extends to a unitary operator H o ~ H 0 . In view of the identity e% Q = 
d~/~2)w'Qle P+Q, which holds whenever [P, Q] commutes with P and Q, we find 

e iA(f) e iA(°) --~ e -  is(f'°) c IA(f + o) 

which shows that T(e i:) = e iAt:) defines the desired projective unitary representa- 
tion of the group V = Mo/C on H o . 

Let us regard M o as V x C by identifying Vwith the subspace { f : ~ f =  O} of 
Map(S t; ~). Then for each integer k there is a representation H k of M 0 which coin- 
cides with H 0 as a representation of V, but in which 2 s C acts as 2 k. The projective 
representation of M induced from H o can be best be described as the Hilbert space 
direct sum H = @H2k, on which the canonical element e i"° of M of winding 

ke71 
number n acts as the "identity" map H2k ~ H2(g+, ). The "vacuum vector" in 
H2k will be denoted by O2k, and H2k will be thought of as S(W).f22k. 

To conclude this section I shall show that the representation of 2Q we have 
constructed is irreducible, and is essentially the only representation of its kind. 

We shall see in Sect. 5 that Diff(S 1) acts (projectively) on H intertwining with 
the representation of M. But it is meanwhile easy to see that the subgroup R of 
rigid rotations of the circle does so. For  R acts naturally on W, and hence on 
S(W) = H o. To fix its action on the other H2g it is enough to see how it acts on 
the vacuum vectors (22k. We have no choice in prescribing this, for if r~ is the rota- 
tion through ~, and e k is the function e ~k° in M, then we must have 

r~Q2k = r~T(ek)~J o = r~T(ek)r ~ 1Q o 

= T(r~'ek)~O = T(r~'ek)T(ek)~2k 
= ¢(r  .~k ' ~ ~,~: ikct~ = eik~.e-21k2~.Q -k  } l~e ) 2k 2k 
= e -  ik2a~2k. 

On the other hand there is no difficulty in seeing that this action on the ~2k does 
define an action of R on H which intertwines with M. 

Let H(q) denote the part of H where r~ acts as e -  iq~. H(q) is finite dimensional 
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/ 
and vanishes when q < 0 .  [ I t s  dimension is the coefficient of x q in 

\ 

( 1 -  x " ) - 1 . 2  xm=.~ 
n > 0 m e Z  / l  

I shall call a representation of M symmetric if its isomorphism class does not 
change when twisted by a rotation of the circle. If the intertwining operator 
corresponding to the rotation r= is e - ~ :  where K is a positive operator I shall say 
the representation has positive energy. (K is determined only up to the addition of 
an integral of 2re, so it would be better to require the spectrum of K to be bounded 
below. But the ambiguity is removed when one extends the action of R to Diff(S 1)). 

Proposition O.1) The projective representation of M on H is irreducible, symmetric, 
and of positive energy. It is one of precisely two such representations of M with the 
9iven cocycle c. 

Proof. First consider the action of M o on H o = S(W). Clearly the vacuum vector 
f2 o is cyclic. Any possible decomposition H o = H o @ H o must respect the grading 
by the eigenspaces Ho(q) = H o c~ H(q), so f2 0 must belong to either H o or H o . Thus 
H 0 is irreducible under M o . It follows that all H k are irreducible under M 0 , and 
hence that H is irreducible under M. 

But the H k are the only irreducible representations ~ M o of positive energy. 
To see that, it is enough (since M o = C x V) to show that S(W) is the only irreduci- 
ble representation of Vof positive energy. But any such representation would have 
to contain a vector O o annihilated by A(u?) for ~ e  l~, for A(u?) lowers energy. On 
the other hand S(W) is freely generated by the action of the A(f),  for I s  V, subject 
to this constraint; so it is the only possible representation. 

Finally, the group A4 is a semidirect product  7/~ Mo, and the representations 
H a and H m of M0 are conjugate under M if and only if k = m (mod 2). So by 
Mackey's theorem there are two irreducible positive-energy representations of 

~3 which are faithful on the centre, restricting respectively to @ H2, and ~ H2k + 1 
as representations of Mo- 

4. The action of Map(S 1 ; SU2) 
The group M = Map(S 1 ;~-) can be thought of as a subgroup of G = M ap(St;SU2) 
by identifying T with the diagonal matrices in S U 2 . In this section I shall prove 

Proposition (4,1) , Let H be a projective unitary representation of M with the multi- 
plier c. Suppose that H is symmetric with positive energy, and that each eiffenspace 
H(q) of the rotations of the circle is finite-demensional. Then the action of M on H 
extends canonically to a projective unitary representation of G. 

To begin with we shall define the representation on the Lie algebra of G. In 
fact we shall consider first the smaller Lie algebra MaP,lg(S 1 ;su2) of all algebraic 
maps f : S  1 - ,  su 2, i.e. those of the form 

N 

f ( 0 ) =  ~, Lke 'k°, 
k= - N  

where the L k are complex 2 x 2 matrices. 
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As we shall be considering unbounded  opera tors  it is useful to in t roduce a 
"r igging" (cf. [1] (Chap. 1, Sect. 4)) of  the Hi lber t  space H. L e t / ~  denote  the direct 
sum a n d / ~  the direct p roduc t  of  the H(q).  T h e n / - / c  H c / t ,  a n d / - / a n d  n are dual  
to each other.  

Fo r  any  ~ S  ~ and 0 < 2 < i let us consider  the element y~,z :S ~ ~ 3- of  M 
defined by 

2 - e i~°- ~) 

y,,~(O) - 1 - 2e i~°- ")" 

This should be thought  of  as a "bl ip"  s i tuated at  the po in t  ~ of  the circle, becoming  
sharper  as 2 ~ 1. It  has  winding n u m b e r  1, and  if 2 is close to 1 then ~,~(0) is close 
to 1 except  in a small  ne ighbourhood  of 0 = a, of  length roughly  1 -  2, 
where it winds once a round  T. In  fact ~,,a(0) = d I',~t°), where .f~,~(O) is the angle 
A P A '  in the diagram,  where  P = e i°, A = 2e ~, and A' = 2 -  le~. 

Fig, 1 

T o  7~,z~M cor responds  a uni tary  ope ra to r  T(7~,~) on H. I shall p rove  that  as 
2 ~ 1 the opera to r  (1 - 2 2 )  - 1T(7~,~) tends in a certain sense to a definite but  
highly singular opera to r  B, .  ~ 

We can write.f~,~ = q~ +f~,+a +f~.~, where 

2" 
f~+z(O)--- i log(1 - 2e it°-~)) = - i  ~ ,  - - e  i"(°-~), 

n>O gt 

£,..~(0) = -- i log(1 -- 2e-i~0-~)), and 

q~,(O) = n + 0 - ~. 

Thenf~+a~ W and.f, .z~ I~. F u r t h e r m o r e  

S + - 1 + (L ,a ,  L,).) = - ~ IL ,adf~3,  

1 f l o g ( 1  - 2 z )  ~ - 2  • 
- 2 n  j i T - ~ z - - - ~  "az a z  

so that  

+ A + where A;,a = ( f ~ ) .  

= - i  log(1 - 2 2) ; 

T(y~,~) = (1 - 22)T(eiq~,)eiAg,,~eiaC,% 

2 In the language of quantum field theory B, is, as a function of ~, an "operator-valued distribution" 
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The operators e , and can be expanded 

eiA~+'x = E "~ne-inaCn' 
n>o 

eiA;"~ = E ~'nein~On • 
n>o 

Here C, and D, are operators independent of 2 and ~ which map H(q) into H(q + n) 
and H(q - n) respectively. 

As H(q - n) is zero when n > q it follows that 

eiaL~ eia;,~ = ~ 2n+ m ei(n- m)°t CmDn 
m,n > O 

tends to a well-defined operator / t - + / 4  as 2-+ 1. Now T(e iq~) maps H2k into 
H2k+2, and takes H2k(q ) into H2k+2(q+2k+ 1). On HEk we have T(eiq~)= 
e -(2k+ 1)i~T o, where T O = T(eiq°). So 

B~ = lim(1 - 22)-lT(Ta,,0 = E ei(n-m-2k-l)~ToCmD. 
2 ~ 1  n,m>O 

o n  H2k. 
N 

If~b :S 1 ~ C is a trigonometric polynomial, i.e. ~b(0) = ~ q~re it°, let 
r = --N 

1 2~ 
B(4)) = ~ ~o c~(a)B da. 

Then B(~b) = Sq~m_,+Ek + 1 ToCmD, on/~2k, and so it m a p s / t  into itself. 
The adjoint operator B* of B is given by 

B* = lim (1 - 22)-1T(~,~)= ~e-i(.-m-2k+ 1)To l ~ m b  
2---.1 

o n / ~ 2 k '  where Cm = D*m a n d / 3  = C*. We define 

1 2= 
B*(c~) = ~ ! ~(a)B* dc~, 

so that S(~b)* = S*(q~). 
For a trigonometric polynomial q~ the operator A(qS) can be written A(qS)= 

S Ok ak , where a k = A(e ik°) maps H(q) into H(q + k) and hence / / in to  itself. Further- 
more for any distribution 0 on S 1 one has an operator A(q~) :/~ ~ / t .  

We shall now show that the operators A(qS), B(qS), B*(q~) define a projective 
representation of the complex Lie algebra of algebraic maps S ~ ~ s/2(C ) on the 
vector space/~. More precisely, we have 

Proposi t ion (4.2) (i) [A(~b), B(ff)] = 2B(q~), 
(ii) [A(qS), B*(ff)] = - 2B*(~bff), 

(iii) [B(~b), B*(ff)] = A(~b~) + iS(dp, if), 

(iv) [B(~b), B($)] = [B*($), B*(~b)] = 0. 

These are the commutation relations for a projective representation 
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of  MaPalg(S 1 ; sl2(C)) under the correspondence 

A(qS) ~--~ ( ~  _ ~ )  B(qg) ~--~ ( :  ~0), B*(q~) *-~, (0b 00). 

The cocycle giving the projective multiplier is 

1 2~ 
(f, 9)~-~°(f, g) = ~ -  S (if(O), g(O) ) dO, 

LT~ 0 

w h e r e f , 9 : S  1 -~ sIz(C), and ( , ) is the invariant form (A ,B)~-~-  trace (AB) on 
sl2(C). 

It is easy to check that in the representat ion the elements of MaPalg(S ~ ;su 2) 
act on lq by skew operators.  

Proof  of Proposition (4.2). (i) It suffices to show that [A(~b), B~] = 2~b(~)B a. N o w  
B~ = lira B~, where B~ = (1 - 22) - ~ d a¢~'x). As the commuta to r  of A(~b) and A(f~,~) 
is scalar we have 

[A(~b), B~ z] = i[A(q~), A(f~,~)]B~ = - 2S(q~, fa,a)Ba~. 

But, regarded as a distribution, f~,z ~ 2nH~ as 2 ~ 1, where H a is the Heaviside 
function defined by Ha(0)=  1 if 0 > ~ ,  and H ~ ( 0 ) = 0  if 0 < a .  So 
S(~b,f~,~) ~ 2rcS(qS, H ~ ) =  - q~(c0, as desired. 
(ii) This is simply the adjoint  of (i). 
(iii) We first calculate 

z B;" * e e ( ) (e ) [Ba, ( ~ )  ] = eiA+.~, iA£,;.  - i A ; , . ~ e i A ~ , ~  T eiq~ T - ~  

- (similar expression) 

= { e[AJ,.~,A~,:~] + i(o~- B) _ e[AY, .~,Ag,  z] - i ( a -  p)} e i (Ag ,  z - A~ , z )e i (ag , .~  - A[~,,I.) T ( e -  i(~,- a)) .  

The expression in braces is 
e i(°~ - ~) e - i(a - ~) 

( 1  - 22ei(~-~))2 - (1 - 22e-i(~-~)) 2 

2 i ( 1  - 24) sin (~ - t )  
- (1 - 222 cos (a - t )  + 24)2 

i d 1 - 2 4  

- 2 2 d .  1 - 22 z cos (~ - t )  + 24 

This tends to - 2~ri6'(~- t )  as 2 ~ 1. 
Fur thermore  as 2 ~ 1 we have 

A + -o A + = A( - i ~ ei"(°-a)), and 
n > O  

A ~  -o A ;  = A( + i Z e-i.(o-a)), 
n > O  

and the expression 

e i ( A ~  + - A ~  ) e i ( a ~  - a ~  ) = 

is a well-defined ope ra to r /4  ~ / 4 .  

