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1. INTRODUCTION 

Let a be the exterior of a finite collection of disjoint bodies with smooth 
boundaries S, ,..., S, and set XI=S, + . . . + S,. In two preceding papers 
([ 15, 161) we have considered selfadjoint extensions A and A’ of the vector 
Laplacian -A in R with respect to electric boundary conditions 

nxE=O, V.E=O on 80 (1.1) 

and magnetic boundary conditions 

nx(VXH)=O, n.H=O on X4 (l-2) 

respectively, where n denotes the exterior normal unit vector on ZY2. The 
definition of the operators A and A’ is given in [ 15, Sect. 3] and briefly 
recalled in [ 16, Sect. 11. We have shown in [ 151 that A and A’ are positive 
and selfadjoint. By using the functional calculus for unbounded, selfadjoint 
operators, we obtained in [ 15, Sect. 71 weak solutions E and H of the initial 
and boundary value problems for the vector wave equation in C2 with respect 
to the boundary conditions (1.1) and (1.2). In [ 161 we studied regularity 
properties of A and A’. In particular, we have shown that E and H are 
classical solutions if the initial data and the boundary 8J2 are sufftciently 
smooth. As we have pointed out in [ 15, Sect. 21, our analysis includes the 
initial and boundary value problem of perfect reflection for electromagnetic 
wave fields in the case that R is filled by an isotropic, homogeneous medium. 

The main object of this paper is the investigation of the spectra of the 
operators A and A’. We start with the discussion of the null spaces N(A) and 
N(A’) of A and A’ and show in Sections 2 and 3 that the dimensions of N(A) 
and N(A’) are n and p =p, + . . . +pn, respectively, where n is the number of 
reflecting bodies and p, denotes the topological genus of the boundary Sj of 
the jth reflector. It turns out that the eigenelements belonging to the eigen- 
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value il = 0 are harmonic vector fields satisfying the boundary condition 
n x E = 0 in the case of the operator A and n . H = 0 in the case of A’. 

In Sections 4 and 5 we discuss the spectral families {PA) and {Pi} of A 
and A’, by using the well-known relationship between the spectral family and 
the resolvent R, of a selfadjoint operator. If F is a sufficiently smooth vector 
field with bounded support, then R,F = (A - ~1))’ F can be identified for 
z 6Z [0, co) with the L,-solution E = E,[F] of the boundary value problem 

AE+ic2E=-F in R, 

nxE=O, V.E=O on an, (1.3) 

where rc2 = z and Im K > 0. This boundary value problem has been studied 
in [ 1 I], by employing integral equation methods. In particular, we have 
shown in [ 1 l] that the principle of limiting absorption holds in the following 
form: There exists an open subset B, of the complex K-plane, containing the 
set (K: Im K > 0, K# 0}, such that E,[F](x), as a function of K, can be 
analytically extended onto B, for every x E R. Furthermore, the extended 
function E = E,[F] satisfies, for real K # 0, Eq. (1.3) and the radiation con- 
dition 

E = 0( l/r), 
( 1 
f-k E=o(l/r) as ~=lx]+ co. (1.4) 

In agreement with the physical interpretation of the radiation condition, a 
solution E of (1.3) with real K # 0 is called outgoing (incoming) if (1.4) 
holds with rc > 0 (K < 0). By using the principle of limiting absorption, we 
derive in Section 4 the formula 

(P,F)(x)=(P,oF)tx)+~j’tE~[Fl(x)-E-~~Fl(x))~~ (1.5) 
0 

for k > 0 and x E 6 under suitable smoothness assumptions on F and 8Q 
(compare Theorem 4.1). Note that P,, is the projection of L2(.C!) onto N(A). 
The integrand in (1.5) may be discontinuous at u = 0, but we shall show that 
the (improper) integral in (1.5) converges uniformly in every bounded subset 
of fi. In particular, we obtain P,F E C(a). The formula (1.5) relates the 
spectral family (PA} of A to the outgoing and incoming solutions of (1.3) 
with real K. Furthermore, our analysis yields: A = 0 is the only eigenvalue of 
A, and the continuous spectrum of A consists of the half axis [0, co). 

Similar results can be derived for the operator A’. As we shall show in 
Section 5, the methods developed in [ 1 I] can also be applied to the magnetic 
boundary value problem 

AH+Ic~H=-F in R, 

nx(VxH)=O, n-H=0 on 80, (1.6) 
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so that we obtain an analogous formula relating the spectral family {Pi} of 
A’ to the outgoing and incoming solutions of (1.6) for real IC. 
In Sections 6-S we use the results of Sections 4 and 5 to derive generalized 
eigenfunction expansions with respect to the boundary value problems (1.3) 
and (1.6). The kernels of the generalized Fourier integrals are solutions of 
(1.3) and (1.6), respectively, with F = 0 and real K, which behave at infinity 
like plane waves ueip’X with a, p E R 3 and 1 p I* = K * (distorted plane waves). 
Results of this type have been obtained for the Schriidinger equation in R3 
by Ikebe [2] and for the scalar wave equation in exterior domains with 
smooth boundaries by Shenk [6] and, under more general assumptions on 
the boundary, by Wilcox [ 181. First results on generalized eigenfunction 
expansions in the vector case are due to Grieb [ 11. In addition to [ 11, the 
unitary character of the expansions will be established in Section 8, by 
employing a method developed by Wilcox [ 181 in the scalar case. The 
generalized Fourier transforms, studied in Sections 6-8, can be used to 
derive orthogonal decompositions of the Hilbert space L,(0) into closed 
subspaces, consisting of irrotational or solenoidal vector fields, respectively, 
as we shall show in Section 9. Section 10 contains a proof of a regularity 
statement which is used several times in the preceding sections. 

The results of this paper can be applied to the initial and boundary value 
problems for the vector wave equation studied in [ 15, 161 and allow a 
discussion of the behavior of the solutions as t -+ cc). In particular, it is 
possible to derive necessary and sufficient conditions for the validity of the 
principle of limiting amplitude. We shall discuss this problem and related 
applications to the time-dependent theory in a subsequent paper. 

2. THE NULL SPACE OF A 

In the following we assume that X! E C6. It follows from the classical 
theory of the exterior Dirichlet problem for the scalar Laplace equation that 
there exist uniquely determined functions p, ,..., pn E C’(G) n Coo(Q) such 
that do, = 0 in 0, pi = 6, on S, (6, := Kronecker’s symbol), and Dppi = 
O(r-‘P’-l) as ~=]x] + co for every differential operator Dp = af@iV3’3 of 
order ] pI =p, + p2 + p3 (compare, for example, [9, Satz 41 and [ 9, 
Lemma IS]). The vector field 

Ei = Vrpi (i = l,..., n) (2-l) 

satisfies the equations V . E, = 0, V x Ei = 0 and hence 

LIE,= V(V . E,)-V x (V x E,)=O 
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in 8. Furthermore, Ei satisfies the boundary conditions (1.1) on an and the 
asymptotic relation DPEi = O(r-‘Pi-2) as r= 1x1 --t co. Lemma 2.1 shows 
that E belongs to C’(fi). 

LEMMA 2.1. Assume that k> 2, 80 E Ck+4, E E C(a)n C”(Q), 
VxEEC(.@, V*EEC(.@, nxE=O and V-E=0 on cX2, and 
F := -AE - IZE E Hk(Q) for a suitable complex number 1. Then we have 
E E C”(G). 

A proof will be given in Section 10. 
Recall the definition of the linear space S introduced in [ 151, Section 3: 

S:={EEC2(~):nxE=OandV~E=Oon~R; 

E,,a,E,aJ,E=O(r-*)fori,k= 1,2,3andr=]xl+ co). 

The Properties of E, collected above imply that Ei E S c D(A) and AE, = 0 
since A = -A on D(A). Hence E, ,..., B, belong to the null space N(A) of A. 
The fields E ,,..., E, are linearly independent. In fact, assume that 
c,E, + .a. + c,E, = 0 and set (p := c,q), + .sa + c,(p,,. Formula (2.1) implies 
Aq=O and hence v,=O, since q(x)+0 as (xl-1 60. Since v)=ci on Si, we 
obtain c, = ... = c, = 0. In order to verify that the fields E, ,..., E, form a 
basis of N(A), we consider an arbitrary element E E N(A). Since E E D(A), 
AE = 0, and 80 E C6, we have E E C’(d) by [14], Theorem 6.3 (with 
F = 0, I = 0). Furthermore, E satisfies the boundary conditions (1.1) by [ 14, 
Theorem 7.11. Now we use the following elementary fact on L,-functionals: 

LEMMA 2.2. Assume that u E C(B) n L*(a), where R is the exterior of 
a finite collection of disjoint bodies with smooth boundaries. Let F,, denote 
the linear functional on C?(a), generated by u, 

F,q := uq dx 1 for ~1 E C?(O). P-2) 
n 

Then the improper integral In ( u 1’ dx exists, and we have 

114,112 =I, bI* dx. (2.3) 

I( .. . II denoting the norm in L&2). 

Remark, As in [12], the elements of L,(Q) are interpreted as 
distributions, and every function u E C(a) is identified with the functional F, 
defined by (2.2). In particular, u E L*(O) means that F, is bounded with 
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respect to the norm ]( q I] = [l) a, ]* dy] I’* in CT(Q), and the norm of F, is 
defined by 

lIF,II := ~u~{lF,(ol: cp E G’VQ ll~ll = 1) (2.4) 

(compare [ 12, Sect. 21, in particular, Definition 2.1). 

Proof of Lemma 2.2. Let FR be the restriction of the functional F, to 
Cr(Q,) with R, := {x E 52: 1x1 < R}. By [ 12, Lemma 2.51 we have 

I Id2 dx = ll&ll2,uJ,, G II~ul12 OR 

for every R > R, :=max{]x]:x E XI}. By applying the monotone 
convergence theorem of elementary calculus, it follows that the improper 
integral I, ( ZJ I* dx exists and that 

The opposite inequality follows from (2.4), (2.2), and Schwarz’s inequality. 
Since E E D(A) c H,(S)) and E E C’(d), Lemma 2.2 implies that 

J 1 E*dx<ao I and In laiEl* dX < co (i= 1,2,3), (2.5) 
R 

and hence, by Schwarz’s inequality, 

In IEJ 9 [IV x El + IV - E]] dx < 00. (2.6) 

Set 

for r > R, with Z, := {x E R3: 1x1= r}. By (2.6) we have 

(2.7) 
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for R > R,. Hence, there exists a sequence {rk} such that rk + co and 
f(r,J + 0. By using V x (V x E) - V(V . E) = -AE = 0 and the boundary 
conditions (l.l), we obtain for r > R, 

I [I VXEI*+]VEI*]dx 
-0, 

=Jn,v * [ -Ex(VXE)+EV.E]~X 

= ir[-(nXE)*(VXE)+(n.@V.E]dS<f(r). 
1 

Since rk + co and f(r,) + 0, it follows that 

J [(VxE~*+~V~E~*]dx=O 
0 

and hence 
VXE=O, V.E=O in Q. 

Now we want to show that 

P-8) 

E = O(r-*) as r=]x]+ co. (2.9) 

The asymptotic relation (2.9) follows from (2.8) and the following represen- 
tation theorem for harmonic vector fields in exterior domains: 

b3MMA 2.3. Let fZ? be the exterior of aj%ite collection of disjoint bodies 
with smooth boundaries and assume that E E C*(a) n L*(Q) and that E 
satisfies the equations V x E = 0 and V . E = 0. Then we have for every 
XEf2 

ProoJ Consider positive numbers r, p such that the sphere up(x) := 
{y-xj=p} is contained in $2,={yER:lyl<r} and denote the region 
between up(x) and a$, by 0,. By applying the integral theorem of Gauss to 
fields E,, E, E C*(L?,) with V(V . Ei) - V x (V x Ej) = AEj = 0, we obtain 

I 
n. [E,V~E2,7E2V~El+ElX(VXE2)-E2X(VXEl)]d~ 

=hl 

E,V.E2-EzV.El+EIX(VxE,)-E2X(VxE,)]dx=0. 
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Now set E, := E and E,(y) := eJ[x -y 1, where ei denotes the ith unit 
vector. Since V x E = 0 and V . E = 0, we obtain as p + 0 

1 [ r,-an MY) * E(Y)) -g, & + MY) ME) 
( 
V,- ~,i,l Xei )I ds~ I 

= E(x) . j [-Z(ei * Z) + z X (Z X ei)] dS = -4~E(x) * ei 
Izl= I 

and hence 

E(x)=-&&+jz -aR 
r 

((4u)W))&& 
t 

+ (n(Y)XE(Y))* kyhx ei)]dS, 

or, equivalently, 

E(x) = -$ MY) * E(Y)) vq& 

+ MY> x E(Y)) x V, (2.10) 

Now we discuss the part of the right-hand side in (2.10) which is integrated 
over C,. Schwa&s inequality implies that 

(jz~-W, /p [jz~l~12dy]"z [jz ,xy”‘. (2.11) r 
Nowassumethatr>2Ixl.SinceIyl=r,wehavely-xl>r/2sothatthe 
last integral in (2.11) can be estimated by 4~?(2/r)~ = 64rrr-‘. This yields 

[-*-I dS, I<% [~~,~E~zdy]“2 for r> 2)x). (2.12) 

Set 

Since 

g(r) := j,x,=r PI2 dy. 
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for R > R, by Lemma 2.2, there exists a sequence (rk} with rk + 00 and 
g(rk) -+ 0 and hence, by (2.12), 

i 
[...]dS,+O as k-co. 

T’li 

By inserting this estimate into (2.10), we obtain Lemma 2.3. After these 
preparations, the basis property of the fields E, ,..., E, follows from 

LEMMA 2.4. Assume that E E C’@), V x E = 0 and V - E = 0 in R, 
nxE=O on XI, and E=O(r-*) as r=[xJ-+o3. Then E is a linear 
combination of the fields E, ,..., E, introduced in the beginning of this section. 

ProoJ The proof of [ 11, Lemma 141 shows that the n x n matrix 

has rank n. Hence we can find real numbers c, ,..., c, such that 

n 

-j- ‘k 
keil I 

n. E,dS= n.EdS (i = l,..., n). 
Si 

Set 

E,:=E- i c,E,. 
k=l 

(2.13) 

WehaveE,EC*(fi),VXE,=OandV~E,=Oin~,nxE,=Oon~~, 
E,=O(Re2) as r=(xJ-+ co, and 

1 
n.E,dS=O (i = l,..., n). (2.14) 

si 

In order to show that E, vanishes in fi, we consider a fixed point x, E Q and 
form the potential 

(2.15) 

where x is an arbitrary point in fi, C is a smooth curve connecting x0 and x 
within R, and a0 is a suitably chosen number. Since V X E, = 0 in 0 and 
n x E, = 0 on K?, it follows from the integral theorem of Stokes that the 
integral in (2.15) does not depend on the choice of C. Since E, = O(r-*) as 
r+ 00, a, can be chosen in such a way that v = O(r-‘) as r--1 co. Note that 
Vv=E,. Hence w satisfies the assumptions of [ 11, Lemma 141 with 
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a, = . . . = a, = 0 (because of (2.14)). Therefore the uniqueness part of [ 11, 
Lemma 141 implies w = 0 and hence E, = Vyl = 0. Thus, by (2.13), E is a 
linear combination of E, ,..., E,. 