2 e i (r  - p)~ + i(s - q ) f l C p ~ q D r ~ s  

p , q , r , s  
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Thus we find 

lim[B~, ~ ,  . . . . .  a -  • (B~) ] = - rci6'(~ - fl)e '~a~ -a~ )e,(a~ - e )T(e- ' (~-~))  
1:-+1 

= - 2rd6'(a -- fi) = 2~6(~ - fl)ff--~(A + + A ~  -- ~ao), 

where we have used the relation 

a'(x)F(x) = ~5'(x)F(O) - 6(x)F'(O), 

and also that T ( e -  ~ -  P)) = e -  ~(~- ~)~°. 

But A + + A~  - aa o = A(2rtH= - 0 - 0), s o J ( A  + + A~- - aao) = - 21tA(b=), 

where 6= is the delta-function at a. Hence 

[B=, B~] = - 2rtib'(a - fl) + 41t26(a - f l )A(bj ,  

and accordingly 

[B(~b), B*(~)] = iS(dp, ~) + A ( c ~ ) ,  

as we want. 
(iv) The proof of this is precisely similar to that of (iii), but easier, because when we 

B z calculate [ ~, B~] the analogue of the expression in braces .above is 

(1 - 22e i(~- p))2 e-  i(~- #) _ (1 - 22e- i(~- g))2 ei(~- g) 

= - 2i(1 - 24) sin (a - fl), 

which tends to zero as 2 ~ 1. 
That  completes the proof of (4.2). 
Let us now write n(~b)= B(~b)+ B*(~b) and Q(~b)= i (B(~) ) -  B*(~b)), so that 

{ iA(qS), iP(c~), iQ(dp) } correspond respectively to the standard generators 

of Map(S 1 ;su2). The operators {iA(1), iP(1), iQ(1)} define an action of the algebra 
su 2 o n / t  which preserves each finite dimensional subspace H(q). This action can 
be exponentiated to give a continuous action of the group S U  2 on H. We shall 
derive a number of consequences of this. 

Let i f /denote  the subspace of H consisting of sums ~ ,  with ~ H ( q ) ,  such 
that {¢q} is rapidly decreasing, i.e. such that (I +q)"lIeqI[ is bounded 
as q ~ oe for each n . / t  is precisely the space of vectors ~ H  such that O~-~ro~ 
is a smooth function S 1 ~ H. The dual o f / ~  is the subspace H o f / ~  = I~H(q)  
consisting of series ~ such that { ~q} has polynomial growth, i.e. such that 
(1 + q)-" [I eq [I is bounded as q ~ ~ for some n. In other words ¢~/q if O~--~ro¢ is a 
distribution on S ~. 

tkO 1 When 4)= ~(o,_e" is a smooth function on S the operator A(q~)= ~'~kak 
u . - -  ~ . . . . .  u 

maps H into/~,  and when ~b Is a dlstnbutmn we find A(q~) :H ~ H. But the group 
S U  2 acts on H, and by conjugating with appropriate elements of it, one can trans- 
form the operators P(tk) and Q(~b), which are defined when q5 is a trigonometric 
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polynomial, into A(4~). It follows not only that P(4~) and Q(q~) map /~  into itself but 
also that they can be defined for any smooth function ~b on S 1. That  proves 

Proposition (4.3) The Lie algebra of smooth maps S 1 ~ su 2 acts projectively on ~. 
We can now complete the proof of (4.1). We have seen that the operators A(~b) 

can be exponentiated to give unitary transformations of H. The same must there- 
fore hold for P(q~) and Q(q~). This gives us projective unitary representations of 
three subgroups of Map(S t ;SU2). The three subgroups clearly generate the whole 
group. To see that they fit together to give a projective unitary representation of 
Map(S~;SU2) one need only observe that if f ~  Map(S1;SU2) is expressed in two 
different ways in terms of elements of the three subgroups, leading to two operators 
U¢ and U) representing it, then U}-1U) commutes with the action of the Lie 
algebra Map(S 1 ;su2). As this action is irreducible Uy and U) can differ only by a 
scalar. 

Generalization to other groups 

Suppose that G is a compact Lie group with a maximal torus T. The discussion in 
this section can be generalized to prove that in certain circumstances a projective 
representation of Map(S t ;T) can be extended canonically to one of Map(S1;G). 

The method seems to apply only to groups G which are simply laced. Let us 
recall that G is simply laced if there is an invariant inner product on its Lie algebra 
g in terms of which all the roots have the same length. (Equivalently one can say: 
if the Weyl group of G acts transitively on the roots.) This happens if and only if G 
is a product of circles and simple groups of types A, D and E, i.e. if it has no factors 
of type, B, C, F or G. I shall also assume that G is simply connected, although 
that is not essential. 

Proposition (4.4) Suppose that G is simply laced and simply connected with 
maximal torus T. Let H be a projective unitary representation of M = Map(S1 ; T) 
with the cocycle c described below. Suppose that H is symmetric with positive energy, 
and that each eigenspace H(q) of the rotations of the circle is finite dimensional. 
Then the action of M on H extends canonically to an action of Map(S 1 ;G). 

To define the cocycle c I need to recall some facts about simply laced groups. 
We write T = t/27zL, where t is the Lie algebra of T, and L is a lattice in t. There 

is an exact sequence 
×2~ 

0 ~ L----, Map(S ~ ;t) ~ Map(S a ;T) ---, L ~ 0. 

Let F denote the smooth function f :  ~ ~ t such that 

Ay = l~(f(O + 2z 0 -f(O)) 

is constant; and let F L = { f eF  :@eL} .  Then Map(S t ;T) = FL/2~L. 
The roots of G are certain linear maps c~ :t -~ ~. For  each e we define h e r  so 

that e(~) = ( h ,  ~ ) for all ~ e t. For  a simply laced group the inner product ( , )  on 
g can be normalized so that (h~, h~ ) = 2 for each root c~. (In the case of SU, this 
amounts to defining ( ~, q ) = - trace (~q), and in the case of S02, it corresponds 
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to (4 ,  t/> = --½trace(4t/).) It is well known that each h~ belongs to the lattice L, 
and for a simply connected group the h~ even generate L and are precisely the set of 
all 2 ~ L such that (4 ,  4 > = 2. In that case, 2 ~-,½ ( 2, 4 > is an integer-valued quadrat- 
ic form on L. Let us choose a bilinear form 

a : L x L ~ Z/2 such that a(2, 2) =- ½ ( 2, 2 > (mod 2). 

Then 

o-(4, #) + a(#, 4) = (2,  4> (mod 2) 

for all 4, # ~ L. 
The complexified Lie algebra 9c can be decomposed 

gc = t c ® @  C.e~, 
~ R  

where R is the set of roots. The relations are 

[ 4, e~] = ,(~)e~ for 4~ tc 

[e~, e_~] =h~ 

[e~,ea] = 0 i f a # - f l a n d ( ~ , f l ) # - l ,  

[e~, ea] = ( - 1)°(~'~)e~+a if (~, fi> = 1. 

(Here o'(a, fl) means o-(h~, ha). These are not quite the usual form of the generators 
and relations for g, but are easily checked to be equivalent to them. Notice that 
the choice of a is immaterial, for if a' is another choice then 0-'(4, #) - 0"(4, #) = 
~(2 +/~) - ~(2) - ~(bt) for some ~ :L ~ 77/2.) 

We define a blinear from s :F x F ~ ~ by 

1 2~ 
s(f, g) = 7-  ~ (if(O), g(O) >dO + ½( A y, g(O) >. 

°t~ 0 

If g is constant then s(f, g ) =  (A.r, g >, and if f is constant then s(J; g ) =  0, so 
s((2nL × FL)+(F L × 2rcL))c2rcZ, and we can define a cocycle c on M = 
Map(S ~ ; T) by 

c(eiJ ', ela) = ( _ 1)~(A~,%) e-  is~y, 0) 

Suppose now that eif~--~ T(e if) is a projective unitary representation of M on a 
Hilbert space H, associated to the cocycle c. Passing to the Lie algebra of M gives 
us unbounded operators A(f )  on H for e a c h f : S  ~ ~ t, and we have 

[A(f) ,  A(g)] = 2is(f, 9). 

As before, we assume that the group of rotations of the circle acts on H with positive 
energy, compatibly with the action of M. 

Let us identify the roots of G with the vectors 4 of length 2 in the lattice L. To 
each 4, and O~S 1, we associate a "blip" 7¢0,~ = exp(4 "fo,z)~M, where 0 < 2 < 1 and 
fo,~ : ~ ~ ~ is as on p a ~  8. We find just as before that ( - 4 2 ) -  1 T(Y0~0 tends 
to an operator B0¢ : ~  -o H as 4 ~ 1, where 

B~ = T(eiCq°)eiAICf~)e iA(¢~ ). 
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For a trigonometrical polynomial 05 : $ 1 ~  C we define 

1 2~ 
B~(05) = ~ ! 05(O)B~°dO :I-YI --. I~I. 

Proposition (4.2) generalizes to 

Propos i t i on  (4.5) (i) [A(f) ,  B¢(05)-I = B~(<f, $05)), 
(ii) [B¢(05), B-¢(~b)] = A(~05~) + iS(4), ~k), 

(iii) [B¢(q~), B"(~)] = 0 if~ # - t/and < ¢, ff > # - 1, 

(iv) [ B¢(05), B'(~b)] = ( -- 1)*(*,')B * +'(05~9) ff < 4, ~/> = - 1. 
These are the commutation relations for a projective representation of the Lie 

algebra MaP, lg(S 1 ;gc) corresponding to the cocycle 

2x 1 
(f, g)~--~o(f, g) = x -  S ( f  (0), g(O) >dO. 

/..Tr o 

The only comment worth making about  the proof of (4.5) is that in proving (iv) 
one proceeds exactly as in the proof of (4.2) (iii), and obtains a formula for 
[ B0 ~'¢, B~'"] where the expression in braces in the earlier proof in replaced by 

,~ ( e ( 1 / 2 ) i ( o - c k )  e - ( 1 / 2 ) i ( o - $ )  
( - 1 ~ , , )  ~ _ _ _ _  

" [ 1 - ) J d  ( ° - °  b l ~ * ) J  

(o  - 05) = ( _ y(¢.,) 2(1 - 2 2) cos 1 

1 - -  2 2  2 COS(0 - 05) + 2 4 .  

This tends to ( - 1)"(¢")2n~(0 - 05) as 2 ~ 1, which gives the formula we want. 
Extending the representation of the Lie algebra Map,~g(S ~ ;tic) to one of the 

group Map(S 1 ;G) is done just as when G = SU 2, and presents nothing new. 
It is worth considering how many representations of F = Map(S a ; G ) -  or, 

more precisely, of its central extension F - - w e  obtain by this method. They cor- 
respond to representations of ~r which are symmetric and of positive energy. 
These are constructed and classified exactly as in Sect. 3. )~ is a semidirect product 
L × M0, where /~r 0 is the identity component. As before M o _-__ T x V, where 
V= Map(S~;t)/(constants) has a nondegenerate skew form induced by s. The 
arguments of Sect. 3. show that M0 has a unique irreducible representation Hz of 
the appropriate kind for each character )~ of T, in which T, which is in the centre 
o f M  o, acts scalarly by Z- The character group of T is L* = Hom(L ;7/). Conjugation 
by 2 e L  transforms H x to Hz+a, where L is embedded in L* by the inner product 
< , >. Thus we obtain an irreducible representation @ Hx+ ~ of ~r for each coset 

2¢L 
Z2t- L of L in L*. Now L*/L is precisely the centre Z of G. The common centre of 
M and iP is Z x -g, and the representations we have obtained are classified by the 
action of Z. (By using the inner product we have identified Z = L* /L  with its 
character group.) 