We collect our results in 

THEOREM 2.1. Assume that LJ is the exterior of n disjoint bodies with 
boundaries S , ,..., S, E C6. Then the null space N(A) of the operator A 
introduced in [ 13, Sect. 31 has the dimension n. E belongs to N(A) if and 
only if EEC’(fi), VxE=O and V-E=0 in R, nxE=O on 8S2, and 
E=O(r-‘) as r=]x] -t co. A basis of N(A) is given by the fields E, ,..., E, 
introduced in the beginning of this section. 

3. THE NULL SPACE OF A’ 

Recall that Q is the exterior of a finite collection of disjoint bodies 
B i ,..., B, with smooth boundaries. More precisely, we assume that B, ,..., B, 
are bounded, open, connected subsets of R 3 with Hi n B, = 0 for i # K and 
that B is the complement of B, U --a U g,, in R 3. Let pi be the topological 
genus of Si := aBi and set p :=p, + .-- + p,. In particular, Bi has p, handles. 
Each of the p handles Hi,..., HP of the bodies B1,..., B, may possess 
nontrivial knots, and different handles may be intertwisted like Olympic 
rings. 

,Consider p smooth closed curves Ci,.., C, in fi with the property that Ci 
runs around the ith handle Hi exactly once, without circulating around any 
other handle Hi. It follows from the integral theorem of Stokes that the 
curves C, ,..., C, form a homology basis for fi in the following sense: For 
every closed curve C in 6 there exist integers a, ,..., aP such that 

I C 
H. tds= ? aj( Ha tds 

,T, ci 
(3-l) 

for every field HE C(a) n C’(0) with V x H = 0. Furthermore, consider p 
smooth closed curves C,*,..., Cz in R3 - fi= B, U ... U B, such that CT 
runs along the ith handle H, exactly once, without circulating along any 
other handle Hj. Choose the orientations of Ci and CT such that Ci encircles 
Cr in a positive sense. According to the law of Biot-Savart, we consider the 
fields 

H;(x) :=-&V x 1,: t(Y) Ads’. 
, 

(3.2) 

It is well known that 
VxH;=O in d and 

s 
HJ! . t ds = 6, (i, j = l,..., p). (3.3) 

c/ 
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A proof of (3.3) is contained in [4, Sect. 1.21. A different proof will be 
sketched at the end of this section. 

It follows from the classical theory of the exterior Neumann problem for 
the scalar Laplace equation that there exist uniquely determined functions 
v/i ,..., vl, E C’(fi) n P’(0) such that dwi = 0 in R, (a/&z) vi = -n . H,! on 
an, and DPwi = O(r-‘P’-l) as T = Ix]+ co for every differential operator Dp 
of order 1 pJ (compare, for example, [9], in particular the Corollary after 
Satz 3 and the remark [9, p. 501). Set 

Hi := Hi’ + Vvi (i = l,...,p). (3.4) 

Hi satisfies the equations V . Hi = 0, V x Hi = 0 and hence AHi = 0 in R. 
Furthermore, Hi satisfies the boundary conditions (1.2) on X! and the 
asymptotic relation DPHi = O(r-‘P’-2) as r = ]x ] -+ co for every differential 
operator of order 1 pi. As in Section 2, we assume that 80 E C6. The 
following variant of Lemma 2.1 shows that H belongs to C2(fi): 

LEMMA 3.1. Assume that k>2, ZM2ECkt4, HEC@)nCk(f2), 
VxHEC(@, V.HEC@), nx(VxH)=O and n-H=0 on LX?, and 
F:=-AH-LHEH&2) f or a suitable complex number 1. Then we have 
HE C”(a). 

The properties of Hi collected above imply that Hi E S’ c D(A’) and 
AH,= -AH,=O. Hence H ,,.,., H,, belong to the null space N(A’) of A’. 
Note that (3.3) and (3.4) imply that 

I Hj. tdS= 6, (i,j= l,...,p). (3.5) 
ci 

The fields H ,,..., HP are linearly independent, since it follows from 
c,H, + .+. + c,H, = 0 and (3.5) by integration over Ci that ci = 0 for 
i = l,...,p. 

In order to show that the fields H, ,..., HP form a basis of N(A’), we 
consider an arbitrary element HE ZV(A’). Since HE D(A’), AH = 0, and 
an E C6, we have HE C’(fi) by [ 14, Theorem 6.31, and H satisfies 
boundary conditions (1.2) by [ 14, Theorem 7.11. The same argument as in 
Section 2 implies that 

and 

VxH=O, V.H=O in R (3.6) 

H = O(re2) as r=jxI-+ ao. (3.7) 
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Note that the argument leading to (2.8) remains valid if boundary 
conditions (1.1) are replaced by (1.2) and that Lemma 2.3 does not depend 
on the assigned boundary data. Set 

with 

H, :=H- 2 ajHj 
j=l 

(3-g) 

aj := 
I 

H. tds. (3.9) 
ci 

It follows from (3.5) that 

H,. tds=O for i = l,...,p 

and hence, by (3. l), 

s 
H,,. tds=O 

C 

for every closed curve C in fi. Thus the potential 

y(x) := C r H, . t ds + a0 (x,,xE fi) 
‘X” 

(3.10) 

has the same value for every smooth curve connecting x0 and x within 0. 
Since H, = O(r-*) as T-+ co by (3.2) and (3.7), the number a0 can be 
chosen such that v/ = O(r-‘) as r -+ co. Note that v/ E C’(a), AI,U = 0 in 0, 
and (a/&z) v = 0 on K?. Hence the uniqueness theorem for the exterior 
Neumann problem yields H, = VI,Y = 0 so that H is a linear combination of 
the fields H, ,..., HP. Thus we obtain: 

THEOREM 3.1. Assume that 0 is the exterior of n disjoint bodies with 
boundaries S , ,..., S, E C6. Then the null space N(A’) of the operator A’ 
introduced in [ 13, Sect. 31 has the dimension p =p, + . . . +p,, where pi 
denotes the topological genus of Si. H belongs to N(A’) if and only if 
HEC*(fi), VxH=O and V-H=0 in $2, n.H=O on aQ, and 
H=O(r-*)as r=lxl + 00. A basis of N(A’) is given by the3elds H,,..., HP 
introduced in the beginning of this section. 

We conclude this section with some remarks on formula (3.3). Suppose 
first that C,? is the boundary of a piecewise smooth surface S,?. ST can be 
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chosen such that Ci intersects ST in exactly one point xi and Ci n ST = 0 
for j # i. The integral theorem of Stokes implies for smooth functions f 

with suitably chosen orientation of ST, since 

i C; 

ft a ej ds = 1 
s; 

n. [Vx(fe,)]dS=jS_(nxV~).ejdS 
I 

for every unit vector ej (j = 1,2,3). Hence (3.2) yields for x & SF 

H;(x)=& XJ 
s; 

with 

(3.12) 

(3.13) 

Note that V x H,! = 0 in fi and 

I Hi’. tds=O for j$=i 
cj 

since H; E C’(a), Hi = Vyl, in R3 - ST, and Cj n ST = 0. The jump 
relation for the double potential (3.13) yields 

I Hf - tds= 
I 

Vp[ * tdS=p,F(Xi)-p[(Xi)= 1. 
Cl Cl 

This concludes the proof of (3.3) in the special situation considered above. 
In order to extend the argument to curves CT with nontrivial knot structure, 
we choose a finite number of closed curves C’ i,...,C~ without knots such that 
c: = c; + . . . + Cy, by subdividing C,? and inserting auxiliary curves which 
are passed in both directions, and apply the above argument to C,!,..., C$. In 
particular, we choose piecewise smooth surfaces 57: with a$ = Cf. The 
surfaces Sf can be choosen such that Cy intersects S,! in exactly one point 
xi, CTnSf=0 for k> 1, and CJ?nS:=O for j#i. In the case of a 
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FIGURE 1 

trefoil C = C:, closed curves C’ and C2 with the required properties can be 
chosen as in Fig. 1, by using two subdivision points P and Q and one 
auxiliary curve which connects P and Q and is passed in both directions. 

4. THE SPECTRAL FAMILY OF A 

In this section we investigate the spectral family {P,}, 12 0 of the selfad- 
joint, positive operator A. The basic properties of the projection operators P, 
have been collected in [15, p. 152-1531. Note that formula [ 15, Eq. (7.11)] 
holds also for piecewise continuous functions f (compare [8, Section 91). 
Furthermore, we shall use the following elementary fact: For every A > 0 
there exists a projection operator PA+, such that P, F + P, +,F as ,U 1 A for 
every FE L,(0), and P, +,, -PA is the orthogonal projection of L2(R) onto 
the null space of A -AI. At first we show: 

LEMMA 4.1. Assume that 852 E C 2j+4. Then we have P, F E C’j(fi) for 
every FE L,(Q) and every ,u > 0. Furthermore, P,F satisfies boundary 
conditions (1.1) ifj > 1. 

Proof Note that 

P, F = 
I 

’ d(P, F). 
0 

By using [ 15, (7.1 l)] k-times, we obtain 

P,F E D(Ak), AkP,F= 
s 

’ Ak d(P,F) 
0 

(4.1) 

(4.2) 
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for every positive integer k. In particular, we have Ak(P,F) E D(A) for 
k = 0, l,..., j + 1. By applying [ 16, Theorem 6.11 (with G = A j(P,F), 
k = 0,1= 0), it follows that 

Aj(P,F) E Hz(P) for every Q’ c Q (4.3) 

(compare the notation introduced in the beginning of [16, Sect. 61). By a 
second application of [ 16, Theorem 6.11 (with G = Ajc’(P,F), k = 2,1= 0), 
(4.3) implies that 

Aj-‘(P,F) E H&i”) for every 0’ c 0. (4.4) 

By repeating this argument (j - 2) times, we obtain A(P,F) E Hzj(12’) for 
every 0’ CD and hence, by [16, Theorem 6.31, P,F E C’j(fi). The 
boundary conditions (1.1) follow from [ 16, Lemma 7.11. 

In the following we assume as in the preceding sections that BR E C’. The 
resolvent R, = (A - zZ)-’ and the spectral family {PA} of A are related by 

R,F= Offl (2 -z)-’ d(P,F) 
i 

for FE L,(a) and z @ [0, co) (4.5) 

(compare [15, Eq. (7.11)]). It follows from (4.5), by using Plemelj’s 
inversion formula for Cauchy-Stieltjes integrals ([ 7, Sect. 29]), that 

((f’, +P,+,)F, G)- ((Pa +P,+,)I;, G) 

’ ‘p-J J (R,+,F- R,-i,F, G) M for F, G E L2(R). (4.6) 
a 

This well-known formula is the basis of our further discussion of the spectral 
family {P,}. 

In order to study the behavior of the resolvent R, as Im z -+ 0, we consider 
the following boundary value problem for sufficiently smooth vector fields F 
with bounded support and for Im 1c > 0, K # 0: 

(A) Find a vectorfield E E C’(a) such that 

(i) AE + lc2E = -F in 0, 

(ii) nxE=O,V~E=Oon%2, 

(iii) E = O(r-I), (a/&-in) E = o(r-I) as r = /xl+ 00. 

We show: 

LEMMA 4.2. Assume that F has bounded support and belongs to C’@)). 
Then problem (A) has a uniquely determined solution for every K with 
Imrc>O and K#O. 
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ProoJ: The uniqueness argument is contained in [ 1 l] (compare, in 
particular, the beginning of Section II and the first part of the proof of [ 11, 
Lemma 61). Now set 

! 
T(x) := &jn F(y) E dy (4.7) 

and 

c := -n x T, y:=-V.T on Xk (4.8) 

By the classical theory of volume potentials, we have T E C’(fi) n C”(a), 
AT + KIT = -F in Q, and VT satisfies a Holder condition uniformly on X!. 
In particular, c and y satisfy the assumptions made in [ 111 (compare the 
formulation of problem (B) on [ 11, p. 3551). Hence [ 11, Theorem I] implies 
that there efists a field E’ such that E’ E Cm(G) n C(6), V x E’ E C(a), 
V . E’ E C(Q), AE’ + K~E’ = 0 in Q, n x E’ = c and V . E’ = y on aR, and 
E’=O(r-‘)and(a/ar-ir~)E=o(r-~)asr=~x\-+co.Thefield 

E:=T+E’ (4.9) 

satisfies the properties (i)-(iii) stated above. Furthermore, we have 
EEC’(R)nC!(fi), VxEEC@), V.EEC(fi) and FEC’(fi)cH,(Q). 
Hence Lemma 2.1 yields E E C’(B). This concludes the proof of Lemma 
4.2. 

It follows from (4.7) and the analysis in [ 111 (compare, in particular, the 
representation [ 11, Eq. (2.3)] for E’) that E, aiE and aia,E decay exponen- 
tially if Im K > 0 and supp F is bounded. This implies that E E S c D(A) and 
(A - K') E = -(A + K') E = F in this case. Thus we obtain: 

LEMMA 4.3. Assume that F has bounded support and belongs to C’(B). 
Let E = E,[F] be the solution of problem (A). Then the resolvent R, of A 
satisfies 

R,F= E,[F] with K'=Z and Im K > 0 

for every complex number z @ [0, a~). 

(4.10) 

Note that T, c, and y depend analytically on K in the whole K-plane and 
that the corresponding power series expansions converge uniformly on aJ2. 
Hence the argument in [ 11, Sect. IV] shows that E,[F] depends analytically 
on K for Im K > 0 and K # 0. More precisely, we obtain: 

LEMMA 4.4. Under the assumptions of Lemma 4.3, E,[F](x) depends 
analytically on K in B, := {K E C: Im K > 0, K # 0} for every x E 0. 
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Furthermore, for every rcO E B, there exists a P(K,,) > 0 such that the power 
series expansion of E, [F]( x a IcO converges uniformly in {K: /K - K, 1 < ) t 
P(K~)} X M for every compact subset M of R. 

Remark. It is possible to prove the analyticity of E,[F](x) also for 
x E asl and to extend the second part of Lemma 4.4 to bounded subsets M 
of 8 by using the methods developed in [lo]. This situation requires 
additional considerations since the first term in [ 11, Formula (2.3)], 

3 

E,(x) = V X Ia0 a(y) g dS, (x E fl>, (4.11) 

cannot be continuously extended onto fi for arbitrary continuous tangential 
fields a. The argument in [lo] suggests to replace the Banach space B, of 
continuous tangential fields in [ 11, Sect. III] by the Banach space By of 
Holder-continuous tangential fields a with Holder exponent a, 0 < a < 1, 
where the norm is defined by 

It follows as in the proof of [ 10, Lemma 131 that the operator T 
introduced in [ 11, Sect. III] is completely continuous as operator from the 
Banach space B, .- *- By x B, x B, into itself. It can be shown that T, and 
hence (Z + Z’,,‘, depends analytically on K with respect to the operator norm 
for bounded operators acting from B, into itself. Since also c depends 
analytically on K with respect to the norm (4.12), it follows that (a, b, A) = 
(Z + Z’)-’ (c, 0, y) depends analytically on K in B,. In particular, a depends 
analytically on K with respect to the norm (4.12). Now consider the region 
a, between &2 and a sufficiently close (exterior) parallel surface 80, = 
{x= z + &z(z): z E 8.0). Note that 

E,(x) = la0 [a(y) - 4z)l x V, z ds, 

+ a(z) x Ian V, E dS, for x=z+tn(z)EQ,. (4.13) 

The last integral can be continuously extended onto fi (see [S, Lemma 701). 
Since a depends analytically on K with respect to the norm (4.12), the 
representation (4.13) shows that E,(x) depends analytically on IC in fi8, and 
hence in d. We omit a detailed presentation of the proofs and add the 
remark that the following weaker statement can be obtained by the same 
argument as the corollary to [ 10, Sect. 5, Satz l] and by observing [ 10, 
Lemma 31: 
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LEMMA 4.5. Under the assumptions of Lemma 4.3, E,[F](x) depends 
continuously on (x, K) in fi x B,, where B, = {K E C: Im K >, 0, K # 0). 

After these preparations we return to the discussion of the spectral family 
{PA} of A. We assume as above that FE C’@) and that the support of F is 
bounded. Suppose that 0 < a < /3 < co and G E C?(Q). By (4.6) we have 

W’, +$+,)I;, G)- (@‘a +P,+,)Fv G) 

CR ~+ioF-R,_,F). GdX do. 
I 

(4.14) 

Since the integrand depends continuously on (A, IT, x) in the compact subset 
[a,/?] x [0, l] x supp G of R5 by Lemmas 4.3 and 4.4, the order of the 
integrations and the limit o 1 0 can be interchanged. Note that 

RA*ii,F+E*fi LFl as a]0 (4.15) 

by Lemmas 4.3 and 4.4. Thus we obtain for every G E C?(Q) and 0 < a < /I 

((Po+P,+,)F,G)-((P,+P,+,)F,G) 

(E&‘-E-~ [Fl) dA 1 . cdx. (4.16) 

As a first consequence of (4.16), we obtain: 

LEMMA 4.6. The operator A has no positive eigenvalues. 

Proof. Assume that a > 0. Formula (4.16) implies, since the integrand 
depends continuously on A and x by Lemma 4.4, that 

NP, + PD+~) Fv G) -, ((Pa + P,,,) Fv G) as Pla (4.17) 

for F, G E C?(B). On the other hand, we have P, F + P, +,F and hence 
P4+oF+P,+o F as /3 1 a so that the left-hand side of (4.17) converges to 
W,+J,G) as B 1 a. Thus (4.17) implies (P, + 0F, G) = (P, F, G) for 
F, G E C:(Q). Since C?(a) is dense in L2(Q), we obtain P,+,F = P,F for 
every FE C;(Q), and hence for every FE L,(0), since the projections P, 
and Lo are bounded. Since P,+,, -P, is the orthogonal projection of 
L*(R) onto the null space N(A - a1) of A - a1, we conclude that 
N(A - al) = {0}, so that a is not an eigenvalue of A. 

Since P A +,, = PA for A > 0, (4.16) can be simplified to 

(P,F-P,F,G)=&.j [~~(E~[F]-E-~[F])d.l].Gdx (4.18) 
R a 
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for every G E CT(Q) and 0 < a < /I. Note that PDF-P, F and the 
expression [. ..I on the right-hand side of (4.18) are continuous in R by 
Lemmas 4.1 and 4.4, respectively. Hence (4.18) yields 

@‘J)(x) - (P,F)(x) = & I” (JQ[FI(x) - QdFl(xN d (4.19) 
a 

for x E a and 0 < a < 8. By Lemma 4.5, (4.19) holds also for x E a. 
Now we assume in addition that n x F = 0 and V . F = 0 on aa. In 

particular, we have FE S c D(A). Hence it follows immediately from the 
functional calculus for selfadjoint operators (compare [ 15, Eqs. (7.1 l)]) that 

A (P, F) = P,(AF) = ja I d(P, I;). 
0 

(4.20) 

Recall that 

IIP,G-P+oGII-+O as alO (4.21) 

for every G E L,(Q). By setting G = AF, we conclude from (4.20) and (4.21) 
that 

II WA - p, OWII -+ 0 as a 1 0. (4.22) 

Note that AF E N(A)’ since (AF, G) = (F, AG) = 0 for every GE N(A). 
Since P,, is the projection of L*(Q) onto N(A), we obtain P+,(AF) = 0 and 
hence, by (4.22), 

IIAP,F)ll -+ 0 as a 10. 

Since P+,F E N(A), (4.23) can be rewritten as 

(4.23) 

IlAV’,F- f’+oF)lI --) 0 as a J 0. (4.24) 

Now we apply [ 16, Theorem 6.21 (with k = 0) to the field G := P,F - 
P+,F E D(A). It follows that, for every bounded subset M of fi, there exists 
a c > 0 such that 

IQ’JW) - (P+oF)(x)l G c(llP,F-P+oFlI + llAP2’--+oF)ll) (4.25) 

for every x E M. This inequality implies by (4.21) and (4.24) that (P, F)(x) 
converges to (P+,F)(x) as a 10 uniformly in every bounded subset of fi. 
Hence we obtain, by letting a 1 0 in (4.19), 

(P,FNx) = V”+oF)(x) + &j’ (QTJFIW - E-,,dFl(xN d (4.26) 
0 
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for every x E fi. Formula (4.26) relates the spectral family {PA} of the 
operator A to the solutions E,[F] of problem (A) for real K # 0 and to the 
nullspace N(A) of A characterized by Theorem 2.1. The integral in (4.26) 
may be improper since Lemmas 4.4 and 4.5 guarantee the continuity of the 
integrand only in the open interval L > 0. The analysis above shows that the 
convergence of the improper integral in (4.26) is uniform with respect to x in 
every bounded subset of 32. 

In a similar way we can perform the limit p+ co. Note that 

IIP,G-Gil+0 as p-co (4.27) 

for every G E L2(0) since {Pn} is the spectral family of a selfadjoint 
operator. By setting G = AH in (4.27) and observing (4.20), we obtain also 

lI4w-a+O as @co (4.28) 

and hence, by using [ 14, Theorem 6.21, 

V’(x) + F(x) as /I--+co (4.29) 

uniformly in every bounded subset of d By combining (4.26) and (4.29) we 
get the identity 

F(x) = (P+oF)(x) +&I” &dFl(x) -E-fiilFlW) & (4.30) 
0 

the improper integral converging uniformly in every bounded subset of fi. 
It follows from (4.26) that 

$ V’,F)(x) = & &,dW4 - E-~;i[Fl(x)) (4.3 1) 

for 1 > 0 and x E fi. In particular, (4.31) and Lemma 4.4 show that 
(PAF)(x), as a function of I, has derivatives of arbitrary order for Iz > 0 and 
x E 52 under the assumptions on F made above. 

The preceding results can be used to locate the spectrum of A. We show: 

LEMMA 4.7. The spectrum o(A) of A consists of the positive half-axis: 
a(A) = [0, co). 

Proof: Assume that ,U > 0 and p @ a(A). We use the elementary fact that 
P, is constant in (A - E, ,U + E) for a suitable E > 0 (compare, for example, 
[8, Bemerkung 19.131). By (4.3 1) we have 

-QFW--~fi[FlW=O (4.32) 
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for FE C!:(Q), x E 0 and A E (u - E, ,U + E). By Lemma 4.4, the left-hand 
side of (4.32) depends analytically on k in (0, NJ). Hence it follows by 
analytic continuation that (4.32) holds for every 1 > 0. By inserting (4.32) 
into (4.30), we obtain F =P+,F E N(A) for every FE C?(Q), in 
contradiction to the fact that N(A) is finite-dimensional by Theorem 2.1. 

The main results of this section are collected in the following theorem: 

THEOREM 4.1. Assume that Q is the exterior of n disjoint bodies with 
boundaries S , ,..., S, E C6. Let A be the selfadjoint operator introduced in 
[ 15, Sect. 31 and denote the spectral family of A by {PA}. Then the following 
statements hold: 

(a) A = 0 is the only eigenvalue of A. The spectrum of A is given by 
o(A) = [0, co). Furthermore, we have P,F E C’(a) for every F E L,(Q) and 
,I > 0, and P,, F satisfies the electric boundary conditions (1.1) on XL 

(b) Assume, in addition, that FE C”(G), supp F is bounded, and 
n x F = 0 and V . F= 0 on %I. Then (PA.) and the solutions E,[F] of the 
exterior boundary value problem (A) are related by 

P’AFNx) = (P+oF)(x) + &” bQ#‘l(x) -E-Jf’lW) da 
0 

for Iz > 0 and x E fi, where P, o denotes the projection of L,(R) onto the null 
space N(A) of A characterized in Theorem 2.1. Furthermore, the identity 

F(x) = (P+oF)(x) + & ,fm &,dFl(x) - E-J;;[Fl(x)) da 
0 

holds for x E fi. The improper integrals on the right-hand sides converge 
uniformly with respect to x in every bounded subset of fi. 

5. THE SPECTRAL FAMILY OF A’ 

The spectral family {Pi} of A’ can be discussed by the methods developed 
in Section 4. In contrast to problem (A), however, the related exterior 
boundary value problem (A’), which corresponds to the magnetic boundary 
conditions (1.2), has not yet been discussed in the literature from a similar 
point of view, so that some additional remarks seem to be appropriate. We 
begin with the formulation of problem (A’): 

(A’) Find a vector field H E C’(fi) such that 

(i) AH + tc*H = -F in 52, 
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(ii) nX(VXH)=O,n.H=Oon8& 
(iii) H=O(r-‘), (a/ar-iK)H=o(r-‘)asr==Ixijao. 

We show: 

LEMMA 5.1. Assume that l2 is the exterior of a finite collection of 
disjoint bodies with surfaces S1,..., S, E C6 and that F has bounded support 
and belongs to C”(D). Then problem (A’) has a uniquely determined solution 
for every K with Im K > 0 and K # 0. 

Proof. The uniqueness follows as in [ 111. Consider the volume potential 
T defined by (4.7) and set 

c:=-nX(VxT), y := -n . T on LM2. (5.1) 

We shall construct below a field H’ with the following properties: 

(a) H’ E Cm(Q) n C@), V x H’ E C(G), V . H’ E C(D); 

(b) AH’ + K’H’ = 0 in R; 
(c) nX(VXH’)=c,nSH’=yonX!; 

(d) H’ = O(r-I), (alar - ire) H’ = o(r-‘) as r = [xl-+ co. 

It follows from Lemma 3.1, that H := T + H’ is a solution of (A’). Set 
Oi := R3 - fi. We try to choose surface and volume layers a, b, J such that 
the field 

H’(x)=1 
aa 

a(y)@(x,y)dS,.-kj ,b(y)@(x~Y)dY 
a, 

I 

itclx-.vI 

-v A(Y) @(x,Y) ds,, @(x,y):=Ie 
27r IX-Y1 

(5.2) 
aa 

has the required properties. The field a in (5.2) is supposed to be tangential 
on ZY2. By the jump relations of potential theory (compare [ 11, Formulas 
(2.5~(2.7)), boundary conditions (c) are equivalent to the integral equations 

a(x)+ f 4x1 x P,WGY) x a(y)1 ds, 
-aa 

and 

-$ 
! 4x1 x IV, @(x3 Y> x b(y)1 dy = 4x1 for x E S (5.3) 
Qi 

- I‘ A(Y) $ W-G Y) ds, = 14x1 for x E S. 
ac2 x 
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Now we choose a function v, E C’(ai) with v, > 0 in Qi and a, = 0 on 80 and 
set r = r(~) = 1 if Re IC > 0 and S(K) = -1 if Re K < 0. We try to determine 
the vector field b in (5.2) such that H’ satisfies the equation 

AH’ + (K2 + h(o) H’ = 0 in Ri. (5.5) 

By Poisson’s formula for the second derivatives of volume potentials, (5.5) is 
equivalent to the integral equation 

b(x) + itq(x) j 4~) @(x, Y) ds, - t 1’ b(y) @(x, Y) dy 
a0 . Q! 

(5.6) 

As in [ 111, we consider the Banach spaces B, of continuous tangential fields 
a on %2, B, of continuous vector fields b in fii and B, of continuous 
functions 1 on a.0, all equipped with the corresponding maximum norm, and 
set B = B, X B, X B, , the norm in B being defined by 

II@, by AN, :=/l4~, + II%, + l14(,3. (5.7) 

The system of integral equations (5.3), (5.4), and (5.6) can be rewritten as 
operator equation 

(a, b, A> + K(a, b, A> = (c, 0, Y), (5.8) 

where K is a 3 x 3 matrix of integral operators K” acting from Bj into B,. It 
follows by standard arguments (compare the proofs of [ 11, Lemma 5; 10, 
Lemma 161) that each operator K”, and hence K as an operator from B into 
itself, is completely continuous. In the case of the operator K23, given by 

(Kz3A)(x) := -iq$x) J l(y) V, @(x, y) dS, for xEQj, (5.9) 
an 

the verification of the complete continuity is based on the fact that q 
vanishes on 3Q so that an estimate of the form 

I P(X) v, @(x3 YI G A/Ix - Yl (5.10) 

holds for every x E fi,. and every y E aR. As the next step in the proof of 
Lemma 5.1, we verify: 

LEMMA 5.2. Let (a, b, A) E B be a solution of (5.8). Then the field H’ 
defined by (5.2) has the properties (a)-(d). Furthermore, we have 
H’ E C(fiJ, V X H’ E C(fii), and V . H’ E C(fii). 
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Remark. H’ is defined by (5.2) only in 0 Uni, but not on &!. The 
statement H’ E C(a) means that H’ can be continuously extended onto fi. 
Note that H’ E C(fi) and H’ E C(fii) do not imply that the continuous 
extensions of H’ from the exterior Q and the interior Qi coincide on aQ. 

Proof of Lemma 5.2. Properties (b)-(d) are obvious. The field a satisfies 
a Holder condition uniformly on %2 by (5.1), (5.3), and [ll, Lemma 11. The 
same is true for 1 by (5.1), (5.4), and [ 9, Lemma 51. Hence [ 11, Lemma 31 
implies that the first two terms in (5.2) have continuously differentiable 
extensions onto fi and ai, while the third term, 

H3(x) = --v 1’ A(Y) @(x, Y) ds, (5.11) 
aa 

can be continuously extended onto fi and fii. The same is true for V x H, 
and V . H, since V x H, = 0 and d@(.,y) = --~‘@(.,y) in 0 U Lli. These 
remarks conclude the proof of Lemma 5.2. 

In order to complete the proof of Lemma 5.1, we show 

LEMMA 5.3. The homogeneous equation (a, b, A) + K(a, b, A) = 0 has 
only the trivial solution (a, b, A) = (0, 0,O). 