These conclusions agree with KaY's theory of the representation of Map(S ~ ;G), 
because L*/L is precisely the set of orbits of the lattice of weights L* under the 
affine Weyl group of G. 
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5. The Metapleetic Representation 

We have seen that the group Diff(S l) is a group of automorphisms of A~. Our next 
task is to show that it acts projectively by unitary transformations on H, intertwin- 
ing with the action of M. As the representation of Al on H is irreducible this would 
follow from Schur's Lemma if one knew that the isomorphism class of the repre- 
sentation of M on H did not change when twisted by a diffeomorphism: but un- 
fortunately that is not clear, as it is not obvious that the property of having positive 
energy is preserved. 

The action of Diff(S 1) on Al leaves fixed the constants C c M, so Diff(S 1) 
ought to act independently in each eigenspace H2k of C. We shall show that it 
acts on H 0 = S(W). It is then automatic that it acts on all of H because H is the 
representation of fi3 induced from the representation H o of Mo, and A~/AI 0 
(Diff(S1) ~ M)/(Diff(S1) ~ M0") 

Diff(S ~) acts on V= Map(S~;~)/R preserving the skew form S, so it can be 
thought of as a subgroup of the symplectic group Sp(V). If Vwere finite-dimensional 
then a double converging of Sp(V) would act, by the metaplectic representation, 
on S(W). In the infinite-dimensional case one must replace Sp(V) by a subgroup 
SPo(V) consisting of maps which are not too far from preserving the polarization 
V c = WO I~. The definition, which is due to Shale [10], is as follows. 

Let us suppose that we have a real vector space Vwith a skew form S : V x V ~  R 
and a positive polarization V c = W ~  • As usual we regard Was a pre-Hilbert- 
space with (wi,wE)=2iS(~i,w2). With respect to the decomposition 
V c = W O  Wan endomorphism A of V can be expressed as a matrix 

We find that A belongs to Sp(V) if and only if 
(i) d~a - bt/~ = 1, and 
(ii) d~b is symmetric. 

(These equations should be thought of as shorthand:they do not really presuppose 
the existence of the transposed operators.) 

Definition (5.1) Spo(V ) is the subset of Sp(V) consisting of elements A as above 
such that b : W ~  Wis a Hilbert-Schmidt operator. 

e'Hilbert-Schmidt'" means that  E IIb~kll 2 converges for any orthonormal 
family { ek } in V¢.) 

If AeSpo(V ) it follows from (i) above that a : W ~  Wis a bounded operator, 
and hence that Spo(V ) is a subgroup of Sp(V), for the Hilbert-Schmidt operators 
are closed under composition with bounded operators. 

Proposition (5.2) (Shale) SPo(V) acts projectively by unitary transformations 
o n  

Before proving this I shall show that Spo(V ) does contain Diff(S~), using a 
simple argument pointed out to me by Kazhdan. 

Proposition (5.3) Diff(S a) m Spo(V ). 

Proof Let us write {e,} for the standard basis {ei"°},~o of V¢ = Map(S 1 ;C)/C. 
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If q~eDiff(S x) we write {2,,.} for its matrix elements with respect to this basis, 
i.e. ~b*(e,) = ~2,,.e,.. We have to show that the matrix {2, ,.}, m>0 defines a Hilbert 
-Schmidt operator. Clearly it is enough to show that {2~,-,.} ~s rapidly decreasing, 
in the sense that for each integer k we have t 2,, _ m I < C(n + m)-  g for some constant 
C (depending on k). 

Now 

1 2Jr 
2n _,, = n -  (. e i~°)  + ira°dO. 

" Z7~ 0 

(Here ~b is regarded as a map ~ : E -o R such that ~b(0 + 2n) = q~(0) + 2n.) For  any 
t~ [0, 1] the function ~b, defined by ~bt(0) = tc~(O) + (1 - t)O is also a diffeomorphism, 
and when t = n/(n + m) we have 

1 2~r 
2, - , .  = x -  (. ei~"+,.)4'~°)dO 

• Z,'I~ 0 

1 2~ 
- S do ,  

21r  o 

where ~t is the inverse function to ~b~. So 

i k 2~  

2. = + m) 
0 

on integrating by parts k times, and 

[ 2  _,, ] _<_ (n + m)-k sup { [~k+ ~)(0)[ : 0 < 0 --< 27r, 0 --< t < 1 }, 

as we want. 
To construct the metaplectic representation of Spo(V ) I shall introduce an 

infinite-dimensional analogue of the Siegel bounded complex domain SP2n(R)/U n. 
Let us recall that Spz,(R)/U ~ can be realized as the space of complex symmetric 
n x n matrices Z such that Z Z < 1. 

Let X denote the space of symmetric Hilbert-  Schmidt operators Z : I7~ ~ W 
such that Z Z  < 1, i.e. those such that 

(i) S(~ 1 , Z~2) = S(~ 2, Z~l),  and 
(ii) 1 -  ZZ  is positive-definite. 

The group Spo(V ) acts transitively on X by the formula 

the proof is the same as in the finite-dimensional case. The stabiliser of OeX is 
the unitary group U(W), so X ~- Spo(V) /U(W ). 

In the finite-dimensional case Sp2,(R)/U ~ can be identified with the set of all 
positive polarizations of V. In our case X is to the thought of as the set of positive 
polarizations of V which are not too far away from W. (One gets a polarization 
V c = U @ U from Z : W-~ Wby taking t,7 to be the graph of Z.) 

The symmetric Hilbert-Schmidt operators Z :17¢~ W can be regarded as 
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elements of S2(W) by identifying Z with ~ ek.Zg k, where { ek } is an orthonormal 
basis for W. For each Z ~ X  we consider the element e (1;2)= of S(W) 

Lemma (5.4) ( e  (1/2)zl, e C1/2)z2) = det(1 - Z1Z2)-1/2 
(Here one chooses the branch of the square root which is + 1 when Z I Z  2 = 0. 
Notice also that the determinant is defined, because Z1Z 2, being the product of 
two Hilbert-Schmidt operators, is of trace class.) 

It is enough, by continuity, to prove (5.4) when Z 1 and Z 2 have finite rank, in 
which case I shall leave it as an exercise for the reader. 

In view of (5.4) the map Z~--~e z = det(1 - Z Z ) I / %  (1/:)z is an embedding of the 
domain X into the space of unit vectors in S(W),  and 

( e z l ,  ez~ ) = det(1 - Z1Z1)l/4det(1 - Z2Z2)l/4det(1 - -  ZIZ2)-  t/2 . . . .  ( * )  

Now let F x denote the free vector space generated by the symbols { e z }z~x, and 
let H x be the Hilbert space obtained by completing F x using the inner product 
defined by the formula (*). (This inner product on F x is positive because it is 
induced from that of S(W).) Clearly H x is a closed subspace of S(W). 

Proposition (5.5) H x = seve~(W) 
I shall postpone the proof of this for the moment. 
For each A e S P o ( V  ) one can define a unitary operator T A :H x ~ H x by 

T A'e z = # det(1 + t i -  lbZ)1/2 "[~AZ" 

where # : C × ---> Y is radial projection. To see that T a is well-defined one must check 
that 

( ezl, ez~ ) = # det(1 + d-  I5Z1)- 1/2# det(1 + d -  IbZ2) 1/2 (e a z~, eA z~ ) ,  

which, however, is a simple calculation, It is also straightforward to check that 

T~ Ta~ = c(A1, A2)TA~A~, 

where c(A 1 , A2) = det(a~- la3a 2 - 1)- 1/2. Here 

A = ( ai 

for i =  1,2,3, and A 3 = A 1 A  2. The determinant is well-defined because 
a~ l aaa;1 = 1 + a-~ l b l b2a 2 ~is of the form 1 + (trace class), and If a~ l b l g2a 2111 < t. 

The cocycle c evidently measures the extent by which A ~ a fails to be a homo- 
morphism, i.e. by which A fails to preserve the polarization V c = W G l~. I shall 
return to this point in Sect. 7. 

To understand what is going on in the preceding formulae one should adopt 
the following point of view. There is a natural hotomorphic line bundle L on X = 
{polarizations of V} whose fibre at U (where V c = U ® iT) is det(U)- 1/2. We have 

chosen a trivialization of L by identifying U with W by U c V c 22~ W. In the 
finite dimensional case the action of Sp2,(N) on X is covered by an action of a 
double covering SP2,(R) on L, which in terms of our trivialization is given by 

A "(Z, 2) = (A "Z, # det(/~Z + ci)1/2-2). 
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An element of SP2n(~) is an element of SP2n(~) together with a choice of a square 
root of det (a). But in our case we cannot define det (a), let alone its square root; 
so we are forced to make an extension Spo(V) of Spo(V) by ~- act on L by 

A'(Z, 2) = (A .Z, # det(1 + ci- 1EZ)1/2 "2). 

Instead of embedding X in S(W) above it would have been more natural to embed 
the line bundle L linearly in S(W). The action of SPo(V) is then extended by linearity 
to SeV°"(W). 

We have now made Spo(V) act projectively on g°v°'(W). We can extended the 
action to S°aa(W) by the following device. Consider SPo(V@ tlCz), where R2 has 
the obvious skew form. This contains Spo(V)x qF, where T =SO 2 c Sp(~2). 
There is a polarization (V @ R2)c = (W @ C) ® (I~ @~) where Y acts in the natural 
way on C. Then SPo(V ) × T acts on 

g°v°"(W @ C) = g"°"(W) ®~°"°n(C) @ ~°~(W) ®~°~(C), 

and SPo(V) acts in each isotypical component of the action of 7I-. The action on 
~°ad(W) ®Sk(C) -~ ~°aa(W), for any odd k, gives us what we want. 

It remains to give the proof of (5.5). 
Clearly H x contains e 'ww for each we W and t~ ~. By differentiating this re- 

peatedly with respect to t at t = 0 we find, because H x is a closed subspace, that 
it contains w 2k for each k. Then from the identity 

(z)" m!wlw 2 ... w,, = ~ ( -  1) "-I ' l  w~ , 
O" \ t e a "  / 

where a runs through the subsets of { 1, 2, .... m}, and ]a [ denotes the number of 
elements in a, we find that H x contains S"(W) whenever m is even. 

A possible disadvantage of the method adopted here for constructing the meta- 
plectic representation is that it does not make manifest that the action of Spo(V) 
intertwines correctly with the unbounded operators A(v) for v~ V, and hence with 
the group M of Sect. 2. The rest of this section is devoted to establishing that it 
does so. 

We begin by considering the action of the Lie algebra SPo(V) of Spo(V) on 
S(W). An element ofsPo(V) is a matrix 

where a is bounded and skew-Hermitian and fl is symmetric and Hilbert-Schmidt. 
The complexification sp~(V) consists of operators 

(; 
where a is an arbitrary bounded operator and fl and ? are symmetric Hilbert- 
Schmidt operators. 

Proposition (5.6) The element 
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I 1 , - of spy(V) acts on S(W) as D~ + gMp + gM , where D~ ,s the derivation of S(W) 
induced by o~ " W ~ W,, Ma is multiplication by/~eS2(W), and M* is the adjoint of M~. 

Proof One can consider separately elements of the forms 

( ;  0cd) ,  (~  ~ ) , and  (~ ~). 

For the first kind, which preserve the polarization V c = W @ 17¢, the result is clear. 
By direct calculation one finds that the effect of 

on e(t/2)Ze S(W) is multiplication by ½(fl - Zf lZ - tr(/TZ)). It follows that the action 
of 

(: :) 
on e (1/2)z, and hence on all of S(W), is multiplication by ½/~. Finally, in any unitary 
representation 

C :) 
has to be represented by the adjoint of the representative of 

(: 0) 
Returning now to the intertwining of SPo(V) with the operators A(v) for ve V, 

what we want to show is that 

[X, A(v)] = A(Xv) 

for Xesp~(V) and ve V c. Because A05) = A(v)* it is enough to consider [X, A(w)] 
for we W. When X is of the form 

the result is obvious. When 

then Xw = 0; but on the left we have two multiplication operators, so the com- 
mutator vanishes too. When 

X 0 

then Xw = ~we 17g, and we have to show that [X, A(w)] = A(~v~)*. By adjunction 
this is equivalent to [A(w)*, X*] = A(7~). Now X* is multiplication by ½7 and 
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A(w)* is a derivation. So the commutator is multiplication by 1A(w)*% which 
is precisely ~. That completes the proof. 

Finally we come to the group Spo(V ). It is of course not true that the elements 
of this group can be obtained by exponentiating bounded operators in the Lie 
algebra Spo(V). On the other hand Spo(V ) has a normal subgroup Spcpt(V ) consist- 
ing of elements which differ from the identity by a compact operator. The expo- 
nentials of bounded operators clearly generate Sp~pt (V), so for this group the desired 
intertwining with the A(v) follows from what we have proved. SPo(V ) also contains 
the unitary group U(W) of W, the transformations which preserve the polarization 
V c -- W ~3 l~. For these the intertwining relation is obvious. But that is all we need, 
in view of 

Proposition (5.7) Spo(V ) = Spcp,(V ). U(W). 

Proof. We have already remarked that SPo(V)/U(W ) is the space of symmetric 
Hilbert-Schmidt operators 17V-~ W, so it is enough to see that Spcp,(V) acts 
transitively on X. But that is obvious. 

6. The Action of Diff (S 1) on H 

In the last section we showed that Diff(S 1) acts projectively on H, intertwining 
with the action of Map(S1;SU2). It follows that the product Diff(S 1) x SU 2 
acts on H. In this section I shall discuss the decomposition of H under this action. 

I shall write A, B, B* for the operators A(I), B(1), B(1)* of Sect. 4. They form a 
basis for the complexification of the Lie algebra of S U 2 , and satisfy 

[A, B] * = 2B, 

[A, B* ] = - 2B*, 

[B, B*] = A. 

Recall that H = @ H2k, where H2k is the 2k-eigenspace of A. Thus B(Hzk ) c Hzk + 2 
keZ 

and B*(H2k ) = Hzk_ 2" 
From the elementary representation theory of S U 2 we know that we can write 

H = @ Pq~ ® Dq, 
q=0,1,2 .... 

where Dq is the irreducible representation of SU 2 of dimension 2q + 1, and 
Pq2 = { ~ H z q  : B ~  = 0 }  is  a representation of Diff(S1). Furthermore the operator 
B* :H2k+2 --+ H2k is injective when k >= 0, and 

m2k = Pk2 ~3 B*(H2k+ 2). (*) 

It follows that H2k _~ @ Pq2 as a representation of Diff(S1). 
q>k 

Each space H2k is graded by the action of the group R of rotations of 
S 1 :H2k = @ H2k(q ). Let ~2k(t)= ~ d i m  H2k(q)'tq be the Poincar6 series of H2k. 

q_->0 
We know that ~zk(t) = F~c0(t), and that zr 0 = zc is the partition function: 

= ( 1  - 

n>O 



Infinite Dimensional Groups 321 

From (*) we find 

Proposition (6.1) The  Poincar~ series o f  P q~ is f~(1 - t 2q+ 1)7~(t). 

Ka6 has proved the conjecture of Goldstone that the representations Pq~ of Diff(S ~) 
are irreducible. Here I shall prove the irreducibility only for Po" (But cf. Prop. (6.7).) 
Before doing so it seems appropriate to make some elementary general remarks 
about the representation theory of the Lie algebra of Diff(S~), i.e. the Lie algebra 

= Vect(S ~) of smooth vector fields on the circle. 

The complexification ~ c  has an obvious basis (~t~k}k~77 , where ~k = ie_ik o_d . 
dO' 

and the relations are 

[ ] = (m - m" 

Suppose that we have a projective representation of ~ .  If V k is the operator 
representing vk then 

[V~, V.]  = (In - k)L+. ,  + c % ,  ,,.), ....... (~) 

where c :Vc x ~ c  --' C is a cocycl¢ of the Lie algebra. It is easy to calculate c for 
our representation of ~ on H, but it is worth noticing that there are few possi- 
bilities, in view of the following well-known proposition [2]. 

Proposition (6.2) H2(~V';C) ~ C, with generator c, where 

so that  

1 2~ 
,7) = "(o) + ,1(o))dO, 

A~4iE1 0 

C(q~k' ~m) : 1A~m( m2 - 1)/f k + m -- 0 

= O i f  k +m--/:O. 

Proof.  Ifc :¢/" x ~ ~ C represents an element of H2(¢/';C) we can assume it is 
invariant under the group R of rotations of the circle, for averaging c over a compact 
group of inner automorphisms of ~ does not change its cohomology class. But if c 
is R-invariant then C(Vk, %,) = 0 when k + m ~ 0, and we have only to determine 
c k = c(~ k, ~k)" From the cocycle condition 

,d ,  + + = o 

we find (taking ~ = ~k, t /=  Vm, ~ = V_k_N , and noticing that c _ ,  = - c~) 

(k - m)c k + m = (k + 2m)c k - (2k + m)c m. 

The most general solution of this is c k = )&3 + Hk, with 2, # ~ C. But c can be altered 
by adding to it a coboundary, i.e. a cocycle of the form (4, ~l)~-~f([~, ~]), where 
f :~/~ ~ C is an R-invariant linear map. The only possible f is f (vk)=  VSko' for 
some v~ C ; and this changes c k by 2vk. The value of # is therefore irrelevant. If we 
normalize c by requiring it to vanish on the Lie algebra of PSL2(~ ) ,  which is 
spanned by {~1, % ,  v_ z } then Cg = )~k(k 2 - 1), and we have the result of (6.2). 

The cocycle which arises in the representation of Diff(S z) on H will be discussed 
further in Sect 7. It is precisely the cocycle c given in Proposition (6.2), correspond- 
ing to 2 = ~i. 
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Suppose now that we have a projective unitary representation of Diff(S l) on a 
Hilbert space K, corresponding to the cocycle we have been considering. Then 
~ c  acts on K by the unbounded operators { V k }. The group R of rotations has the 
generator iV o, so eZ~iV°= 1, and V o is self-adjoint with integral spectrum. Let 
K = (~K(q) ,  where K(q) is the q-eigenspace of V o . Then Vk'K(q ) c K(q + k). Ele- 
ments of K which are annihilated by V k for all k < 0 will be called lowest weight 
vectors. If the spectrum of 1~ o is bounded below by qo then K(qo) consists of lowest 
weight vectors. Using the relations (t) we see that if f2eK(qo)  then the cyclic sub- 
representations Ko of Diff(S 1) generated by f2 is the closed subspace of K spanned 
by the vectors of the form Vk, Vk2... Vk. f2, where k~ > k 2 => ... => k r > 0. Because 
Ko(qo ) = C- f2 it follows that if K is irreducible then K(qo) = C. g2. In fact K is irre- 
ducible if and only if it contains no lowest weight vectors other than multiples of f2. 
For  on the one hand any other lowest weight vector f2' would be orthogonal to Ko, 
and on the other, if K were reducible each piece would contain at least one lowest 
vector. This means that to decompose H under Diff(S ~) we have to find all the 
lowest weight vectors in it. This was done, at least conjecturally, by Gold- 
stone, and his conclusions have been verified by Ka6 [7]. 

The lowest weight vectors we have found so far (and in fact there are no others) 
form the SUz-invariant subspace generated by the vacuum v e c t o r s  {~'~2k}ksZ" In 
other words, there is a sequence of lowest weight vectors f2(m)2k in H2k , where f2 (")2k 
has weight (k + m) 2. (The weight is the eigenvalue of V 0 .) Up to a scalar multiple 
f2(")2k is (B*)mf22k+2m if k _>--0, and Bmf22k_ 2m if k _-< 0. Goldstone has found elegant 
explicit expressions for the vectors t2 (m) To explain them let us recall from Sect. 4 2k" 
the definition of the operators a k = A(e ik°) on H. The a k for k > 1 commute, and 
Hzk is a completion of the free cyclic module C [a l ,  a2, ... ] "f22k for the polynomial 
algebra C[a l ,  a2, . . . ] .  We also introduced operators q ,  c2, ... related to a~, a 2, ... 
by Newton's formulae 

exp Z a°e = Z c.e, 
n>0 n n>0 

i.e. c 1 = a 1 , 

2c 2 = a21 + a 2' 

6c 3 = a T + 3ala 2 + 2a 3, etc. 

(The signs, however, are not the same as in the usual version.) Then C[a l ,  a2 , . . . ]  = 
C [ q ,  c2, ... ] ; and Goldstone's formulae are 

Proposi t ion (6.4) I f  k >- 0 then f2(~)2k - r (m)o up to a scalar multiplier, where -- --J2k ~+_2k' 

f~k") =t C2k+l C2k+2 C2k+3 "'" C2k+m 

C2k+2 C2k+3 C 2 k + A  C2k+ra+l 

¢2k+m C2k+m+l . . . . . .  C2k+2m-1 

Proof  We know f2(")2k = B"f2_ 2k- 2m" In the notation of Sect. 4 this is 

(2re)- " ~...  ~ BolB02 ... Bo, f2_ 2k- 2mdOt "'" dOm" 
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Now B o = eiAg e IA¢ T(e~q°). Because 

e iA~ e iA~ = (1 - -  e ~(°- 4,))2eiAgeiA~ 

and 

T ( e i q ° ) Q -  2,, = e ( 2 n -  1) io~_ 2n + 1 

we find that the integrand in the above expression is 

A(01 . . . .  , O m)2 ei(2k + 1)(01 +--.+0,, ,)  eiA~ . . .  e i a ~ O _  2k ' 

where 
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determinant 

2 
1 z t z a 

2 
1 z 2 z 2 

1 Z Z 2 

Accordingly A z is obtained by summing 

sign ( f ) A ~ l z ' ~ ~  2 . . .  z ° ~,, = 1 

" - 1  
"'" 7"1 

• . .  Z 2 

Z 2 Z m -  1 
Z f l  f l  " ' '  f l  
Z 2 Z 3 Z m 

gf2 f2 f2 "'" f2 

z m - 1  7"m z 2 m -  2 
fm  fm "*" fm  

over all permutations f =  (j~ ,f2 . . . .  ,ft,) of (1, 2, . . . ,  m). So, because the integrand 
is symmetric in (01 . . . . .  Or,) we have 

B " O _  2 k -  2m = m ! ( Z T r ) -  m S . . .  S J ( z l ,  . . . ,  7,".]eia% . . . .  eiA~,,,,Q_ 2kdOt . . .  dO, , ,  

where 

. . . . .  k + l  

2 k + 2  
Z 2 

2 

z 2 k + "  
m 

z2k+2 
_2k + m t 

1 "'" 2;1 
_ 2 k + 3  _ 2 k + m +  1 
Z 2  " " * Z2  

z 2 k + m + l  . . .  z2k+2m - 1  . 

This yield the desired formula, because 

eiA;1 °ia°~('2 ----- Z e - i (k lOl+'"+k"Om)c  C 
. . . .  -- 2 k  k l  k2 " ' "  C k m ~ -  2k" 

kl,...,km 

The case of Q~) is precisely similar. 
The last result to be proved in this section is 

Proposition (6.5) T h e  r e p r e s e n t a t i o n  P o  is  i r r e d u c i b l e .  

A(O1 . . . .  , Ore) : I ~  ( ei°v - -  ei°") • 
p<q 

Now let us write z k = e ~°k, and observe that A = A(O 1 . . . .  , Ore) is the Vandermonde 
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Proof  It is enough to show that Po is cyclic with respect to its vacuum vector f2 0 , 
for we have seen that if Po contains another lowest weight vector O' then t2' is 
perpendicular to the cyclic representation generated by O o . 

Recall from Sect. 5 that an element T: V--+ Vof the complexified Lie algebra 
of Spo(V ) can be written 

with respect to the decomposition V e = W 0) 17¢. Here e is an endomorphism of 
W, and fi and ~ are Hilber t -Schmidt  operators I47 ~ Wwhich can be regarded as 

i 1 * where M~ is elements of S2(W). The action of T on S(W) is 2Mt~ + D ~ -  2M r 
multiplication by f les2(W), and D~ is the derivation of S(W) induced by c~ .' W ~  W. 
If Tis the action of the vector field %, with k > 0, then it is easy to check that the 

l k - i  
corresponding fleS2(W) is flk = ~ Y', aiak-i in terms of the basis {% = e ira°} of W. 

i=1 
Now the Poincar6 series o fP  o is 1~ (1 - tk) - 1. So for dimensional reasons it will 

k>l 
certainly be cyclic if the vectors Fkl Fk2 ... Vkrf20 in H 0 = S(W) are all linearly 

independent when k I ____ k 2 > ... => k r > 1. But 

Fkl Vk2 "" Vkfl20 = flk~flk~ "" flkfl20 + (terms of lower degree). 