Proof: Consider a triple (a, b, A) E B with (I+ K)(a, b, A) = 0. By 
Lemma 5.2, the field H’ defined by (5.2) has the properties (a)--(d) with 
c = 0 and y = 0. Hence the uniqueness part of Lemma 5.1 yields H’ = 0 in 
8. Note that 

V . H’(x) = !;a a(y) . V, @(x, y) dS, - 4 1 b(Y) . V, @(X9 Y) & 
ni 

+I? - 
1 KY> @(x, Y> ds, in RUfii. (5.12) 
aa 

The tangential field a and A satisfy Holder conditions uniformly on 8fi 
(compare the proof of Lemma 5.2). Hence it follows from (5.2), (5.12), and 
the jump relation for the gradient of a single potential (see, for example, [ 11, 
Lemma 31) that 

[n X H’]i = [n X H’], and [V. H’li= [V . H’], on X& (5.13) 

where [ Ii and [ 1, denote the limit values on aR taken from the interior and 
the exterior side, respectively. Thus we have H’ E C(fiJ, V X H’ E C(fii), 
V . H’ E C(fii), and [n x H’li = 0 and [V + H’li = 0 on B0. Furthermore, 
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(5.6) yields b E C’(ai), and hence H’ E C’(Q,) and (d + K* + itp) H’ = 0 in 
ai. Hence Green’s formula implies that 

0 = 
i 

[(n x H’) x (V x H’) + (n . H’ )V . H’ Ii dS an 

= (_ 
- 

V . [fi’ x (V x H’) + H’(V . H’)] dx 
“0; 

=. (VXH’~*+~V~H’~*+H’.dH)~x 
J ’ Qi 

= 
i 

[IV x H’I* + ]V . H’/* -(I? + izyl) JH’j*] dx. 
Oi 

Here we use that the integrand of the last integral, and hence of all three 
volume integrals, is continuous in fii. By taking the imaginary part, we 
obtain 

(_ [Im(rc*)+t~J]H’]*dx=O. (5.14) 
‘Oi 

Since Im(rc’) + rrp > 0 in 0, for Im K > 0 by our choice of v, and r, (5.14) 
implies that H’ vanishes also in Ri. Hence it follows from (5.2) by the jump 
relations and Poisson’s formula for volume potentials that 

a = i([n X (V X H’)], - [n X (V X H’)]i) = 0 on iX2, 

b=(d+K*)H’=O in s2,, 

,I = #I . H’], - [n . H/Ii) = 0 on 30. 

This concludes the proof of Lemma 5.3. 

Continuation of the proof of Lemma 5.1. By applying Fredholm’s alter- 
native theorem to the completely continuous operator T, we conclude from 
Lemma 5.3 that Eq. (5.8) has a uniquely determined solution (a, b, A) in B. 
Lemma 5.2 implies that the field H’ defined by (5.2) has the properties 
(a)-(d). Hence H = T + H’ is a solution of (A’) by the remarks at the 
beginning of this proof. This completes the proof of Lemma 5.1. 

The preceding analysis has shown that problem (A’) can be reduced to a 
uniquely solvable system of Fredholm integral equations. Hence we can 
apply the methods of [ 11, Sect. IV] to obtain results on the dependence of 
the solution H = H,[F] of problem (A’) on K. In particular, Lemma 4.4 
remains valid if E,[F] is replaced by H,[F]. Also Lemma 4.5 can be 
extended to problem (A’). In this case B, has to be replaced by the Banach 
space BF of functions A satisfying a Holder condition uniformly on X! with 
exponent a, 0 < a < 1, the norm being defined as in (4.12). It can be shown 
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as in the proof of [ 10, Lemma 131 that T is a completely continuous 
operator from the Banach space BL = B, x B, x BT into itself. It follows as 
in the proof of the corollary to [ 10, Satz 11, that H, [F](x) depends 
continuously on (x, K) in fi X B,, where B, := {K E C: Im K > 0, K # 0). The 
remaining parts of Section 4 can be immediately extended to the magnetic 
case so that we restrict our presentation to the formulation of the main 
results. 

THEOREM 5.1. Assume that Q is the exterior of n disjoint bodies with 
boundaries S, ,..., S, E C6 and set p = p, + . . . + p,, , where pi denotes the 
topological genus of Si. Let A’ be the selfadjoint operator introduced in [ 13, 
Sect. 31 and denote the spectral family of A’ by (Pi}. Then the following 
statements hold: 

(a) If p = 0, then A’ has no eigenvalues. If p > 0, then A= 0 is the 
only eigenvalue of A’. The spectrum of A’ is given by a(A’) = [0, a~). 
Furthermore, we have Pi F E C’(.f?) for every F E L&2) and J > 0, and 
Pi F satisfies the magnetic boundary conditions (1.2) on 80. 

(b) Assume, in addition, that FE C’(B), supp F is bounded, and 
n x (V x F) = 0 and n . F = 0 on asl. Then {Pi} and the solution H, [F] of 
the exterior boundary value problem (A’) are related by 

(PI,F)(x) = (P:oF)(x> +&I” W@lW -H-&‘lW) da (5.15) 
0 

for A > 0 and x E a, where P\ o denotes the projection of L&2) onto the null 
space N(A’) of A’ characterized in Theorem 3.1. Furthermore, the identity 

F(x) = (P:oF)(x) +&i” (fQ3K-41 -H-#l(xW~ (5.16) 
0 

holds for x E fi. The improper integrals on the right-hand sides converge 
untformly with respect to x in every bounded subset of a. 

6. GENERALIZED FOURIER TRANSFORM 

Ikebe has developed a generalized Fourier transformation theory for the 
Schrodinger operator -d + q(x) in R3 in his fundamental paper [2]. 
Analogous results have been obtained by Shenk [6] for the scalar Laplace 
operator in an exterior domain R. In the following we shall extend some of 
these results to the vector Laplace operator in R with respect to electric or 
magnetic boundary conditions. Our representation is influenced in many 
points by Wilcox’s treatment of the scalar case (see [ 18, Sect. 61). 
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Consider the plane wave solutions 

w,(x,p; a) := (2~) m3J2 uei.y.p 

of the reduced (vector) wave equation 

(6.1) 

(A +Ip12)w=0 (6.2) 

with x E R3 and p, a E R3 - {O}. Plane wave solutions of the corresponding 
scalar equation form the kernel of the classical Fourier transform. In analogy 
to [2,6], we replace w0 by distorted plane wazles in Q which arise from the 
reflection of w0 at XJ with regard to the boundary conditions (1.1) or (1.2). 
In each case we consider two types of distorted plane waves. In the electric 
case, the distorted plane waves W, (x, p; a) and w-(x, p; a) are defined as the 
solutions of the following boundary value problems: 

(i) w+ (-, P; a> E C’@), 

(ii) (~I,+~p~~)w,(x,p;a)=O for xER, 
(iii) n(x) X W* (x, p; a) = 0, V, . wi (x, p; a) = 0 for x E X!, 
(iv) w,(x,p; a) - w,(x,p; a) = O(r-‘) and (a/& r ilpl)[w,(x,p; a) - 

w&p; a)] = o(r-‘) as r = IxI+ co. 

For fixed a, p E R3, w* is given by w* = w0 + E, where E is the solution of 
problem (B) on [ll, p.3551 with ic=flpl, c=-nxw,, y=-V.w, 
satisfying the radiation condition [ 11, Eq. (1.25)]. Hence the existence and 
dependence theory developed in [ 1 l] can be applied, and we obtain, by 
observing Lemma 2.1 and the remarks leading to Lemma 4.5: 

LEMMA 6.1. Assume that L? is the exterior of a finite collection of 
disjoint bodies with surfaces S, ,..., S, E C6. Then problem (i)-(iv) has a 
uniquely determined solution w,(x, p; a) for all p, a E R3 - {0}, and 
w* (x,p; a) depends continuously on (x, p) in fi x (R 3 - { 0)) and has 
derivatives of arbitrary order with respect to x and p in 0 x (R-’ - (01). 
Furthermore, w * (x, pi a) depends linearly on a. 

Note that the linear dependence on a follows immediately from the 
uniqueness part of Lemma 6.1. 

Now we define operators @+ and @- from C:(Q) into C “(R 3 - { 0)) by 

(@+f )(P> := i ejJ f (x> . w*(xyp; ej) dx 
j=l D 

for 

f E GYQ> and P E R3 - {O), (6.3) 
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where ej denotes the jth unit vector. Note that @ + f E Cm@ 3 - (0)) by 
Lemma 6.1. By replacing Q by R3 and w, by wO, the right-hand side of 
(6.3) changes into 

so that @+ and @- can be considered as generalizations of the classical 
Fourier transform in R3. 

In a similar way we can define generalized Fourier transforms @: and QiF 
in the magnetic case, by replacing w* in (6.3) by the solution w:(x,p; a) of 
the corresponding magnetic boundary value problem, satisfying (i), (ii), (iv), 
and 

(iii’) n(x) X [V, X wi(x,p; a)] = 0, n(x) . wi(x,p; a) = 0 for x E afi. 

The argument in Section 5 shows that Lemma 6.1 is also valid in the 
magnetic case. In the following we restrict our considerations to the electric 
case since the magnetic case can be treated by the same argument. The main 
purpose of this section is to prove that @,fbelongs to L,(R3) forfE C?(Q) 
and that 

II @*fllt*(R3) = llfllt,(n) - ll~+ofllt2cn, < Ilfll~cn,9 (6.5) 

where P,, is the projection of L*(0) onto the null space of A. This obser- 
vation allows us to extend the definition of @ + and @ _ onto the whole space 
L2(f2) since C?(Q) is dense in L,(a). 

In order to verify (6.S), we choose a r,, > 0 such that R3 - R is contained 
in the sphere {x: 1x1 < rO}. As in [ 18, Lecture 61, we choose a function 
jE Cm(R3) withj(x)=O for 1x1 <r, andj(x)= 1 for 1x1 > r,+ 1, and set 

Note that 

v*(x,p; a) := w*(x,p; a) -j(x) w&p; a>. (6.6) 

with 

(A, + IPI’) v*(x,p; a) =M(x,p; a) (6.7) 

M(x,p; a) := -wJx,p; a) dj(x) - 2(27~)-~‘* u(Vj(x) . VXeiX’p). (6.8) 

In particular, we have A4 E C” (R 3 x R 3 x R ‘) and supp M(. ,p; a) c (x: T,, < 
1x1 < yr, + I}. Furthermore, u * satisfies the electric boundary conditions 
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(1.1) and the radiation condition U* =O(r-‘), (a/larril~()v, =o(r-‘) as 
r = 1x1+ co. Hence we obtain, by using Lemmas 4.3 and 4.4, 

u*(x,LJ; a> = ;g qP,‘*&P; a> (6.9) 

forxEQandp,aER3-{O},where 

u,(*,p; a) := -R,M(.,p; a). (6.10) 

By Lemma 4.4, the convergence in (6.9) is uniform with respect to x in every 
compact subset of R. According to (6.6), .we set 

WZ(X’ Pi a) := u,(x, p; a) +j(x) w&G p; a). (6.11) 

It follows from (6.6) and (6.9) that 

w*(xYP; “)=fE wfp12*io(x,P; a) (6.12) 

for x E D and p, a E R3 - (0) uniformly in every compact subset of s2. 
Furthermore, we set, according to (6.3), 

(@J)(P) := 2 ej f(X) * W&P; e,j) dx 

j=l J n 
(6.13) 

forfECF(Q),pER3-{0}, and z G [O, co). In analogy to the scalar case 
(compare [ 18, Lemma 6.3]), the identity 

(@J)(P) = (IPI -w&f>- (PI (6.14) 

holds for fE C?(Q), z G? [0, co) and p E R3 - {0}, where Ju, for u E C(a), 
is defined by 

G)(x) :=j(x) u(x), for xE 0, 
.- .- 0, for xER3-Q, (6.15) 

and (Ju)* denotes the (classical) Fourier transform of JU in R3. The proof of 
(6.14) proceeds as follows: We conclude from (6.13), by using (6.11) and 
(6.1), that 

(@J)(P) = W>* (PI + i ej I,f(X) * u,(x,P; ej) dx 
j=l 

= G!f)* (PI - Ii1 ej(f, R,M(.,p; ej)) (by (6.10)) 
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= GY)̂  (PI - i ej(R,;f, M(-,p; ej)) 
j=l 

= W)^ (P) + i ejJ (Rif)(X) * (A + Ip12)[j(x) w&p; ei>l dx 
j= I R 

Q-v (63)). 

Since the integrand has compact support in R by (6.8), Green’s formula 
yields 

(@d)(P) = (Jd^ (P) + i ej j j(X) W&,P; ej) . (A + IP12)(R~f(X)) dx. 
j= 1 R 

Now (6.14) follows from (6.1) and (6.15), since 

(d+IPIZ)Rif=[(d+~)+lP12-~]RZ;f=-f+(IP12-~)R~f: 

The further analysis is based upon the formula 

((P,-P,)S,g)=~k~J.B(R,+i,f-R,-i,/,g)du (6.16) 
a 

for 0 < a < /I < co and f, g E C?(Q) which follows from (4.6) and the 
remark that P *+,, = P, for 1 > 0 by Lemma 4.6. By the elementary identity 
R, -R,, = (z -z’) R,R,,, we have 

(R.a + i0.f - R, - iof, g) = %R.A + ioR* +iof, g) = WR,t Fief, R, Tic S) 

so that 

((P, - Pa)f, g) = lim JY .’ clo 7c J tRA+iof, R**ic7g) d’ 
a 

’ 
=FK 1 

.’ (JRnFi,f, JRlrio g) A* 
n 

The last equation holds by (6.15), since 1 -j(x)’ vanishes for 1x1 > r0 + 1 
and 

f [l -j(x)‘I(R,,i,f)(x>(R**i,g)(x) 

converges uniformly to 0 as o 1 0 in fi x [a, /3] by Lemma 4.3 and Lemma 
4.5. Note that JR,f for fixed z & [0, co), is continuous in R’ and exponen- 
tially decreasing at infinity by (6.15) and Lemma 4.3 so that (JR?f)* E 
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C(R3)nL,(R3). By Lemma 2.2 we have J I(JR?f)^ 1’ dp < co. Hence, 
Parseval’s identity and [ 12, Lemma 2.5 ] imply 

(JR,f,JR,g) = j (JRrf)^ (P) . Wig)” (p) dp. 
R’ 

Thus we obtain, by using (6.14), 

In order to investigate the limit in (6.17), we show: 

LEMMA 6.2. Assume that f E C?(Q) and let @A*iof be defined by (6.13) 
for 0 > 0. Then (@A+ iof) can be extended to a function depending 
continuously on (2, o,p) in (0, 00) x [0, 03) x R3. Furthermore, for every 
f E Cr(l2) and every pair (a, /3) with 0 < a < /? < co, there exists a c > 0 
such that 

I @**iof (P)l G c (6.18) 

for every (A, a,p) E [a,/?] x [O, 11 x R3. 