These vectors will be linearly independent if the elements f12,/33, f14, "'" of the 
polynomial algebra S(W) are algebraically independent. But that is obvious, for 
if flk were algebraic cover C[fl2, . . . , i lk_l ]  then it would be algebraic over 
C[a 1 . . . . .  ak_2], and so a k_ 1 would be algebraic over C[al ,  ..., ak_2], which is 
absurd. 

To conclude this section I should remark that it is easy to see that for each 
2eR  the Lie algebra ~ has a unique irreducible projective representation P~ 
(with the correct cocycle) generated by a lowest weight vector o)~ such that 
Vo~O ~ = 2~0~. If this is to come from the extension of Diff(S l) we are considering 
then 2 must be an integer. If the representation is to be unitary then 2 must not be 
negative, for otherwise 

( V1(.o2, Vl(oa. ) : ( (o) ,  V 1Vl(O~. ) = 2 (  (.oj., Vo(.O). ) = 2/~( (.oa., (_o).) 

would be negative. (But of course if 2 > 0 then fii is a representation of negative 
energy with a highest weight - L) If 2 is not a square Kae has shown that the 
Poincar6 series of Pz is Zz(t)= tzn(t). But when 2 = q2 the representation Pz sud- 
denly becomes smaller, and its Poincar6 series is 

Xq=(t) = tq~(1 - t 2q+ 1)n(t). 

Notice that tq:n(t) = ~ Zr~(t). 
r>q 

The Decomposition o f  the Representation o fMap(S  1 ; G)for other G 
Let us now turn to the more general situation of the last part of Sect. 4. We con- 
sidered there some irreducible projective representations of M = Map(S * :T), 
where T was a torus. The representations are of the form 

H = @ H ~ ,  
2~X 
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where H a is an irreducible representation of the identity component M o of M on 
which T c M acts by the character 2.The set X of characters is a coset of L = ~z 1 (T) 
in L* = Hom(T;T).  

The group Diff(S 1) is a group of automorphisms of the central extension M of 
M : it does not preserve the cocycle c defining Al, but acts by 

¢*(z, e is) = ze-(i/z),<n,,s(~(o))- y(o)>, ¢.(eiy). 

This means that Diff(S 1) acts projectively on H, as before, preserving each subspace 
H~. To find the cocycte which arises it is enough to consider Ho, which is an irredu- 
cible representation of the vector space V = M o/T. This vector space, with its skew 
form, is simply the product  of d copies of V (1) = Map(S 1 ;~)/R, where d h the di- 
mension of T H 0 is therefore the tensor product  o fd  copies "..(1) oI ~o  , the irreducible 
representation of V ¢1). This gives us 

Proposition (6.6) Diff(S l) acts projectively with the cocycle d.c on the faithful ir- 
reducible representations of  Map(S i ;T), where d = dim(T), and c is cocycle of  
Proposition (6.2). 

By considering the action of the Lie algebra ~ on H o we know a priori that 
under Diff(S ~) the decomposition o f H  o must be of the form 

H0 = @ (p~)m,, 
q 

where pd is an irreducible representation of ~U with the cocycle d.c generated by a q 
lowest weight vector with positive integral lowest weight q. (It is clear from general 
considerations that up to isomorphism there can be only one such representation 
P~.) The case d > 1 is slightly easier than the one we have already studied, and we 
have 

Proposition (6.7) The Poincar~ series of  P~ is t%r(t) if  q > O, and is (1 - t)~z(t) if  q = O. 
Proof. When q = 0 the proof is essentially the same as that of (6.5). paq can be 
identified with the cyclic C-module  generated by the vacuum vector in H o = S(W). 
Choose an orthonormal basis {~l . . . .  , ~a ) of the Lie algebra t of T. This gives one a 
basis {a~ = ~e  ira°) (j = 1 . . . .  , d ; m = 1, 2, 3,. . .)  of W. The elements fig of (6.5) are 
replaced by 

l k - i  a 

= E aiak-j, 

and fl~), fl~d).., are algebraically independent as before. 
To treat P~ for q > 0 we consider the action of ~ on H~. The vacuum vector 

~ of H~ is obtained from ~o by the action ofei~e M, so the argument we have used 
earlier when d = 1 shows that the group of rotations R acts on ~ with weight 

d be the ~F-module generated ½ ( 2, 2 >. We choose 2 so that ½~ (2, 2 > = q and let Pq 
by ~ .  We can calculate the action 17 k of % e V o n  H~ in terms of its action V k on 
H o : when H 0 and H~ are both identified with S(W) we have 

J 

when k 4 ~ 0, where {2j} are the components of 2 with respect to the basis of t. In 
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other words, when k > 0 the action of 17 k on St(W) is multiplication by ffk a)= 
fl(k d) + ~2ja~ modulo St(W). The elements fl~) for k = 1, 2, 3,. . .  are algebraically 
independent, and that establishes our result. 

In view of (6.7) we can write down at once the decomposition of H o under 
a Diff(S1) the result is that Pq occurs with multiplicity mq equal to the coefficient 

of t q in t + re(t) d- 1. 
It is more interesting, however, to decompose the space H = (~ H;~ under the 

3,~L 

group G × Diff(S1). To do so we write down the character of H as a representation 
T × R. It is 

F = rt(t) a ~ eiZt 1/2<~':'> , 
2 e L  

where t is now regarded as the "identity" character R ~ ~-. We should like to write 
this in the form ~ f,(t)X., where P is the set of dominant weights in L, and X, is 

# ~ P  

the character of the irreducible representation of G associated to/z e P. The follow- 
ing result was shown to me by Macdonald. 

Proposition (6.8) The character of  H as a representation of G x R is ~ f,(t)Z,, 
where ~P 

f~(t) = 7~(t)at 0/2)(~'~> 1-[ (1 - t<~"+P> ). 
~ > 0  

(Here the product is over the positive roots of G, and p is half the sum of the positive 
roots.) 

Proof. By the Weyl character formulaf~(t) is the coefficient of e i(' + p) in A "F, where 
A = ~, ( - 1)We iwp is the Weyl denominator, Wbeing the Weyl group of G. This 

w ~ W  

gives 
f ,( t)  = re(t) d ~ ( -  1)~t ~I/2)<~+p-~p'u+p-wp>. 

w ~ W  

But we know from the Weyl denominator identity that 

( -  1) ~t<~p'¢> = I~ ( t ( 1 /2 ) ( a ' ¢>  - -  t-(*/z)<='¢>) 
w ~ W  ct > 0 

for any ¢~L; and applying that when ~ = - # - p gives us the desired formula. 
The character of H can also be calculated in a completely different way by 

using the generalized Weyl character formula of Ka616]. I shall not give the details 
here, but the result is 

F = H -  1 ~ Zn2t(1/2)n(;~,2> + (2,p), 
; . eL 

where/7 = z~(t) a f i  l~(1 - tke~), ~ runs over all the roots of G, and n is the Coxeter 
k = l  c( 

number of G. Equating this to our earlier expression gives the interesting identity 
09 

X.a tO/z)"<e''z> + <;':> = ~ eiZtO/2)<:':'> [ I  l~( 1 - t~ei~), 
; ~ L  2 ~ L  k =  1 ~x 

which has also been found by Ka~ from another point of view ([6](3.38)). 
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7. Group Extensions 

(a) Map(S t ;G) 
In Sect. 4 we constructed some projective unitary representations of the group 
F = Map(S t ;G), where G was a compact, simply connected, simply laced Lie 
group, but we did not describe explicitly the central extension ~- ~ / ~  ~ F involved. 
We shall now discuss it further. 

The first point to notice is that as a topological space/~ is not  the product of 
F and T, so it cannot be described by a continuous cocycle F x F ~ T as in Sect. 2. 
(This is closely related to the fact that F does not come from an extension o f F  by N. 
It is easy to see that if an extension of a group F by ~- lifts t o n  then it is topologically 
a product. The converse is true if F is connected, but not otherwise: the extension 
M ~ M of Sect. 2 is topologically a product but does not lift to N.) 

The topological type of the circle bundle/~ ~ F can be determined from the 
extension of Lie algebras 

~ Lie(F) ~ Lie(F) 

in view of the following simple result, which I think is well-known. 

Proposition (7.1) I f  a group extension qF ~ F ~ F corresponds to the Lie algebra 
co 

cohomology class o~ H2(Lie(F); ~), then the image of ~ under the map 

HZ(Lie(F) ;R) ---, H2(F ;N) 

is the first Chern class of the circle-bundle f ~ F(with real coefficients). 
The map in (7.1) is the one which interprets a skew multilinear form on Lie (F) 

as a left-invariant differential form on the manifold F. (The 2n comes in because we 
are identifying T with ~/2gZ.) 

Let us recall from Sect. 4 that in our case the extension of Lie algebras is defined 
by the cocycle co, where 

1 2~ 
co( , 4,) = < )dO, 

o 

and ( , )  is the invariant inner product  on g = Lie(G) described in Sect. 4. 
For  any compact Lie group G we can define elements 2 in HZ(F ;Z), and hence 

natural circle-bundles on F, by the transgression of elements aeH3(G ;Z) : one pulls 
back to g*({z)~H3(S 1 x F) by the evaluation map e :S 1 x F ~ G, and integrates 

over S 1 to get 2eH2(F). 
With real coefficients e can be represented by a left-invariant form, again de- 

noted e, given by 

1 
0 = [4,  

where 4, t/, # e g are thought of as tangent vectors to G at some point, and <, > is 
an invariant inner product on ~. We have 

Proposition (7.2) I f  G is simply connected then ~ is an integral class if and only if 
(2,  2 >m2Z for each co-root 2 in the Lie algebra of the maximal torus of G. 
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Let us recall that the definition of co-roots does not involve choosing an inner 
product on g: in particular, i f 2  is the co-root associated to a root ~ then ~(2~) = 2. 
The condition of (7.2) is satisfied for the inner product of Sect. 4. 

Now suppose ~b, ¢ :S 1 ~ g are two tangent vectors to F a t f : S  1 ~ G. If q~, 
d 

ands0  are regarded as tangent vectors to S 1 × F at (0, f )  then 

e*~(o,:) ( O, ¢ , d  ) =  ( [ c~(O), ¢(O) ], f (O)- tf'(O) >, 

and accordingly 2 is given at feF  by 

1 
2=< [ ¢(0), ¢(0)], f(O)- lf'(O)>dO. ,~s(q~, 0)  = 
0 

CO 
This is not an invariant differential form on F, but it is cohomologous to ~ ,  where 

co is the invariant form defined above. In fact 2 = ~ + dfi, where 

2~r 

flf(~) = ~ ~ < d?(O),f(O)- lf'(O) > dO. 
~3 ~ 0 

If G is connected and simply connected then so is F, because ~2(G)= 0. In 
that case H2(F;7/) ~ H2(F; N) is injective, and we have 

Proposition (7.3) If-~ ~ f ~ F is a 9roup extension correspondin 9 to the Lie 
algebra cocycle o) then topologically F is the circle-bundle on F with Chern class 
2~H2(F;Z). 

We have still not proved the existence of any such extension if, except by the 
indirect method of Sect. 4. One way to remedy this is by analogy with the discus- 
sion in Sect. 5. 

Let M be a finite dimensional real representation of G with an inner product 
( , ) ,  and let Vdenote the vector space of smooth maps S 1 ~ M modulo constants. 
V has an inner product given by 

1 2r~ 

< (o, ¢ > = ~ ! < ~(o), ,7(o)>dO. 

The group F acts orthogonally on V. As in Sect. 5 we decompose the complexi- 
fication of Vas V c = W@ 1~, where Wis the holomorphic maps of the unit disk 
into M (modulo constants). I f f i s  an orthogonal transformation of Vwe write it as 
a matrix 

a(f) b(f)'] 
b-(-f) a-~-)/l 

with respect to the decomposition V c = W ¢ I7¢. 
In the symplectic case the operator a ( f ) :  W--* W was necessarily invertible. 