Proof. The calculation after (6.15), in connection with (6.1), implies that 

(@A*iof )(P> = (Jf )^ (P) + @l&F 

X’ 
J 

e - ix.P [dj(x) - 2ip - Vj(x)] (R, Fio f )(x) dx. 
r~</xl<r~+l 

(6.19) 

This representation, together with Lemmas 4.3 and 4.4, shows that QAfio f 

can be continuously extended onto u > 0 and that the fist part of Lemma 
6.2 holds. By (6.15) and the definition of the classical Fourier transform, the 
first term in (6.19) is bounded. Also the integral 

I e-ix’PMx))(~,t~iuf )(x)dx 
r,<Ixl<r,+l 

is bounded in every region [a, /3] x [0, 1 ] x R 3 with 0 < a < j? < 00 since the 
integrand is continuous by Lemmas 4.3 and 4.4. In order to discuss the 
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remaining term in (6.19), we apply the integral theorem 
Vj=Ofor]x]=r,and]x]=r,+l,wehavefork=1,2,3 
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of Gauss. Since 

- 
I 

e -i”‘“i~k(a,j(X))(R,,iof)(X) dx 
ro< 1.x <rg+ 1 

=- 
I 

e -ix’p a,[(a,j(x)>(R*,i,f)(x)l dx* 
rq< 1x1 <ro+ 1 

Note that also B,R,,,,f depends continuously on (A, o, x) in [a, /3] x [O, 1 ] x 

(x: r0 < Ix]< r0 + I} by the existence and dependence theory developed in 
Section 3 and in [ 1 I]. In fact, the representation [ 11, Eq. (2.3)] shows that 
not only the solution E of problem (B) on [ 11, p. 3551, but also arbitrary 
derivatives of E depend continuously on x and K in every compact subset of 
Q. This remark implies that also the remaining term in (6.19) has the 
required boundedness property. 

By Lemma 6.2, the inner integral in (6.17) converges, for fixed CJ > 0, 
uniformly with respect to 1 in [a, p]. Hence the order of the integrations can 
be interchanged, and we obtain 

for f,gE GV) and 0 < a < j? < co. Now choose, for fixed a and /I, a 
m > 0 such that 0, - IpI > lpi*/2 for IpI >m and Iz E [a,/I]. If IpI > m, 
then the integrand in (6.20) can be estimated by c, 1 pje4 with a suitable 
c, > 0, by using Lemma 6.2. Hence we obtain 

so that (6.20) is reduced to 

(6.21) 

Now we use the following elementary fact: 

LEMMA 6.3. Assume that p is continuous in [a,P] x [0, 11. Set 

(6.22) 
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Then the following statements hold: 

(a) h(y, a) is bounded in R x 10, 1); 
(b) h(y, a) + 0 as u 1 0 uniformly in every compact subset of 

R - [a,P]; 
(c) h(y, a) + rp(y, 0) as u 1 0 uniformly in every compact subset of 

(a, PI. 

Proof: Statements (a) and (b) are obvious. In order to verify (c), we 
choose, for a given E > 0 and a given compact subset K of (a, p), 6 E (0, 1) 
such that [y - 6, y + 61 c (a, 8) for every y E K and l(p(A, a) - cp(y, O)l < 42 
for y E K and (A, a) E [y - 6, y + 61 x [0,6]. Let A4 be the maximum of 1~~1 
in [a,/?]x[O,l].WehaveforyEKandO<u<6 

rph 0) 
.n 

(A - y)’ + u* dA + J 
1.. dL 

y+8 II 
2Mu .w dA 

<- ! 
2M 7z 

n 6 m=y 
i 
i-arctanJ 

and 

U I j Y+S rp(k 0) - 
n y-s (Ly)*+d 

dA - cp(y, 0) 1 arctan $ 

These estimates imply that 

I W, 0) - P(Y, 011 

<++ 4M 
7r ( 

:- arctan: . 
) 

Now choose u,, E (0,6) such that the last term is less than c/2 for 
O<u<u,. Then we have Ih(y,u)--&,O)I <E for O<u<o, and yEK so 
that (c) holds. 

In order to apply Lemma 6.3 to the right-hand side of (6.21), we 
decompose the ball I p I < m into 
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and D2@) :={p: ]p] < m} -D,(p). Lemmas 6.2 and 6.3 imply that 
_____ 

(6.23) 

conwFs to (@lpl2*iof)(P) - (@bp12*iog)(P) if IpI* E (a,B) and to 0 if 
]p]* @ [a,/31 as c 10, uniformly in D,(j). Note that (@,,,zki,,f)(~)= 
(@*f)(p) by (6.3), (6.12), and (6.13). Hence we obtain 

(6.24) 

=I P~D~CP),~< 1~1~14 
@,fAgd~+j 

.- 
@k.f-. @,gdp as p-0 

a<lPl2<4 

since {p: (x < ]p]* </3} c {p: ]P] < M} by the choice of m. Since H,(p,a) is 
bounded uniformly with respect to c by (6.18) and Lemma 6.3(a) and the 
volume of D,@) converges to 0 as p + 0, we have 

lim 
I lrlo D,(P) 

H,(P, 0) &+ 0 as p-+ 0. 

By combining (6.21) and (6.23~(6.25), we obtain 

(6.25) 

((Pn-P,)~g)=jnilP,~<~~~f.~igdp 

for f, g E C?(0) and 0 < a < p < co. Iff= g, (6.26) yields 

IlWIl* - IIJ’afl12 = I,, ,p,‘<B I @J-l* d’. 

(6.26) 

(6.27) 

Since P, f + P+,f as a 10 and P, f + f as p + co in L,(a), we get 

Ilf II* - IIP+of II’ = jR3 I@+f I* dp for f E Cr(l2). (6:28) 

In particular, the improper integral on the right-hand side converges. This 
implies that @+ f E Cm(R3 - (0)) n L2(R3) and that (6.5) holds. By letting 
a 1 0 and /I + 00 in (6.26), we obtain 

(f-P+of,g)=jR1~*f.~+gdp for f,g E C?(n). (6.29) 

Note that the convergence of the integral in (6.28) implies that also the 
improper integral in (6.29) converges. 
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By (6.5), @+ is a bounded linear operator from C:(0) into L,(R3). Since 
C:(a) is dense in L,(a), @* can be uniquely extended to a bounded linear 
operator from L,(R) into Lz(R3), and the identity (6.5) can be carried over 
to the whole space L,(R): 

II @*~llt*(R~, = II~llt,u?, - Il~+At2w, for FE L,(R). (6.30) 

This remark completes the definition of the generalized Fourier transforms 
@+ and rP_ in L2(J2). 

Since P+,F = F for FE N(A) and P+,F = 0 for FE N(A)‘, (6.30) yields 

@,F=O for FEN(A) (6.3 1) 

and 

II @*FIIE*(m, = IIFllt,ul, for FE N(A)‘. (6.32) 

By applying the identity 

(F,G)=~(l~F+G~~2-IIF-G~~2+iIIF+iGII2-iIIF-iG~~2), (6.33) 

we conclude from (6.30) that 

(@,FT @* G)L,w) 
= VC G),aIm - @=+oW’+oG)~,w~ for F, G E L*(Q). (6.34) 

Since @* is a bounded linear operator from L#2) into L,(R3), there exists a 
uniquely determined (adjoint) bounded linear operator @;” from L2(R3) into 
L2(Q) such that 

(@,Fy GL2w3j = (6 @P)bcn, (6.35) 

for every FE L2(J2) and every G E L,(R “). Now assume that FE N(A). It 
follows from (6.35) and (6.31) that 

E @P,*G)L~~, = (@,F, G)I+J) = 0 

for every G E L,(R3) so that 

O,*G E N(A)’ for G E L,(R3). (6.36) 

Note that (P+,F,P+,G)= (F, P+,G) for F, G E L2(0) since P,, is a 
projection operator. Therefore it follows from (6.35) and (6.34) that 

(6 a;*@, ‘+n, = (@,F, @* Gh2(wj = (F, G - P+,G),+~o, 
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for F, G E L&2), and hence 

@;E@* =I-P,,. (6.37) 

Now assume thatfE C;(Q) and g E CF(R3 - (0)). By (6.35) and (6.3), we 
have 

and hence 

(@;"gNx)= i J gj(P) W+bP; ej> dP 
j=l R’ 

for g = (g, , g,, g3) E Cr(R3 - {O}). In particular, it follows from Lemma 
6.1 that @;“gE Cm(n) for gE Cr(R3 - {O}). Since CF(R3 - (0)) is dense 
in L,(R3), the adjoint operator @;” is uniquely characterized by (6.38). Note 
that w,(x,p; a) depends linearly on a by Lemma 6.1. Hence (6.38) can be 
written in the form 

(@,*g)(x) = /,, w,(x,P; g(p)) & for g E CF(R3 - (0)). (6.39) 

7. REMARKS ON THE FUNCTIONAL CALCULUS 

By applying the generalized Fourier transforms @ + and @-, the 
functional calculus for the selfadjoint operator A in the Hilbert space L*(Q) 
can be related to multiplication operators in the transformed space L,(R3) 
(compare [3, Theorem 3.2; 16, Theorem 6.151 for related results for the 
Schrodinger equation and in the scalar case). We prove: 

LEMMA 7.1. Assume that y is a bounded, piecewise continuous complex- 
valued function defined on [0, 00) and set 

W,(P) := ~(1 PI*) for P E R3. (7.1) 

Then we have 

@*#IF= WI - @,F for FE L,(a). (7.2) 
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Remark. According to the functional calculus for selfadjoint operators, 
I#) is a bounded linear operator from Lz(Q) into L,(Q), defined by 

y/@)F= j= ~4~) W,F). (7.3) 
0 

It follows immediately from [ 15, Formula (7.10)] that 

II v/(~)FII & II wIL IlFll~ (7.4) 

where ]] v]lrn := supr{] I&)]: A E [O, co)}. The product on the right-hand side 
in (7.2) can be defined by applying [ 12, Definition 5.11 to every component 
of the vector @ * F. Lemma 7.1 can be extended to unbounded functions w if 
the domains of definition are suitably restricted. A special result in this 
direction will be given at the end of this section. 

Proof of Lemma 7.1. At first we show that 

(@*(P,f- P&f), h&~~ = I (@, f)(p) h(p) dp (7.5) 
U<lPl2<4 

forfE C?(n), h E CF(R3) and 0 ( a ( p < co. By (6.26), we have 

(PO - Pxf)L*m = s I@*S12dP 
cT<lP12<l3 

(7.6) 

for fE C?(Q). In order to extend (7.6) to arbitrary elements FE L,(R), we 
set, for G = (G, , G,, G,) E L,(R3), 

G' := (G; , G;, G;), (7.7) 

where Gr denotes the restriction of the functional Gi E L2(R3) to CF(Q,,,) 
with 

R a,B := {p E R3: a < IpI’ </I}. (7.8) 

It follows from (7.6) that 

W’, - Pa> F, FL2w = ll(@+V’ Ilb,,, (7.9) 
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for FE L,(L). In fact, (7.9) coincides with (7.6) if F =fE C?(n), since 
@*fC Cm(R3 - (0)) so that 

by [ 12, Lemma 2.51. Hence (7.9) follows from (7.6) by the remark that 
C?(Q) is dense in L*(Q) and the operators P, -Pa, @* and G + G’ are 
bounded. Now we apply (7.9) to 

F:=(Pb-P&--f 

with fE CT(Q). Note that 

(P,-P,)F=O for O<a</I<co 

(7.10) 

(7.11) 

since PAP, = P,PA =PmincA,+). Therefore (7.9) yields (Q, F)r = 0 and 
hence, by (7.10), 

This implies that 

P*(P,f- P&f-f)l’ = 0. (7.12) 

w*R? -PJf, NL2(R’) = (@*f, VL*(R3) (7.13) 

for h E CF(fl,,,). In particular, (7.5) holds for h E C~(J~,+,). 
Now set F := (PO - Pa)$ By applying (6.30) and observing that 

P+,(Pb - PJf= 0, we obtain 

II @*(PO - fLMlt*~R~~ = II&3 - cJfIltl~n~ = CR? - PJ’.L (PO - K-Jf)L2u?~ 

and hence, by (7.9), 

II @*V, -cJSIIL,~R~~ = IIP*R3 -cAfl’llL2~Ro.0f~ (7.14) 

Set G := @+(P, - Pp)f and choose a sequence { gk) in CF(R3) such that 
I] G -g,]( -+ 0 as k+ 00. Then we have by [ 12, Lemma 2.51 and (7.14) 

and 
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These relations imply 

J’ I g,12 dp+O as k+m R3--n 
CT.5 

and hence 

for h E CF(R3 - Qnu,J, so that (7.5) holds also for h E CF(R3 -Q,,,). 
Since CF(R,,,U (R3 -a,,,)) is dense in Cr(R3) with respect to the L,- 
norm, we conclude from (7.13) and (7.15) that (7.5) holds for every 
h E CF(R3). 

Now we choose a y > 0 and a subdivision 0 =: A, < I, < ..a < 1, := y of 
the interval [0, y]. Since P, = 0, it follows from (7.5) that 

for fE C?(Q) and h E Cr(R3 - (0)). Consider a sequence (2,) of such 
subdivisions of [0, r] with max@, -A,- J + 0 as n + co. Note that @* is 
bounded and Qp, PA, f + @* P+,f = 0 as A, 10 by (6.31). Hence, by letting 
n -+ 00, we obtain, 

L,(R’) 

= I ,p,l<y v(lPI*W*f )(p) . 4~) dp- (7.16) 

Since I,V is bounded, we can perform the limit y --) co in (7.16) and get, by 
observing (7.1) and (7.3), 

(@* w@M &,(R3) = (WI * @*fv 4L*(R3) 

for f E C?(Q) and h E CF(R3 - {0}), and hence 

(7.17) 

@*beIf = WI * @*f for f E C!?(Q), (7.18) 

since Cr(R3 - {O}) is dense in L2(R3). Now (7.2) follows from (7.18) by the 
remark that I@), @+ and the multiplication with w, are bounded operators 
with respect to the L,-norms. This completes the proof of Lemma 7.1. 
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We conclude this section with the verification of 

P*w)l(P) = IPI (@*f)(P) for fE C?(Q) and pE R3 - {O}. 

Note that Af = -dfE C?(0) 
(7.19) follows from (6.3), by 
(A + I P12) W*(*,Pi a) = 0: 

(7.19) 

so that @,(Af) E Ca(R3 - (0)). Formula 
using Green’s formula and observing that 

8. PLANE WAVE EXPANSIONS 

This section is devoted to the proof of the relation 

@*@,*=I. (8.1) 

The formulas (6.37) and (8.1) can be interpreted as an expansion theorem 
for vector fields FE N(A)‘. In fact, since P+,F = 0 for FE N(A), (6.37) 
says that every FE N(A)’ can be represented in the form 

F= @,*G (8.2) 

with a suitable G E L,(R3). Formula (8.1) implies that G is uniquely deter- 
mined by F and given by 

G=@,F. (8.3) 

Since Cp(R3 - (0)) is dense in L2(R3), there exists a sequence (g,} in 
Cr(R3 - (0)) such that 11 G - grill + 0. Since @z is bounded, it follows from 
(6.39) and (8.2) that every FE N(A)’ is the L,-limit of the sequence 

(@,*&9(x) = I,3 w 5 (x9 P; g,(p)) dp. (8.4 ) 

In this sense, formula (8.2) can be interpreted as a plane wave expansion for 
fields F E N(A)‘. 

In order to prove (8.1), we consider an arbitrary G E L2(R3) and set 

H:=@,@,*G-G. (8.5) 
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We have to show that H =O. Since @$@* = I - P,, by (6.37) and 
@P,*G E N(A)l by (6.36), we obtain 

@;*H=(I-P+,)@,*G-@zG=-P+@,*G=O. 

Since @:H = 0, it follows from Lemma 7.1 that 

@:(I/, - H)=O (8.6) 

for every bounded, piecewise continuous complex-valued function I,V, where 
vi is defined by (7.1). In fact, by observing [ 12, Lemma 5.31, we have for 
every fE CT(Q) 

Nowwesetasin [18,Sect.6]forO<a</?<co 

I&) := e-q for a2<3L<P2, 

:= 0, for l<a2 and A>@‘. (8.7) 

By (7.1) we have 

y,(p) = eeitlpi, for a<lPI<B, 
= 0, elsewhere. (8.8) 

Note that, for every given h E Cr(R3), there exists a sequence {g,} in 
Cr(R’ - (0)) such that j ]v, h -g,12 dp-i 0 as n -+ co. Hence we obtain, by 
applying (6.38) to g = g, and letting n --f co, 

e-““‘hj(p) w*(*,P; ej) dp (8.9) 

for h = (hi, h,, h,) E CF(R3). In particular, we have @pi(w, . h) E C(J?). Set 
H = (H,, H,, H3) and denote the restriction of the functional Hj to 
CF(a < 1 pi < p) by HJ. By choosing a sequence {h,} in CF(R3) with 
]I H - h,]] -+ 0 as n -+ co, we conclude from (8.6) and (8.9) that 

- 
i (e-““‘HJ, (w*:)~ (x, a; ej))L,ca<lp,<4, = 0 

j=l 
(8.10) 

for x E fi and k = 1, 2, 3 with (w,)~ = ek wk. Here e-iflP’Hj’ denotes the 
product of the function g(p) = e-idPI and the functional 
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HJ~L2(a<IPl <PI ( corn P are [ 12, Definition 5.11). By (6.6), Eq. (8.10) 
can be written in the form 

with 

j(x) u,(x, t) + u * (4 t) = 0 (8.11) 

(8.12) 
j=l 

and 

(8.13) 
j=l 

We shall show below that 

(8.14) 

for every real t and 

for k = 1, 2,3. Relations (8.14) and (8.15) imply that Hi = 0, and hence 
H,cp = 0 for every rp E CF(a < (p] < p). Since a, p are arbitrary numbers 
with O<a<p<co, we have Hkv)=O for every oECF(R3-{O}), and 
hence H = (H, , H,, H,) = 0, since Cp(R3 - (0)) is dense in C,“(R3) with 
respect to the &-norm. By (8.5), H = 0 is equivalent to (8.1). Thus the proof 
of (8.1) is reduced to the verification of (8.14) and (8.15). 

Verrjkation of (8.14). Choose, for fixed k, a sequence {h,} in 
CF(a < ]p] < /3) such that ]]$ - h,]] -+ 0 as n + co in &(a < Ip( < /3). Since 
(w& (x,p; ej) = (2n)-3’2 c3jke’“‘p by (6. l), formula (8.12) can be rewritten 
as 

u,(x, 2) = (2n;3,2 ;i~z 
I 

a<,P,<4 k(p) ei(x’p-f’p’) 4~. (8.16) 

By Schwarz’s inequality, the convergence is uniform with respect to x and t 
in R3 xR. Set 

k,(p, t) := e-i”plh,(p). (8.17) 
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Note that k,(., t) E CF(a < IpI </I) and Ik,(p, t)i = Ih,(p)l. By (8.16) and 
(8.17), we have 

24,(x, t) = lim I&(-x, t), (8.18) 
n-co 

where k,, denotes the classical Fourier transform of k, with respect to the 
first variable. By applying Parseval’s equation, we obtain 

and hence 

J 

1 
pll~.~-~~~~12~~~lI~;II:~~~<,~,<~~ as n-+co. (8.19) 

Since the convergence in (8.16) and (8.18) is uniform, we get, by observing 
(8.19), 

! ,x,<p Idx, tI* dx = ;\c j I&(-x, t)12 dx 
1x1 <P 

7‘ ” 

< ;yt ! R, IM-x, 91’ dx = IIWI’ 

for every p > 0. This estimate shows that the improper integral 

exists for every real t. Another application of Parseval’s equation yields 

I ,x, <p ( uO(x, t) - l,J-x, t)l* dx = lim 1 1 &J-x, t) - t&-x, t)l* dx 
m-a I~I<~ 

=lim’ J 14,,-~,12d~=IIf-f;--h,l12 In-+00 R3 

for every p > 0, and hence 

I R3 I%& r> - I;,(-x, t>l’ dx < IlH; - h,,(I* -+ 0 as n-03. (8.20) 
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By applying the triangle inequality in L,(R3), it follows from (8.20) that 

as n+co. (8.21) 

By comparing (8.19) and (8.21), we obtain (8.14). 

Verzjkation of (8.15). We shall use the following elementary estimate: 

LEMMA 8.1. Assume that Av + K*V = 0 for 1x1 > I,, with real K # 0, and 
that v=O(r-‘) and (CT/&-i~)v=o(r-') as r=jxI+co. Then we have 

einlxl 

v(x)= f%,) IxI + 0(lxl-*) as IxI+oo (8.22) 

with x,, = x/lx I and 

u(y) + Exe a yu(y) ; 1 e-i”xo’y dS,. (8.23) 

The proof follows from the representation 

eiKlx-yl a eixl.-YI ----u(y)-- 
Ix-YI an, Ix-YI 1 dS, (8.24) 

for 1x1 > rl (with a/an,, = (y/l y () - VY) and the estimates 

e irlx-yl 

m=j$exp jh)Xj (L-zyg’*j +O(lxl-2) 

- lil ei~l.-iw.y + 0q~l-2) 

and 

a eirrlx-yl Y y-x . eiclx-Yl eiKlx-yl 
--=-.- 

an, IX-VI IYI Iv-xl zKIX--yl- (x-y12 

kx, . y e inlx-yl 

=-~~+-yl(lxl-*) 

iKXo.J' 1 = eWxl-iw3.Y + o(lxl-*) 
r I4 

as Ix ) + co. Note that both estimates hold uniformly with respect to y on the 
sphere I yj = r,. 
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Now we apply Lemma 8.1 to the function (u,)~ = ek . L’* (.,p; ej) 
introduced in (6.6). Since j(x) = 1 for 1x1 > r0 + 1, (E*)~ satisfies the 
assumptions of Lemma 8.1 with r = r0 + 1 and K = f 1 pi. Hence there exist 
functions 6T(x,,p) and qj:(x,p) such that 

(8.25) 

and 
qj:(x,P)= 0(1x1-‘> as Ixj--+co. (8.26) 

The function flf is given by (8.23) with u = ek . v * (.,p; ej), K = f IpI, and 
r = r0 + 1. In particular, it follows from (6.6), Lemma 6.1, and (8.23) that 
Si,k(x,, p) and q-$(x, p) depend continuously on both variables for (x0 1 = 1, 
x E R and p E R3 - (0). Furthermore, the proof of Lemma 8.1 shows that 
the estimate (8.26) holds uniformly for a < 1 p I< /?. 

Now choose sequences {h,} in CF(a ( 1 pi ( p) such that 11 q; - h,J -+ 0 
as n + 00 in &(a < 1 pi < p). It follows from (8.13) and (8.25) that 

u*(x, t) = 24:(x, t) + z&x, t) (8.27) 

for (x, t) E d + R with 

i 
ei'*'"'~"'"'6':(x,,p)h,(p) dp (8.28) 

n<,P,<B 

3 

24:(x, I) = lim x e -"'"'qj,k(x,p)hnj(p) dp. (8.29) 
“*a, j=l 

We have by (8.28), for fixed k, 

with 

ei”P’B/:(x,, p) h,(p) dp. (8.3 1) 

Since h, E CF(a < ( p( < p), we obtain, by setting p =ppo in (8.3 1) with 
P=IPI and Ipol= 1, 

(8.32) 
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with 

gy(p, x0) = (27p p* j @.j:Cx09 PPO) hnj@PO) dspo* (8.33) 
lLM=l 

Note that g$(., x,,) E CF(-a, co) and supp g$(., x,) E (a,/?). By (8.32),f: 
is the Fourier transform of gz with respect to the first variable. Hence, 
Parseval’s equation implies that 

1 -m If”:‘@, x0)1’ dz 
-cc 

P* Ih&PoI* dspo 4 
I 

<c I. 1 I h&I’ dP 
a<lPl<4 

with a suitable constant C > 0, since Sy(x,, ppo) is bounded for Ix0 1 = 1, 
Ipol= 1 and a<p<p. Set 

j-i, (5, x0) := hir f”:‘(r, x0). (8.34) 

It follows from (8.31) and Schwarz’s inequality that the limit in (8.34) is 
uniform with respect to t and x0 for t E R and 1x0( = 1. The above estimate 
implies that 

for all real t, , r2. This yields 

(8.35) 
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In particular, the improper integral on the left-hand side converges. 
Furthermore, since the convergence in (8.34) is uniform, we have by (8.30) 
for y > 0 and t E R 

and hence, by substituting r = fr - t, dr = kdz in the inner integral, 

j,x,<~/~:(x,t)12dx~*3 i j [j*‘-‘lf:(w,)l*d~] dSxo. (8.36) 
j=1 IXel=l --I 

By observing (8.35), we obtain 

and hence 

I R, lu:(x, Ol*dx< 1271CIIHrIl~2(a<,~,<4) (8.37) 

for every real t. In particular, the improper integral on the left-hand side 
converges. Furthermore, since the integrals on the left-hand sides in (8.35) 
and (8.37) converge, it follows from (8.36), by letting y+ co, that 

jR31d&~~)12dx<*3~ j [jimIf:(r,x~)12dr]dS,~. j=f lXoi=l --1 

By (8.35) the function 

is monotone and bounded by 127rC(IH’~~* in (-co, co). 
converges to a finite limit a, as r+ fco. By (8.38) we have 

and hence 

I’ R3 I~:@, Ol* dx < f 3(a, - d-t>), 

1 Iu\(x,t)12dx-t0 as t+~co. 
R’ 

(8.38) 

Hence v(r) 

(8.39) 
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Now we turn to the discussion of u\. Since (8.26) holds uniformly for 
a < 1 p) < fi, there exists a C, > 0 such that 

lS’,“(X~P)I< Cl l4-2 for xER3 and a<JpJ<p. 

Thus (8.29) implies that 

with C, = (47r/3) p3C, (lH”11*. Since 

! 
471 

IxI>r I$ r 
-=---) 

we obtain, with C := 47rC:, 

J ,x,>rl~:(xA’dx<; for tER and r>r,. 

Let E > 0 be given. By (8.39), there exists a t, > 0 such that 

I R11u:(x,t)12dx<+ for t<--t, 

I 
R3\uI(x,t)12dx<$ for t>t,. 

Furthermore, by (8.40), there exists a R > r0 + 1 such that 

i 
) z&(x, t)\* dx < !- for tER. 

1x1 >R 8 

It follows from (8.27), (8.41), and (8.42) that 

!’ lu+(x,t)I*dx<+ for t < -to 
Ix1 >R 

and 

lu-(x, t)l* dx < ?- for t>t,. 
1x1 >R 2 

(8.40) 

(8.41) 

(8.42) 

(8.43) 

(8.44) 

409/92/l-4 
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Since j(x) = 1 for 1x1 > R > r0 + 1, we conclude from (8.11) that 

Iuo(x,t)12 dx < + for ItI > t,. 

In order to complete the proof of (8.15), we have to show that there exists a 
t, > t, such that 

J 
for t>l,. (8.46) / 

x 
,<R Ikl(X~ 4” dx < $ 

Since the convergence in (8.16) is uniform, there exists a h E CF(a < I pi < /3) 
with 

u,,(x, t) - +J;<,p,<g h(p) ei(x.p-flpl) dp ’ dx < e/4 

for every t. Note that 

j Ii 
2 

h(p) e 
i(X.P-tiPi) dp & 

IxI<R a<lPI<b 

=Jlx,<R /i,p,lE, [~~=,h@p~)eip~‘po~2e-i’pdpj dpO l*dx. 

By performing an integration by parts in the inner integral (with 
du = e-i’p dp), it follows that the last expression converges to 0 as t -+ co. In 
particular, by the triangle inequality in L,(Jxl < R), there exists a t, > I,, such 
that (8.46) holds. Formulas (8.45) and (8.46) yield 

J R3 I q,(x, t>12 dx < E for t>t,. 

This concludes the proof of (8.15), and hence of (8.1), by the remarks after 
(8.15). 

We collect the main results on the generalized Fourier transforms @+ and 
@- in the following theorem: 

THEOREM 8.1. Assume that 52 is the exterior of n disjoint bodies with 
boundaries S, ,..., S, E C6. Define @+ f and Q-f, for f E C?(Q), by (6.3). 
Then we have @+fEC"O(R3-{O})nL,(R3) and 

II @*f IIt* = Ilf IIt* - IIP+of llt*mP (8.47) 

where P,, denotes the projection of L,(Q) onto the null space N(A) of A 
characterized in Theorem 2.1. By (8.47), @+ and @- can be extended, by 
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continuity, to bounded linear operators on L,@). Let @:: L,(R3) + L#) 
be the adjoint operator of Qp,. Then we have 

@*N(A) = (01, @* N(A)l = L*(P), (8.48) 

@,*L,(P) = N(Pql, (8.49) 

Gp* =I-P,,, (8.50) 

@*@,*=I. (8.5 1) 

In particular, the restriction of @)A to N(A)’ is a unitary operator from 
N(A)’ onto L,(R3). ZfgE Cr(R3 - {0}), then @;“g is given by (6.38) or 
(6.39), and we have @;“gC C(fi)n Cm(a). The same results (with P;,, 
instead of P,, and A’ instead of A) hold for the generalized Fourier 
transforms @: and @Y in the magnetic case. 

9. ORTHOGONAL DECOMPOSITIONS 

The generalized Fourier transforms lead to simple orthogonal decom- 
positions of the Hilbert space L,(Q) into closed subspaces, consisting of 
irrotational or solenoidal vector fields, respectively. We begin with the 
verification of some properties of the operators @p;” and (@‘,)*. Recall that, 
by Lemma 6.1, @;*gE Coo(Q) and (@i)* gE Cco(J2) if g E CF(R3 - {O)). 

LEMMA 9.1. Assume that g E CF(R 3 - (0)). Then we have: 

(a) If g(p)lp for every pER3-{0}, then V. @:g= 
V.(@;)*g=OinR; 

(b) if g(p) lip for every p E R3 - (O}, then V x @P;rg= 
V X (@i)*g=O in R. 