This is no longer true in the present situation, but nevertheless for a n y f e F  it is 
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easy to see that a(f)  is a Fredholm operator, and b(f)  is Hilbert-Schmidt.  It 
follows that f~-~a(f)  defines a homomorphism F - ~  Aut(W)/Autt(W),  where 
Autl(W ) are the automorphisms of W of the form (identity) + (operator of trace 
class). Thus the extension 

Autl(W ) --, Aut(W) ~ Aut(W)/AUtl(W ) 

pulls back to define an extension of F by Autl(W ). But on Autx(W) we have the 
determinant, a homomorphism 

det : Autl(W ) ~ C x, 

and this gives us an extension/~ of F by C × 

Proposition (7.4) The extension C × ~ F ~ F corresponds to the Lie algebra 
cocycle c5 defined by 

1 2~ 
~(4), O) = w- ~ (¢'(o), O(o) ) ~dO, 

Z ~  0 

where ( , ) M  is the trace-form of M(i.e. ( 4, ~/)M = traee(~Mt/M), where 4M is the action 
of ~ e g on M). 

Proof. Let the derivative off~-~a(f) at the identity be denoted by qS~-~A(q~). We 
have to show that 

trace { [A(qS), A(0)] - A([q~, ~])}  = - 4io5(~b, ~) ... (*) 

for q~, ~ :S 1 ~ g. 
We can write 

Lie(F)--  ~)  L k a n d W =  (~) W k, 
k = - o o  k = l  

W k = M c ' z  k. Obviously [Lk,LmJ C Lk+ ~, and if ~beL k where L k = g'z k and 
then A(q~)" W k c Wk+r~ , where W, = 0 if n < 0. It is enough to prove (*) for homo- 
geneous elements q~ ~ L k and t~ s L m. If k + m 4; 0 then the left-hand side is zero 
because the matrices of [A(q~), A(0)] and A([4,  ~,]) have no diagonal entries; 
and o5(4), 0) = 0 also. If q5 = 4zkeL, with 4eg  and k > 0, and ~, = t l z - k e L k  then 
[A(~b), A(O)] and A([qS, 0 ] )  both preserve each subspace W m and coincide on W m 
if m > k. If m < k then 

{ [A(q~), A(O)] - A( [~b, t~  )}. ~z m = - (tlM4M~ + [4, t/]MOZ m 

= 4 M ~ / u ( z " .  

so the trace on W m is ( 4, t/)M" The trace on all of W is accordingly 

k( 4, n ) M = 2@i ~ ( 4 ? d ( . z - ~ ) )  

= - 4 i o 5 ( q ~ ,  O ) ,  

in accordance with (*). 
The extension ff which we want can now be constructed. Choose a real ortho- 

gonal representation M of G such that ( 4, t/)M = n( 4, ~/), where n is an integer. 
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Then/~ is an n-fold covering of ff:  in fact rc ~(ff) = Z/n, and f is the universal covering 
of F. In the case of simple simply laced groups one can take for M the adjoint 
representation of G : then n is the Coxeter number of G. 

Remark. The Infinite Dimensional Spin Group 
One could carry the preceding discussion further in precise analogy with Sect. 5. 
One can define a subgroup Oo(V) of the orthogonat group O(V), and a central 
extension 

-f ~ Spin~(V)-* Oo(V ). 

Spin~(V) acts unitarily on the completion of the exterior algebra A(W) : this is the 
"spin" representation [11], analogous to the metaplectic representation of SPo(V). 
It can be constructed by starting with a space X of polarizations of V such that 
X ~-Oo(V)/U(W), defining a holomorphic line bundle L o n  X whose fibre at U 
(where V c = U G U) is det (U) 1/2, observing that Spin~(V) acts on L, and associat- 
ing to each fibre of L a ray in A(W). The only significant difference between 
this and the symplectic case is that L is now not a trivial bundle. One might have 
guessed that no(Oo(V))= 2~ because any JbOo(V ) defines a Fredholm operator 
a(f):  W--* Wwhich has an index in Z; but it turns out that a(f) must have index 
zero, because w ~ b(f)v~ is an isomorphism ker a(f) --* ker a(f)* ; and no(Oo(V)) = 
Z/2, with the components distinguished by the parity of the dimension of ker a(f). 

(b) Diff(S 1) 
We have already seen how a central extension of Diff(S ~) by T arises from the 
embedding Diff(S 1) --,SPo(V), where V=  Map(S i ;R)/(constants). This extension 
is topologically a product, so it can be defined by a cocycle e~ : Diff(S 1) x Diff(S 1) 

7]-. Indeed we know that 

c0((b, ~b) = / l  det(a(~b)- la((b0)a(O)- 1)- t/2, 

where a((b): W ~  W is the component of ~b:V~ V in the decomposition 
V e = W G W, and/~ :C × --* ~- is the projection. We should like, however, to have 
a more explicit formula for the cocycle. 

Such a formula has been found by Bott. If (b :S 1 -~ S I is a diffeomorphism 
(where S 1 is regarded as ~/2nZ) define ~ : T  ~ ~ (where ~-= {zeC:lz I = 1}) 
by q~(d °) = e i4(°). Then Bott's cocycle ¢6 is given by 

oS(q~, ~) = e ~w~+'~'~, 

where 

w(4, •) = Re S log 4 '"  d log z',  
S 1 

and Z = 04. (Here ~b' (e i°) is to be interpreted as (b'(0)ei(4(°~-°).) 
I shall show that the cocycles e~ and o5 are cohomologous, i.e. that they define 

the same extension of Diff(S 1) by ~-. I do not know whether they are actually 
equal: it seems to me an interesting question. 

Before comparing co and a3 we again need some general remarks. A group 
extension ~- --, G ~ G of the kind we are considering is a smooth principal ~-- 
bundle on the manifold G. If one chooses a vector space splitting of the extension 
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of Lie algebras R--, ~ ~ g then the elements of g define left-invariant vector 
fields on G, and hence a left-invariant connection in the T-bundle. The curvature 
of this connection is a left-invariant 2-form e on G. It is easy to check that 
represents the Lie algebra cohomology class of the extension g~: it is the represent- 
ative defined by the chosen splitting ~ ~ g G R. 

The class ct6HZ(g;R) nearly determines the extension G. To see that, let us 
recall that the extensions of G by T form an abelian group Ext(G;T). One way to 
obtain an extension is to take a homomorphism 0 :tel(G) --, T and to define G as 
the extension (G x T)/~I(G ) induced by 0 from the universal covering G ~ G. This 
gives a homomorphism 

Hom(rc t (G);~-) ~ Ext(G ; T). 

the extensions so obtained are flat vector bundles, and we have 

Proposition (7.4) The sequence 

Hom(~l(G ) ;T) -~ Ext(G ;T) ~ HZ(g ;N) --* H2(G ;T) 

is exact. (The right-hand map is the composite of H2(g;N) ~ H2(G ;N), which regards 
a left-invariantform as a de Rham cohomology class, and H2(G ;N) ~ HZ(G ;~). ) 

I shall not give a proof of this here:but exactness at Ext(G;T), which is what we 
shall use, holds because if c~eH2(g ;~) is zero then the splitting g ~ g • R can be 
chosen so that the connection in the circle-bundle G ~ G is flat, and so defines a 
homomorphism tel(G) ~ T. The result is of course very well-known when G is 
finite-dimensional, and I state it here to emphasize that finite-dimensionality is not 
required. The consequence that is relevant for us is 

Corollary (7.5) An extension of Diff(S t) by T is determined by its infinitesimal class 
in H 2 (Vect(S1);R) together with its restriction to PSL2(R ) c Diff(S1). In .fact 
Ext(Diff(S~);T) -~ T x R. 

The corollary follows from (7.4) because rc~ (Diff(S~)) = rc~ (PGL2(R)) = Z, and 
Horn (rcl(PGL2(N)) ;Y) ~ Ext(PGL z(R) ;T) because PGL2(R ) is semisimple. We 
saw in Sect. 6 that HZ(Vect(SX);R) ~- R. 

Another way to formulate the result (7.5) is to say that the group G = Diff(S 1) 
has a universal central extension A - ,  G with A = Z @ ~. This E is an extension 

~ E ~ G, where G is the simply connected covering of G, the group of diffeomor- 
phisms q5: R ~ N satisfying qS(0 + 2re) = qS(0) + 27r. 

Returning to the cocycles co and 05, we observe first that they both vanish 
identically on PSL2(R), which is the group of holomorphic automorphisms of 
the unit disk in C, and is the subgroup of Diff(S t) which preserves the polarization 
Vc = W(~ I~ ~. In the case of co we have only to notice that the restriction of 
a : Diff(S 1) ~ Aut(W) to PSL2(~) is a homomorphism. In the case of 05 the integral 
defining w(qS, ~) vanishes for qS, OePSL2(N ) by Cauchy's theorem, as then ~ and 

extend to holomorphic functions in the disk. 
Now let us consider the Lie algebra cocycles induced by co and 05. The general 

formula for the Lie algebra eocycle associated to a cocycle c : G x G ~ R is 

(~, q)~--~D2c(~, n) - DZc(n, ~), 

where D2c :g x g ~ ~ is the mixed second derivative ofc at (1, 1). 
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In the case of a3 an elementary calculation gives 
2n 

l i t  (~, t / ) ~ . w -  ~ (4 (0) + ~'(0))t/(0)d0, 
Zq-TZ 0 

whereas from co we get 

(~, t/)~-~½i trace([~, t/]w - [~w, t/w] ), 

where ~w : W ~  Wdenotes the W- Wcomponent of the action of ¢ on V. Each of 
these formulae is invariant under the group R of rotations, so to prove they coincide 
it is enough to evaluate them on ¢ = V-k and q = Vk" The first formula gives 

~ k ( k i  2 _ 1), so we must show 

__ i k 2 trace(2k%, w [ v _ k , W , V k , W ] ) = g  (k - 1). 

The calculation is just like that in the proof of (7.3). The operators 2 k % ,  w and 
[~>-k,w, %,w] are both diagonal with respect to the basis elements {% },,_>_ 1 of W. 
They coincide on a,, ifm > k. Ifm < k then 2k%, w multiplies a m by 2kin. But 

[~-k,W' ~k,W]am = V-k,WVk,wam 
= m(m + k)a m, 

m 

and so the trace is ~ m(k - m) = ~k(kl 2 _ 1), as we want. 
k = l  

Before leaving the central extension of Diff(S ~) it would be pointed that the 
extension of Lie algebras 

~ Vect(S1)^~ Vect(S 1) 

is closely related to the "Schwarzian derivative". One ordinarily thanks of this as a 
third-order non-linear differential operator S defined on functions on the circle, 
characterized by the property that 

S(adp + b/cdp + d) = S(c~) 

for any constants a, b, c, d. The formula is 

1 qS'" _3 (q~"'~ 2 
s(¢) - 2 ~ '  4\ ¢ ' /  

I shall think of it, however, as defined for diffeomorphisms q~ ofS ~ = R / 2 n Z  by the 
formula 

~(¢)=~ ~ ,~ ~S(~b) + ~((~b ) - 1). 

Then it has the properties 

(a) a(~bff) = a(ff)if qS~PSL2(R), and 
(b) a(q5 O) = tP*a(qS)'(q)') 2 + a(O). 

Here ~* is the operation defined by @*f)(O) =f(~b(0)). The second property can be 
expressed by saying that a is a crossed homomorphism from Diff(S 1) to Q, the 
space of quadratic differentials on S 1. 
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New Q is naturally dual to Vect (S~). To describe an extension of the Lie algebra 
Vect(S ~) by R it certainly sutfices to give the adjoint action of Diff(S 1) on 

G Vect(S~), or dually on N G Q. The latter action preserves the affine hyperplane 
1 O Q, and is obviously determined by its restriction to that. This restriction can be 
thought of as an affine action of Diff(S 1) on Q. 

Proposition (7.6) For the extension we have been studying the affine action of  
Diff(S 1) on Q is given by 

(dp- 1, q)~_.~),q + a(c~), 

where if q = a(O)dO 2 then qS*q = a(~(O))cy(O)2dO 2. 
The proof of this is obvious from what has preceded. For an affine action is the 

same thing as a crossed homomorphism, and the crossed homomorphism 
a : Diff(S 1) ~ Q is determined by its derivative Da at the identity, which is given by 

1 (4"' Da(~) = 77 + ~'), 

in agreement with the formula we found earlier for the cocycle defining the exten- 
sion. 

8. Orbits 

According to Kirillov and Kostant's theory of "orbits" the irreducible unitary 
representations of a group G are roughly in correspondence with a class of orbits 
of the action of G on g*, the dual of the Lie algebra of G. More precisely, if eeg* 
then the orbit X of e is naturally a symplectic manifold with a closed 2-form o9. 
The orbit is called integral if co defines an integral cohomology class in H2(X~ ;R). 
If G~ is the isotropy group of ~, and g~ is its Lie algebra, then e Ig~ is a homo- 
morphism of Lie algebras g~ ---> ~, and one can ask whether it lifts to a character 
Z :G~ ~ ql-. If one is lucky then representations of G will correspond to pairs 
(X~, Z), where X~ is an integral orbit and Z :G~ ~ -g is a lift ofalg ~. 

It would be very optimistic to hope for such a correspondence to exist in the 
case of the infinite dimensional groups considered in this paper. Nevertheless it is 
interesting to inspect the orbits to see whether any of them show signs of corres- 
ponding to the representations we have found. 

The groups we have considered are central extensions by -0- of F = Map(S t ; G) 
and Diff(S1), where G is a compact group. Their Lie algebras can accordingly be 
identified with ~ G Map(S 1 ;g) and R G Vect(S1). The duals of Map(S l ;g) and 
Vect(S I) are spaces of distributions on the circle; but we shall consider here only 
the "smooth" part of the duals, identified respectively with L = Map(S 1 ;g) (using 
an invariant inner product on g) and Q, the space of quadratic differentials on S 1. 
Thus we have to consider the action of F on N @ L and the action of Diff(S ~) on 

G Q. As we are interested only in representations which are faithful on the 
centre ~- we need only consider the orbits in 1 (~ L and 1 • Q. It turns out in both 
cases that these orbits are very easy to classify (unlike the orbits in 0 G L and 0 @ Q). 

(a) The Case o f f  = Map(S 1 ;G), where G is Compact 
The action of F on 1 • L will be thought of as an affine action on L:  

(f ,  ~ ) ~ f * ~  = f ' ~  + a s ,  
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where feF  and 4~L, and f-4 denotes the obvious adjoint action o f f  on 4. Because 
.fr--~ af is a crossed homomorphism it is determined by its derivative at the identity 
element, which is r / ~  re(r/, "), where ~0 : L x L ~ N is the Lie algebra cocycle defining 
the extension/~ of F. Recalling that 

we find 

Proposition (8.1) 

2~ 

co(l, n) = ; -  I (~  (0), n(0))d0 
ZTC 0 

a/O) = f '(O)f(O)- 1 

Note. Here, and from now on, I shall employ notation as if G were a matrix group, 
a n d f : S  1 -~G a matrix-valued function. Thus the adjoint action of f on ~ above is 
given by (f" 4)(0) =f(0)4(O)f(0)- i  

For any ~ L  there is a unique function F¢ : [0, 2hi  ~ G such that F¢(0) = 1 
and F~(O) = 4(0)F¢(0) for 0 -< 0 _< 2n. Let us define g :L ~ G by g(4) = F¢(2n). 

Proposition (8.2) (i) g(f,~)=f(O)g(~)f(O)-1, 
(ii) the orbits of the affine action ofF on L are the inverse-images by g: L ~ G of the 

conjugacy classes of G, 
(iii) each orbit contains a constant map 431  ~ g ,  and 
(iv) the isotropy group of any 4 ~ L is isomorphic (via f ~-+ f(0)) to the centralizer 

ofg(~) in G. 

Proof. (i) Because the solutions of ordinary differential equations are unique one 
has F f,,(O) = f(O)F¢(O)f(O)- 1 

(ii) If 9(4)= g(t/) then def inef~F by f ( 0 ) =  F(O)F¢(O)-1. (This does belong to 
F, being smooth at 0 = 0 = 2z) By calculation it appears that f*4 = 7/. 

(iii) Given any 4eL choose 4o~g so that exp(2n~o)= 0(4)- Regarding 4o as 
a constant element of L we have F¢o(O ) = exp(04o) and so 9(4o) = g(4). 

(iv) We havef ,~  = 4 if and only if 

f'(O) = [ ~(O),f(O)]. 

This equation is uniquely soluble forfgivenf(O) providingf(O) commutes with g(4). 
(It is enough to consider the case when ~ is constant: then the solution is 
f(O) = e°¢f(O)e-°¢.) 

Now let us consider some constant ~ ~ g c L and ask whether ( 4, > lifts to a 
character of its isotropy group, the centralizer Z of exp(2n4) in G. Let T be a 
maximal torus of G whose Lie algebra contains 4. It is well-known that if ( 4, ) is a 
weight of Tthen exp (2~4) is in the centre of G, so that Z = G. On the other hand if 
exp (2~4) is in the centre of G then it is easy to see that ( ~, > is liftable. The orbit of 
0 ¢ g is FIG ~- (2G, the loop-space of G, and one can identify it with a subgroup of F. 
It is easy to check that its symplectic form is the 2-form discussed in Sect. 7, the 
Chern class of the central extension regarded as a circle-bundle on OG. The other 
orbits can be identified with the connected components of ~2G', where G' is the 
quotient of G by its centre. 

We have seen in Sect. 4 that the representations of F of positive energy are 
indexed by the centre of G, and Ka6's method leads to the same conclusion. So the 
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suggestion of the orbit method would be that all the projective unitary represent- 
ations with the cocycle we are considering are of positive energy. 

(b) Diff(S 1) and Hif f  s Equations 
The smooth part of the dual of the Lie algebra of the central extension of Diff(S 1) 
that we are concerned with can be identified with R • Q, where Q is the space of 
quadratic differentials on S 1, and the projective representations of Diff(S 1) with 
the given cocycle ought to correspond to the orbits of Dit~S ~) on 1 @ Q ~ Q. We 
have seen in Sect. 7 that the action is the affine action 

(~b -1, q)~--~*q + a(dp), 

where a(~b) is the Schwarzian derivative. 
The space 1 @ Q has an interesting interpretation in terms of Hill's equations, 

A Hill's operator is a second-order linear differential operator on the circle of the 
form 

D q = ~ + q(O), 

where q is a real-valued function on S 1. If the parameter 0 is changed by a diffeo- 
morphism O~--~b(O) so that d/dO becomes (~b')-ld/dO then Dq becomes 

(~p,)3 dO + q(dp(O) ). 

It is very easy to check that this is 

M( (~b')3/2)" Oq "M( (~b')- 1/2), 

where ~(0) = q(dp(O))" ~b'(0) 2 + S(~b), and M(~,) is the operation of multiplication by 
~b. This means that ifDq is regarded not as an operator on functions on S 1 but as an 
operator taking of weight ½ to densities of weight ~ then the natural transform of 
Dq by q5 is D~. We have, therefore, a natural action of Diff(S 1) on the space of Hill's 
operators, and can identify the Hill's operators with the affine space 1 @ Q. To make 
the fit precise we shall redefine Dq as (d/dO) 2 + q, where ~ = 6q + ¼. 

The orbits of this action have been studied in [9] .  I shall recall the result here, 
as I wish to state it differently (and the result in [9 ]  seems not quite correct). 
Consider the equation D j =  0 as an equation on R rather than S ~. Let V~ be its two- 
dimensional space of solutions. Evaluation at a point 0 ~ ~ defines an element of the 
dual space V~*, or, more accurately, of the projective line P(V~*), as Vq consists of 
densities rather than functions. Thus to Dq is associated a natural map 
Fq : ~ ~ P(V*), which is easily seen to be a local homeomorphism. Because Dq has 
periodic coefficients the operation of translation by 2n induces a map M~ : Vq ~ Vq 
called the monodromy ofDq, such that the following diagram commutes: 

Fq 
> P(Vq*) 

T 1 iMq 
F~ 

, P(Vq*) 
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where T is 0~--*0 + 2n. Conversely if one is given a smooth immersion F:  ~ ~ P~ 
and a projective automorphism M of P~ such that MF = FTthen it is clear that the 
pair (F, M) arises from a unique Hill's equation. So Hill's equations can be identi- 
fied with pairs (F, M), where two such pairs are regarded as the same if they differ 
by an automorphism ~;P~.  The action of a diffeomorphism q5 of S 1 on (F, M) 
simply replaces it by (F~b, M), were ~b : ~ ~ N is a lift of qS. Now for a given operator 
Dq the monodromy Mo determines a well-defined conjugacy class in PGL2(N); 

but (because % PGL2(R ) - re1 P~) the path Fq determines a definite lift of this to a 
conjugacy class in SL2(N), the simply-connected covering group of PGL2(N ). 
The following result is now obvious: 

Proposition (8.3) The orbits of Diff(S 1) on 1 Q Q correspond precisely (by assign- 
in 9 to D q its lifted monodromy) to the conjugacy classes of SLz(g~). 

Note. SL2(N) has an outer involution, and the preceding statement really refers to 
conjugacy under the full automorphism group. 

The conjugacy classes in SL2(~ ) are determined by the trace, and are of three 
types, elliptic, parabolic and hyperbolic. The conjugacy classes in S"Lz(R ) are 
correspondingly of three types. The elliptic ones are all on one-parameter sub- 
groups, and are determined by giving, up to sign, a number 0e ~ such that 2 cos 0 = 
(trace). The parabolic and hyperbolic classes from a disconnected space with com- 
ponents corresponding to g: they are determined by their trace and the number of 
their component--evident ly only those in the 0-component lie on one-parameter 
subgroups. 

When the lifted monodromy lies on a one-parameter subgroup (and not other- 
wise) the corresponding orbit contains a representative with q constant. (The 
other orbits can presumably be represented by Mathieu equations, but the re- 
sults of [9 ]  seem wrong at this point.) For these orbits the isotropy group always 
contains the group R of rotations of the circle. It is possible to lift q to a character of 
R only if q is an integer. The monodromy Mq is 

cos 2=~/q - sin 2~//q 

sin 2rcx/q cos 2rcx/q J 

in PGL2(N ) if q > 0 (and an analogous hyperbolic element if q < 0). This is the 
identity if 0 = ¼ m2, i.e. q = ~(m 2 - t), where m is an integer. The isotropy group 
of q is R if ~ 4= ¼m z, but if ~ = ¼m z it jumps in dimension from 1 to 3, and becomes 
the m-fold covering of PGLz(N) consisting of the elements of Diff(S 1) which are 
periodic with period 2r~/m and are m-fold coverings of diffeomorphisms in PGLz(N ). 

All this means that the elliptic orbits correspond rather well in a qualitative 
way with the results of Sect. 6, and with Ka6's results, but  the values of q predicted 
are not quite right, as often happens with the orbit method. 

Appendix 

A string is the image of a smooth map x : [0, 1 ] ~ ~3. When it moves it sweeps out a 
"world-surface" x :[0, 1] x ~-- ,  R4 in Minkowski space-time (I shall take the 
metric in Minkowski space to be - dt 2 + dx  2 Jr- dy 2 + dz2). The particles of which 
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the string is made up are regarded as indistinguishable, so the parametrization has 
no physical significance. Nevertheless I shall suppose that the string can be paramet- 
rized in such a way that its individual particles move no faster than light, i.e. 

I ~ x  ') _< O. Then the world-surface between times t o and t 1 has an area 
~x 

\ 

The motion of the string is supposed to be governed by an action-principle which 
requires this area to be minimized, or at any rate to be stationary. 

If the world-surface lay in Euclidean rather than Minkowski space this would 
not make sense, as we should have a soap-film without a wire, and the string 
would collapse completely. But in Minkowski space the problem is well-posed, 
and we see that the ends of the string must move with the velocity of light at right 
angles to the string, for then and only then will the area of the surface not change to 
first order if one simply shrinks the string in on itself. 