Proof: Recall that w,(.,p; a) = w,(.,p; a) +E,- and w’,(.,p; a) = 
wd*, P; a) + H, , where E, and H, belong to C’(0)nCco(O) and are 
solutions of the boundary value problems 

@ +Ip12)E, =O in Q, 

n x E, = -n x w,(.,p; a), 

V-E,=-Vew,(.,p;a) on afi, 

E, = O(r-‘), 

(;F iJpl)E, =o(r-l) as r=IxI+oo (9.1) 
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and 

@ +lPl*W* =o in Q, 

n x (V x H,) = - n x [V x w,(*,p; a)], 

n . H, = - n . w,(.,p; a) on XI, 

H, = O(r-‘j, 

(zf ilpl)H, =o(r-I) as T=]x]+ co, (9.2) 

respectively. By [ 11, formula (2.3)] and (5.2), also the derivatives of E, and 
H, satisfy the radiation condition (1.4) with K = f ] p I. 

Verification of (a). Note that V, . w,(x,p; a) = 0 if p l. a by (6. l), since 
V, . (&x.pj = ia . peix.p. Hence (9.1) implies for p -L a that CJI := V . E, is a 
solution of the scalar Dirichlet problem (A + K*)v, = 0 in Q, 9 = 0 on &Y2, 
and p=O(r-‘j, (a/&--iK)p=o(r-‘) as r--+]x/+co, with ~=fIpj. By 
the well-known uniqueness theorem for this problem (compare, for example, 
[9, Satz 2]), we obtain V . E, = v, = 0 in L!, and hence 

v; w*(x,p;a)=O if pia. (9.3) 

Furthermore, if p I a, it follows from (9.2) and V . w,(.,p; a) = 0 that 

~VH,=WV(V.H,~=~.[VX(VXH,)+AH,] 

=-V, - [n X (V X H,)] - lpl2 n . H, 

= v, * [n x (V x w,)] + IpI n * w. 

=-n*[VX(VXw,)+dw,]=-n.V(V.w,)=O 

on LU2, where V, . a denotes the surface divergence of the tangential field a. 
Hence w :=V . H, is a solution of the scalar Neumann problem 
(d+~*)y=O in 0, (cY/&z)~=O on &2, and w=O(r-‘j, (a/&--iK)W= 
o(r-‘j as r = 1x1 + 03, with K= f IpI. This implies that V. H, =y=O in 
Q, and hence 

v, * wL(x,p; a) = 0 if pla. (9.4) 

Now Lemma 9.1(a) follows from (6.39), (9.3), (9.4), and the formula 

((@‘,>* g)(x) = jR3 w~(x,p;g(pj) dp for gE CF(R3 - {O}), (9.5) 

which can be proved in the same way as (6.39). 
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Verification of(b). Since V, x (ueix’p) = ip X aeix’P = 0 if plla, we have 
V, x w,(x,p; a) = 0. Set A := V x E, . It follows from (9.1) that, for p[I a, 

n+t=n.(VxE,)=-V,.(nxE,)=V,+rxw,) 

= -n * (V x WJ = 0 

and 

nX(VXA)=nx [Vx(VxE,)]=nx [V(VE,)]--E,] 

= n x [V,(V - E,)] t IpI* n x E, 

=-n x [V,(V . wo)] - IpI2 n x wg 

= -n x [V(V ’ WJ - Llw,] = -n x [V x (V x w,)] = 0. 

Hence A is a solution of the boundary value problem (A’), formulated at the 
beginning of Section 5, with F = 0 and K = f ] p 1. Thus the uniqueness part 
of Lemma 5.1 implies that V x E, = A = 0 in Q, and hence 

v,x w*(x,p;a)=O if pl(a. (9.6) 

Now set B := V x H, . If p/I a, B is a solution of the boundary value problem 
(A), formulated at the beginning of Section 4, with F = 0 and K = f I pi, 
since V-B=0 in R and nxB=nx(VxH,)=-nx(Vxw,) by (9.2). 
Thus the uniqueness part of Lemma 4.2 implies that V x H, = B = 0 in 52, 
and hence 

v, x w’,(x,p; a) = 0 if plla. (9.7) 

Lemma 9.1(b) follows from (6.39), (9.5), (9.6), and (9.7). 
Set 

P * dP> 
g’(p) := ,p12 P9 g’(P):=g(P)-g’(P)=IPx [dP>XPl (9.8) 

IPI 

for gE Cp(R3 - {O}). Note that g’, g* E CF(R3 - {0}), and g’(p)l(p and 
g’(p) Ip for every p E R - (0). Hence Lemma 9.1 implies that 

V x (@,*g’)=O and v * (@,*g’)=O in R W) 

for gE CF(R3 - (0)). The operators g-g’ and g+g* from CF(R3 - (0)) 
into CF(R3 - (0)) are bounded with respect to the L,-norm. Hence these 
operators can be uniquely extended to bounded operators G + G’ and 
G + G* from L,(R*) into L,(R “). The relations (9.9) remain valid for 
G E L,(R*) if the differential operators VX and V. are interpreted in the 
sense of distributions. In fact, choose a sequence (g,} in CF(R3 - (0)) such 
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that I/G - g,// + 0 in L,(R3). Since the operators G + G’, G + GZ and @‘;” 
are bounded, we have 

II @F1 - @,*dll,2cn, --* 0 and II @:@ - @;*&cn, -+ 0. (9.10) 

Denote the ith component of the vector @,*G’ by (@J’,*G’)~. Since 
V x (@i,*gi) = 0 by (9.9), we obtain for cp E C?(Q) and i, k = 1,2, 3, by 
applying the definition of distribution derivatives, the limit relation (9.10), 
and the integral theorem of Gauss, 

la,(~~G’),-a,(~~G’)i] q 

= -(@,*G’)k (airPI + (@,*G’)i (a,~) 

and hence V x (@P,*G’) = 0. A similar argument implies that 
V . (@,*G*) = 0. 

Now we show that 

(@,*G’, Qi,*H2)L2(nj = 0 for G, H E L,(R “). (9.11) 

Choose sequences (g,} and (h,] in CF(R3 - {0}) such that /IG --,,/I -+O 
and l)H-h,l(-+O in L,(R3). It follows from (6.34), (8.1), and (6.36) that 

VW’, @W2h,m 

= (@p, @,*G', @* @,*H 
2 
L.,(,z j 3 + (P+,~,*G',P+,Qi,*G2)~2cn, 

= (G', H2L2(m = !i% Cd, hh,2w~ 

= lim 
n** I 

gkqdp=O. 

since g:(p) I hi(p) for p E R3 - {0} by (9.8). This completes the 
verification of (9.11). 

Our results on the operators G + G’ (i = 1,2) lead to an orthogonal 
decomposition of the Hilbert space L,(Q). Set 

Pi F := @,*[(@,F)‘] for FE L2(J2) (i= 1,2). (9.12) 

Note that 

G=G’+G2 for G E L2(R3), (9.13) 

(G’)‘( = 6, G’ for G E L2(R3) and i,k= 1,2 (9.14) 
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and 
(G’, H) = (G, Hi) for G, H E L,(R3) and i = 1,2. (9.15) 

By (9.8), these relations are obvious if G, H E CF(R3 - {O}). In the general 
case, they follow by approximating G and H by sequences ( g,} and {h,} in 
CF(R3 - (0)) with respect to the L,-norm. By applying (8.1), (9.14), and 
(9.15) we obtain for F, G E L#) 

P: P;F = @;“{ [@* a:(@‘+ F)k]i} = @;{ [(@+ F)k]i} 

=bik@f*[(@+F)‘j=BikP;F 

and 
(P’, F, G),,ca, = W,*K@,F)‘l~ %.,cn, = W,F)‘~ @, G)L~UW 

= (@p,K (Q, G)i)~2w) = (6 @%h Wilha2wj 

= (F; Pit Gh2m 3 
and hence 

P’, P; = BikP\ for i,k= 1,2 
and 

(Pi,), =Pi for i= 1, 2. 

Furthermore, we have by (9.13) and (6.37) 

(9.16) 

(9.17) 

P~F+P~F=@,*[(@,F)‘+(@P,F)2]=@~@~F=(I-P+o)F, 

and hence 
P+,+Pi +p;=z. (9.18) 

It follows from (6.36) and (9.12) that 

P,,Pi = 0 for i=l,2. (9.19) 

Relations (9.16)-(9.19) show that Pi is an orthogonal projection of the 
Hilbert space L,(O) and that the projections P+o, Pi, Pi yield an 
orthogonal decomposition of L*(Q) into the closed subspaces N(A), M\ and 
M: with 

M’, := {P: F: FE L&2)} (i = 1, 2). (9.20) 

In order to characterize the ranges M\ of the projections Pi (i = 1,2), we 
introduce the linear spaces 

M, := {fE C(a) n C’(Q) n N(A)‘: V xf= 0 in Q, n xf= 0 on X!, and 

f=O(r-*)asr=Ixl+co}, 

M, := (fE C(fi) n C’(0) n N(A)+ V . f = 0 in J2 and 

f=O(r-*)asr=Ixl+ co}. 
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Furthermore, we denote the completion of Mi with respect to the L,-norm 
with ai. We shall prove: 

LEMMA 9.2. The ranges M’, of the projections Pi , introduced in (9.12), 
are given by 

M\=M’=M, and A4: =MZ =n;i,. 

In particular, we have Pi+ = P’_ for i = 1,2. 

ProoJ: By using (6.38), (6.6), (6.1), and (8.25) and substituting p = ppO 

with p. = PA P I in the second term, we obtain for g = (g,, g,, g3) E 
CF(R3 - {0}) and 1x1 > r. + 1 

X 
[i IPgl=l 

~f(Xo,pPo)gj@Po)P* ds,,, dP 1 
+ 2 ek J qj:(x, P) g.;(p) dp, 

j,k= 1 Rj 

where a, p are positive numbers with supp g c {x: a < 1x1 < /I). It follows 
from (8.23), with u = (v*)~ (., p; eJ and rc = + 1 pi, and Lemma 6.1 that the 
inner integral in the second term has continuous derivatives with respect to p, 
which are uniformly bounded for Ix, I = 1 and a < p <p. Hence an 
integration by parts implies that the second term can be estimated by 
C, I XI -* for 1x1 > r with a suitable constant C, . Similar estimates can be 
obtained for the first term, by integrating by parts, and for the third term, by 
using (8.26). This yields 

@zg= O(rm2) as r=IxI-+co for g E Cr(R3 - (0)). (9.21) 

It follows from (6.39), Lemma 9.1, (9.21), and n x w+ = 0 on X$J that 

@$(g’) E Ml and @;“(g’> E M2 for g E CF(R3 - {O}). (9.22) 

Since CF(R3 - {0}) ’ d is ense in L,(R ‘) and since the operators G -+ G’ and 
@;” are bounded, (9.22) implies that 

@,*(G’) E ii?, and @:(G*) E ii?, for G E L,(R”). (9.23) 

In particular, we have by (9.12) 

P:FEfi, and P:FEii?, for FE L*(Q), (9.23) 

and hence M’, c n?, and My c Mi for i = 1,2. 
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Now we show that the linear spaces a, and I@, are orthogonal: 

(ET m,(n) =o for EEM,, HEM,. (9.24) 

Since M, and M, are dense in M, and az, it is sufficient to verify (9.24) for 
E E M, and H E M,. Consider the fields E, ,..., E, introduced in (2.1). As in 
the proof of Lemma 2.4, we can find numbers c, ,..., c, such that the field 

H’ ;= H- -f ckEk, (9.25) 
k=l 

with given H E M,, satisfies the conditions 

c n.H’dS=O (i = l,..., n). (9.26) 
JSi 

Since V . H’ = 0 in Q and H’ = O(]x]-*) as ]x] + co, it follows from (9.26) 
that there exists a field G E C(a) n C’(Q) such that 

VxG=H’ in B (9.27) 

and 
G= 0(1x1-‘) as 1x1-i co. (9.28) 

A construction of a field G with these properties is described in ] 13, 
p. 38 l-382, 5. Schritt; 14, p. 1051 and uses [ 14, Lemma 8.11. Now consider 
a field E E M,. Since E, ,..., E, E N(A) and E E N(A)‘, we obtain by (9.25), 
(9.27), (9.28) and the properties of the space M, 

! E.Hdx=. 
J 

E-fi’dx=. E.(VxG)dx 
R R J R 

=I 
an 

(nxE).GdS+j (VXE).Gdx=O 
R 

so that (9.24) holds for E E M, and H E M,, and hence also for E E i@, and 
HEM,. 

Since P+,F = 0 for FE N(A)‘, (9.18) implies 

P=P;F+P;F for F E N(A)‘. (9.29) 

Formula (9.29), in connection with (9.23) and M, I MZ, shows that 

N(A)l=fi, @M, (9.30) 

and 
range(P:) = I@, , range(Pi) = ii?, . 

This completes the proof of Lemma 9.2. 
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In a similar way, by setting 

P*F:= (c&g* [(@‘;F)‘] 

and 

(9.32) 

n;ii, := {p’: F: FE L,(R)} 

(i = 1,2), we obtain a second orthogonal decomposition 

L&2) = fv(A ‘) 0 s: @ A?; 

of L2(12) into closed subspaces. Set 

M~:=(fEC(~)nC’(52)nN(A’)‘:VXf=OinR 

andf = O(re2) as r= /xl-+ co}, 

M;:=(SEc(~)nc’(n)nN(A’)‘:V.f=Oinn, 

n.f=OonZX2andf=O(r-2)asr=Ix(+c.o}. 

We shall prove in analogy to Lemma 9.2: 

(9.33) 

(9.34) 

LEMMA 9.3. The ranges dki of the projections p”i, are given by 

@+=A+~; and a: =JQ-‘_ =fi;. 

In particular, we have p+ = P”f for i = 1,2. 

Proof: The same argument as in the proof of (9.21) yields 

(@‘,)* g = O(r-‘) as r=Ix(-+co for gE CF(R3 - (0)). (9.35) 

It follows from (9.5), Lemma 9.1, (9.35), and n s wi = 0 on &! that 

(@i)*(g’)EMI and (@i)*(g’)EM; for gECT(R3-(O}), 
(9.36) 

and hence 

(@;)* (G’) E fi; and (@;)* (G’) E ti; for G E L,(R-‘). 

(9.37) 

In particular, we have by (9.32) 

&F&f; and P”:FEM; for FE L,(D). (9.38) 
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In order to show that @ and @ are orthogonal, we consider fields E E MI 
and H E M; . Let H, ,..., HP be the fields defined by (3.2) and (3.4) and set 

El :=E- i ajHj with aj := E’ tds. 
j=l 

(9.39) 

Note that V x E’ = 0 in S2 and E = O((xl-*) as [xl-+ co. It follows as in 
Section 3 (compare (3.10)) that 

I E’ . tds=O 
C 

(9.40) 

for every closed curve C in fi. Hence, by (3.1 l), we can find a function 
w E C’(n) such that 

and 

Vy/=E’ in Q (9.41) 

w= O(lxl-‘> as IxI+co. (9.42) 

Since H ,,..., H,, E N(A’) and HE N(A’)‘, we obtain by (9.39), (9.41), 
(9.42), and the properties of the space M; 

Vy/. iidx 

=-- 
i 

tyn. fiddS- r/A’. iiidx=O. 
an J^ n 

This implies that (E, H) = 0 for E E MI and H E M;, and hence also for 
E E fi; and HE ii?;, so that the spaces fi{ and i@ are orthogonal. 

In analogy to (9.29), we have 

F=p;F+p;F for F E N(A ‘)‘. (9.43) 

Formula (9.43), in connection with (9.38) and @ I li?;, yields 

N(A’y=M; @M; (9.44) 

and 

range@\) = li?;, range@: ) = MS. (9.45) 

This completes the proof of Lemma 9.3. 

We collect the main results of this section in 
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THEOREM 9.1. Assume that Q is the exterior of n disjoint bodies with 
boundaries S, ,..., S, E C6 and consider the linear subspaces M, , M,, MI, 
MS of L,(B) introduced above. Then the following two orthogonal decom- 
positions of L,(Q) hold: 

L&2) = N(A) @ fi, @ li;i,, (9.46) 

L,(R)=N(A’)@@@ti?;. (9.47) 

The corresponding projections are P,,, P!+ , P: in the first case and P>O, 
P”\, P”: in the second case, where Pi and p”i, are defined by (9.12) and 
(9.32), respectively, and G + G’ is the continuous extension of the mapping 
(9.8) to L,(R3). Furthermore, the identities Pi+ = Pt and p+ = P’ hold for 
i = 1, 2. In addition, we have, in the sense of distributions, 

VxF=O in N(A)@M, and in N(A’) @ I%?{ (9.48) 

and 

V.F=O in N(A)@M, andin N(A’)@a;. (9.49) 

By the definition of the spaces M, and M;, the properties FE fi, and 
G E ti; contain, in addition to (9.48) and (9.49), weak versions of the 
classical boundary conditions n x F = 0 and II . G = 0, respectively. The 
orthogonal decompositions of L*(Q) into linear subspaces of irrotational and 
solenoidal fields, described in Theorem 9.1, are closely related to the decom- 
positions studied by Weyl in his famous paper [ 171. By Theorem 9.1, these 
decompositions correspond, via the generalized Fourier transforms d+ and 
4: from L*(Q) into Lz(R3), to the decomposition of the elements of L,(R3) 
into radial components and fields which are orthogonal to the radial 
directions. 

10. REGULARITY CONSIDERATIONS 

This section is devoted to the proofs of Lemmas 2.1 and 3.1. We shall use 
the notations introduced in [ 16, Sect. 31. Let R and E satisfy the 
assumptions of Lemma 2.1. Since E E C(n), it is sufficient to study the 
behavior of E near an arbitrary boundary point x,,. Choose 6 and [ as in 
[ 16, Sect. 31 and consider the fields E, and E: defined in [ 16, Lemmas 3.1 
and 3.21, respectively. Our first aim is to show that E: E V,. 

It is convenient to set Et (u) = 0 for u E Rt - Z(S), where R : := (u E R ’ : 
u3 > O} so that Et E C(R:). Choose h E Cr(R’) such that 

supph=(u’:IU’]<l}, h 2 0, J 
‘hdu’= 1 (10.1) 
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with U’ = (u,, Q), Iu’I = (~4: t ~4:)“~ and set 

59 

F&4) := j E: (u’ + v//k, u3) h(d) du’. (10.2) 
IL”1 < 1 

Note that F, -+ E: uniformly in Z(6). By substituting U’ t v’/k = w’, 
v’ = k(w’ - u’), dv’ = k2 dw’, we obtain 

aiF,c E C(Z(Q) for i=l,2. (10.3) 

Since nxE=O on aL& we have Efi:=ti.SE,=Ofor u,=O and i=l,2, 
and hence 

Fk,=Fk2=0 for u3 =0 (10.4) 

(with F, = (F,, , Fk2, F,,). Furthermore, V x E E C(fi) implies that 
S(V X E,) E C(Z(S)), and hence by [ 16, Eq. (3.30)] 

c$E; - a,E; E C(Z(d)) for i,j= 1, 2, 3. (10.5) 

By differentiating (10.2), we obtain 

&F&) - cYjF,,(u) 

= 
J 

(a,E; - c?jE;i)(u’ t v//k, z+) h(v’) dv’ (10.6) 
Itr’li I 

for u3 > 0 and i,j= 1,2,3. By (10.5), aiFkj - ajFki can be continuously 
extended onto Z(6), and (10.6) holds also for u1 = 0. In particular, we have 

aiF, - ajFki E C(Z(6)) for i,j= 1, 2, 3. (10.7) 

Furthermore, it follows from (10.6) that 

+ t aiF, - ajFki + aiE,j - ajEli as k --t co uniformly in Z(S). 

(10.8) 

Since V . E E C(s), we have by [ 16, Eq. (3.3 111 

‘(’ . El) = 5: (dig”E&) E C(@j> 

and hence, since Et E C(Z(d)), 

g”ai E; E C(Z(S)). (10.9) 
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By differentiating (10.2), we obtain for u3 > 0 

g”d; F,i = S:, + S; 

with 

and 

s:(u) := 1‘ (g”~iE;)(u’ + v//k, uJ h(v’) dv’ 
. II”1 < I 

s:(u) := 1’ [g”(u) - g”(u’ + v//k, u3)] 
. II“1 < 1 

x h(~‘)(~~E~)(u’ + v//k, uj) dv’. 

We conclude from (10.9) as above that 

s: E w-x@) 

and 

S; --t g”&E; as k-+co uniformly in Z(6). 

(10.10) 

(10.11) 

(10.12) 

(10.13) 

(10.14) 

Since g 33 = 1 and gi3 = g3’ = 0 for i = 1, 2, only the terms with i, j = 1, 2 
give a contribution to Si in (10.12). By applying the integral theorem of 
Gauss, we obtain for u3 > 0 and i = 1,2 (with v’ = (v,, vz)) 

s:(u) = I‘ 
. Iv’1 < 1 

[...I h(d) k-$ [E;(u’ + v//k, u3) -E;(u)] dv’ 
I 

= - j],,,, < , [E:jtU’ + v’lk ~3) - E;(u)] F’(u, v’, k) dv’ 

with 

T’(u, v’, k) = k $ ([g”(u) - g”(u + v’/k, z+)] h(v’)} 
I 

= -h(v’)(ai g”)(u’ + v’/k, u3) 

+ k[ g”(u) - g”(u + v’/k, u3)J a&v’). 

By applying the mean value theorem to the last term, it follows that 
7”(u, v’, k), as a function of u E Z(S) and v’, is bounded uniformly with 
respect to k. Hence the last representation for S: yields 

s:-+o as k-+ co uniformly in Z(S). (10.15) 
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This, together with (10. IO), (10.13), and (10.14), implies that 

g”i$ Fti C C(Z(6)) (10.16) 

and 

g”a,F, -+ g”&E; as k-+co uniformly in Z(6). (10.17) 

It follows from (10.3) and (10.7) that aiF, E C(Z(S)) for (i,j) # (3,3). 
Since g , 33 = 1 we conclude from (10.16) that also a, F,, E C(Z(6)). Thus we 
obtain 

Fk E C’(Z(S)). (10.18) 

In particular, Fk, can be approximated by a sequence in P(Z(S)) with 
respect to the l-norm by [ 121, Theorem 10.2. By the choice of c (compare 
[ 16, Eq. (3. lo)], we have supp Et c Z(26/3), and hence supp Fk c Z(56/6) 
if l/k < 6/6 or k > k, := [6/d]. Choose 6’ with 56/6 < 6’ < 6. It follows 
from (10.4) and (10.18) by the argument after [ 16, Eq. (5,18)] that there 
exists a sequence (Gk] such that 

supp G, = Z(J’), 

and 

G, E C,m(Z(d)) x CF(Z(S)) x P(Z(6)) (10.19) 

IIF, - GA,zcs, < W (10.20) 

for every k > k,. By (10.19) and [ 16, Lemma 4.4] we have G, E V, . Since 
S, is dense in V, with respect to the l-norm, there exists a sequence {S,} in 
S, such that ]I G, - S k ,,z(s) < 1/2k and hence, by (10.20), ]I 

IlFk - S,Il,,zcs, < l/k (10.21) 

for k > k,. By observing (10.2), (10.8) (10.17) and (10.21), we obtain the 
following limit relations in L,(Z(6)): 

II Sk - E: Ilzm -+ 09 
lICaiskj - ajski) - taiEl:. - ajEtiIlz(8) + O (i,j = 1, 2, 3), (10.22) 

1) g”&S, - gijaiE;Ilzcs, + 0 as k+oo. 

In order to deduce from (10.22) that {S,} converges to Et with respect to 
the l-norm, we use the coerciveness properties obtained in [ 15, Sect. 51. 
Consider the bilinear forms B, B,, and B + introduced in [ 16, formulas (3.1), 
(3.5), and (3.35)-(3.36)]. By [16, Eq. (3.37)] there exists a c, > 0 such that 

B+(G,G)~c,llGII:,zcs, for every G E S,. (10.23) 
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Note that (t, . SG-, t, . SG-, t, . SC-) = (G-)+ = G = (G,, G,, G3) for 
GE S, by [14, Lemma 3.21. Hence it follows from [ 16, (3.30)-(3.31)] that 

and 

S(V . G-) = -&(&g”Gj) 
di 

(10.25) 

for G E S,. Furthermore, by [ 16, Eq. (3.19)] we have 

SG- = g”G,t, for GES,. (10.26) 

These relations, together with [16, Eq. (3.28)], imply that there exist 
numbers c,, c, > 0 such that, for every G E S, , 

B+(G,G)=B,(G-,G-)=IJVxG-I/*+I(V.G-IJ*+c,(jG-I/* 

= (S(V x G-),A-S(V x G-)) + (S(V . G-),A-S(V . G-)) * 
+ c,(SG-, A-SG-) 

<c,(llV x G-)ll’+llW. G-)ll’+llSG-II*) 

<c,(llGll* + 1 )IaiGj-ajGill* + IIg”aiGjll’)* 

i,j= 1 

By combining this estimate with (10.23), we obtain 

(IGI(f<c 
( 
)(G/I* + 2 IlaiGj-ajGi(l* +Ig”aiGjl12) (10.27) 

i,j= 1 

for every G E S,, where c := c;‘c,. By applying (10.27) to G = S, - S,, 
(10.22) yields 1) S, - S, 11, --$ 0 as k, n + co. Since V, is complete with respect 
to the l-norm, there exists a VE V, such IIS, - 1//l, + 0 as k-t co. It follows 
from the first relation in (10.22) that V = Et. Hence we obtain 
11 S, - E: )I, + 0 as k -+ 00. This shows that Et E V, . 

Our next aim is to verify that 

where 

ME, 7 ‘3 = V’, 3 GL,mx,,m forevery GEV,, (10.28) 

3- a[ L’E 
F,:=@++(c,+A)Z;E-2 \ ---(&)E. ikl aXi 3Xi 

(10.29) 
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Since S, is dense in V, respect to the l-norm, we can assume that G E S,. 
Set for 0 < e < 6 

0, := {x =x(u): u: + 24: < d2, & < 243 < 6). 

The integral theorem of Gauss yields 

5 [(V x E,) . (V x i?) + (V . E,)(V . c?)] dx 
a, 

=~Q~V.[(V.E,)G-(VxE,)~G]dx-j &AE,dx 
R& 

ZZ j [(V . E,)(n . G) + (V x E,) . (n X G) dS - j f?. AE, dx. 
aQc Q& 

Since V x E, and V . E, are continuous in Q(x,, 6) and since V . E, and 
12 x G vanish on 812(x,, 6), we obtain, by letting E 1 0, 

B(E,,G)=-lim. G.AE,dx. 
J El0 R, 

Since AE + LE = -F, (10.29) implies that AE, = A(@) = -F, + c,E, , and 
hence, by the definition of B, ([ 16, Eq. (3.5)]), 

B,(E,, G) = - I$ !, F, . G dx. 
E 

(10.30) 

Since Et E V,, as shown above, we have E, E V, c H,(R(x, ,a)) by [ 16, 
Lemma 3.21 and hence F, E C(Q) n L,(Q) by (10.29). The argument used 
in the proof of Lemma 2.2 shows that the improper integral IR(x,,S) ] F, I* dx 
exists and that 

I 
l/2 lI%(x,,a) = IF,(‘dx . 

R(X,.6) 

Since G E C(Q(x,, 6)), the same statement holds if F, is replaced by 
F, + aG with complex (r. This implies, since 

(F,,G)=f(llF1 + G/l* --IF1 -Gil’+ illFl +iGll’-il\F, -iGIl’), 

that the right-hand side in (10.30) coincides with the inner product (F,, G) in 
L,(B(x,, 6)). This remark concludes the proof of (10.28). 

Now we show by induction with respect to j that 

PJ 

409/92/l-5 
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for 1 <j < k + 2. (B,) holds since E, E V, c H,(B(x,, 6)). Assume that (Bi) 
holds, where 1 <j < k + 1, The argument leading to ] 16, Eq. (3.43) ] implies 
that 

where 

B+(E;, G)= (5, G) for every G E V,, (10.31) 

J= (Jl9J,,J3) with Ji = & gijtj . SF,. (10.32) 

Since F, E Hj-,(.(2(x,, 6)) by (10.29) and (B,), we have J E Him ,(Z(S)). 
Hence it follows from (10.31) by [ 16, Lemma 5.11 that 

Et E Hj+ ,(z(S’)> for every 6’ < 6. (10.33) 

Since supp E f c Z(26/3), we have even 

E: E Hj+ ,(Z(S)>* (10.34) 

In fact, choose 6’ with 26/3 < 6’ < 6 and <E P(Z(S)) such that r = 1 in 
Z(26/3) and supp <c Z(S’). Since E: = &Et, (10.34) follows from ] 16, 
(5.7)]. The relation (10.34) implies (Bit,), thus concluding the induction 
argument. For j = k + 2 we obtain E, E Hk+2(Q(~,,, S)) and hence, by 
Sobolev’s imbedding theorem, E, E Ck(a(x,, 6)). Because E = E, in 
Q(x,, J/3) by the choice of [, this implies E E C”(n(x, , d/3)) and hence 
E E Ck(fi), since E E C”(Q) and x0 is an arbitrary boundary point. This 
concludes the proof of Lemma 2.1. 

Lemma 3.1 can be proved in a similar way with obvious modifications. In 
order to prove that H: E Vi, replace E: by H: in the definition (10.2) of 
Fk so that F,, = 0 for u3 = 0 (instead of (10.4)). Choose the sequence (Gk} 
in (10.19~(10.20) such that Gkl, G,, E P(Z(S)) and G,, E C,“(Z(d)). It 
follows from [ 16, Lemma 4.51 that G, E Vi. Finally, note that 

l$ liQ [(V . H,)(n . G) + (V x H,) - (n x G) 1 dS = 0 
I E 

for GES’ since n.G=O and nX(VXH,)=O on &2(x0,8), so that the 
same argument as in the proof of (10.28) can be used to verify that 
B,(H, , G) = (F,, G) for G E V; . 
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