I shall make two more assumptions. The first is that the motion is such that if 
one sends a light signal along the string from either end then it will get to the other 
end in a finite time. That seems reasonable physically, as the part of the string 
reachable by light signals from one end will presumably behave independently 
of the rest. Granting this assumption there is a natural parametrization of the 
world-surface which assigns to a point P the pair (t, t'), where t is the time at which 
one must send a light-signal from the end along the string to arrive at P, at t' is 
the time at which a signal from P will reach the end. (I am choosing a preferred end 
of the string.) 

t' 

ii 
Hg. 2 

~o 

E 
b -  

This parametrization is a map 

:{(t, t ' )eE 2 :t < t' < t + 2~(t)} -+ •4, 

where 2[(t) is the time taken for a signal to travel from the preferred end of the 
string to the other end and back, beginning at time t. 
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The second assumption is more technical. Suppose that for a point x near the 
edge of the world-surface the times taken for forwards and backwards light signals 
from x to reach the edge are t+(x) and t ( x ) .  I shall suppose that the ratio 
t+(x ) / t ( x )  tends to 1 as x approaches the edge of the surface. (I think that this is 
equivalent to assuming that the string does not curl up at its ends, i.e. that its cur- 
vature is bounded at any time.) Then we have 

Proposition (A.I) (a) f(t) -- f is independent oft ,  and 
(b) ~(t, t') = ~ f ( t )  + f(t ')), 

where f : ~ -~ ~4 satisfies 
O) f ( t  + 2f) - f ( t )  = 2~zp is independent oft ,  and 
(ii) ( f ' ( t ) ,  f ' ( t ) )  = 0. 
It is easy to check that p is the total momentum of the string. 
The map f :  • ~ ~4 is the trajectory of the end of the string parametrized by 

the time coordinate in the particular Lorentz frame. It is more natural to repara- 
metrize it invariantly by a parameter 0 so that 

(f '(O), p )  = (p ,  p )  and 

f(O + 2n) = f (0 )  + 2rcp. J (*) 

These requirements fix the parametrization up to an additive constant. 
The significance of Proposition (A. 1) is that the motions of the string are com- 

pletely equivalent to those of a point particle which moves with the velocity of 
light along a trajectory f : R  ~ R 4 satisfying (*). The particle has a well-defined 
rest-frame in which it describes a periodic closed orbit with the speed of light. 

Proof of Proposition (A.I) 

If the world-surface is parametrized arbitrarily in terms of parameters (u, v) then 
the Euler-Larange equations for the variational problem are 

where F = ( x . ,  x . )2  _ ( x . ,  x . )  ( x . ,  x~), and x. = Ox/Ou, x .  = Ox/Ov. If the 
parametrization is such that x. and x. are light-like then the equations simplify to 

OZx 

OuOv 

That is the case for the preferred parametrization introduced above, so we find 

~(t, f )  = f~(t) +f2(t'), 
for some functions f l  ,f :  :~ -~ ~4 such thatf~'(t) andf~(t') are light-like. The trajec- 
tory of one end of the string is t~--~fl(t ) +f2(t), and sofl'(t ) +f~(t) must be light-like 
too. This means thatf~(t) is parallel tofz(t ). 

Now we use the second assumption. Let f 0  denote the time component off1. 
The time-coordinate of ~(t, () isf~°(t) +f°(t ' ) ,  and the times taken for forward and 
backward signals from ¢(t, t') to the end are t' - f ° ( t )  - f ° ( t )  and f°(t)  +f° ( t )  - t, 
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i.e. f°(t ')  - f ° ( t )  and f°(t ')  -J~°(t). If the ratio of these tends to 1 as t' ~ t then 
f° ' ( t)  =f° ' ( t ) ,  and so f ;  =f~ ,  and we can suppose f l  =f2  = 1  

The trajectory of the other end of the string is t ~-~ ½(f(t - E(t)) + f ( t  + g(t))). For  
this to be light-likef '(t  - f(t)) a n d f ' ( t  + f(t)) must be parallel. But the time-com- 
ponent of each is 1, so f ' ( t  - g(t)) =f ' ( t  + g(t)). 

Finally we apply the second assumption at this end. Suppose that t' is slightly 
greater than t. The point ~(t', t + 2f)) has time-coordinate ~(t + t ' )+  f(t), and 
signals from it research the end at t + f(t) and t' + E(t'). F rom this we find that 
(~(t' - t) + E(t') - E(t))/~t' - t ) ~  1 as t' ~ t, and so that ~'(t) = 0. Thus ~(t) is con- 
stant, and f ' ( t  + 2f) =if(t).  This gives the desired result f ( t  + 2E) = f ( t )  + 2~p for 
some vector p. 

t t+l(t) 

Fig. 3 

Before turning to the quantization of the system I shall make a few general 
remarks. 

Suppose that Yis a symplectic manifold on which a group G acts, preserving 
the symplectic form. Then there is defined a natural map, the "momentum" map, 
P :Y ~ g*, where g is the Lie algebra of G, and g* is its dual. P is simply the trans- 
pose of the map g ~ Map(Y;E) which assigns to an element of ~ a Hamiltonian 
function for the corresponding flow on Y (The Hamiltonian are determined only up 
to an additive scalar, and P is more properly a map Y ~ ~*, where ~ is the central 
extension of g by E determined by Y) Clearly P is equivariant with respect to G. 
If one chooses an orbit co of the coadjoint action of G on * then Y~ = P-1(co) is 
G-invariant, and X~o = Y,o/G has, if it is a manifold, a natural symplectic structure. 
X,o is called the quotient system of Y by G with momentum co. If coo is a point of the 
orbit co notice that Xo~ can be identified with Xo~ ° = ¥~oo/Go, where Y~o = P -  1(coo), 
and G o is the stabilizer of coo" 

The state space X of a string is a quotient system of this form. Suppose that Yis 
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the space of all smooth maps f :  ~ ~ ~4 such that 

Pf = l (f(O + 2~) - f (O))  

is constant. Y is a vector space, and has a symplectic structure given by the skew 
form S : Y x Y -~ ~ defined by 

1 2~ 
s(L ,A) = ~ ! (< L ,J~) - < Y;,A ))dO + ~(< L(o), Ps~ ) - < Psi ,A(°) >)" 

Let G denote the universal covering group of Diff(S1), the space of diffeo- 
morphisms ~b :~ ~ ~ such that ~b(0 + 2re) = ~b(0) + 2~. G acts on Ypreserving S, 
and the Hamiltonian function H e inducing the action of the vector field ~(O)d/dO 
is given by 

1 2~ 
He(f) = S(~f' , f)  = ~ ! 4(0) (f'(O),f'(O) )dO. 

In other words, the momentum map P : Y ~  g* isf~-~ ( f ' , f '  ). 
This means that Yo = P -  1(0) consists of the trajectoriesfe Ywhich travel with 

the speed of light. Each such has a unique preferred parametrization, and so 
X o = Yo/G is precisely the state-space X of a string. 

In favorable cases quotient systems of the form X~, can be quantized as follows. 
One first chooses a quantization of Y,, a certain Hilbert space H. The action of G 
on Ycorresponds to a unitary action of G on H. This can be decomposed as a direct 
integral 

/ =lno®eo, 
where Po, runs through the irreducible unitary representations of G. If the irredu- 
cible representations P~ can be indexed by the orbits a of G in g* then the Hilbert 
space H a ought to be the quantization of the quotient system X,~. 

When one attempts to apply this ideal procedure to the states of a string at 
least two difficulties arise. The first appears when one quantizes any infinite 
dimensional linear system Y on which a group G acts: the extension of 8 by 
defined by Yis trivial, as each ~ a g has a canonical Hamiltonian which is a homo- 
geneous quadratic function on Y; on the other hand when Yis quantized in the 
standard "metaplectic" way a non-trivial central extension G of G acts on H, and 
the representations of G which occur in H correspond, if they correspond to 
orbits at all, to orbits in a certain affine action of G on g* (cf. Sect. 8). It is thus not 
clear which H,~ to associate to which values of the classical momentum. 

The second difficulty is that one cannot quantize the linear system Y 
satisfactorily. For  to do so we should presumably begin by observing that the ~4_ 
valued functionf~-,py on Ycorresponds to the total momentum of the system, and 
the corresponding operator (actually four commuting operators) should break up 
H as 

Hp, 
p~4  

where Hp is got by quantizing the linear system Vp = { f~Y:py =p} /~4  (Thus 
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Vp is a quotient system of Yby the group E4 of translations.) To quantize Vp one 
would choose a positive polarization Vp, c = W O  17¢and define Hp = S(W), as the 
body of this paper. But unfortunately, because the inner product in Minkowski 
space is indefinite one cannot choose the polarization both positive and invariant 
under the Lorentz group. The standard procedure is to choose an invariant polari- 
zation Wwhich is not positive (it is the part of Vp, c of"positive energy" in the sense 
of this paper), and to form a pseudo-Hilbert-space Hp = S(W) which has an inde- 
finite inner product. The group G acts projectively on Hp, and it has a discrete de- 
composition 

Hp = (~ H (;")c~ p 
n>O 

where P~, is the irreducible representation of G with lowest weight 2 = n + ½(p, p )  
which need not be integral here as G is now not Diff(S 1) but its covering group. 

One wants to pick out in Hv the isotypical piece H~ ~) associated to a certain 
irreducible representation P, of G taken to correspond to the momentum condi- 

i ,* i (  _ tion ( f  , f  > = 0. This will be zero unless ~ p p ) -  ~ is a negative integer. 
Physicists customarily take c~ = 1, for a reason I shall explain in a moment, though 
this has the great disadvantage that the Hilbert space then contains state vectors 
with (p, p )  = 2, i.e. particles moving faster than light with imaginary mass, so 
called "tachyons". The general nature of the model, on the other hand, leads one 
to suppose that the lowest state of a string ought to be when it collapses to a particle 
moving with the speed of light: that would correspond to c~ = 0. 

Goddard and Thorn [4] have shown that when c~ = 1 the metric of H~ ~) is 
positive semi-definite. By dividing H (~) by its radical one obtains a genuine 

P 

Hilbert space /~) ,  and physicists take 

J p ~  

where p runs over all momentum vectors in N ~ such that ~ (p,  p ) + ~ is a negative 
integer, as the Hilbert space of quantum states of the string. (I should perhaps men- 
tion that physicists define H~ ~ as the subspace {~eHp :V0~ = e~, V k~ = 0 for 
k > 0} of lip (where the V k are the basis for ~) ,  exploiting the fact that each irreduci- 
ble representation of G contains a unique lowest-weight vector.) 

To produce a space of states of a free string is not of interest unless one can 
describe how strings interact. I am certainly not competent to do that, but I shall 
simply point out, as it was the motivation for Sect. 4 of this paper, that one can 
define for certain vectors v e ~  4 an operator B ~ :Hp ~ Hp+~ which commutes with 
the action of G and is supposed to correspond to the process of absorption of a 
particle of momentum v by a string of momentum p to form a string of momentum 
p+v.  

One wants B~ to be defined only when ~ p + v , p + v ) - ½ ( p , p ) ,  i.e. 
(p, v) + ½ (v, v),  is integral. Now the e lementsfof  the additive group Ydescribed 
above act projectively on H by operators A(f).  If (v, v ) =  2, and we restrict 
ourselves to the Hp such that (p, v)  is integral, then just as in the last part of 
Sect. 4 w e c a n d e f i n e f o r e a c h 0 e R a  bhp Bo:H p Hp+.. The integral 
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is an  o p e r a t o r  w h i c h  c o m m u t e s  wi th  G, a n d  is w h a t  we want .  Bu t  it  m a k e s  sense o n l y  

w h e n  (v,  v )  = 2, a n d  the  pa r t i c l e  a b s o r b e d  is a t a c h y o n .  Phys ic i s t s  w a n t  the  pa r t i c l e s  
a b s o r b e d  to  c o r r e s p o n d  to  u n e x c i t e d  s ta tes  o f  a s t r ing,  i.e. to  t h o s e  such  tha t  

½(p,  p )  - ~ = 0, a n d  they  a re  the re fo re  led to  a s s u m e  tha t  ~ = 1. 
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