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1. INTRODUCTION

Let £2 be the exterior of a finite collection of disjoint bodies with smooth
boundaries S§,,...,.S, and set 62=S,+ --- +5,. In two preceding papers
([15,16]) we have considered selfadjoint extensions 4 and A’ of the vector
Laplacian —4 in £2 with respect to electric boundary conditions

nX E=0, V- E=0 on of (1.1)
and magnetic boundary conditions
nX (VX H)=0, n-H=0 on &9, (1.2)

respectively, where n denotes the exterior normal unit vector on 9f2. The
definition of the operators 4 and A’ is given in [15, Sect. 3] and briefly
recalled in [16, Sect. 1]. We have shown in [15] that 4 and A’ are positive
and selfadjoint. By using the functional calculus for unbounded, selfadjoint
operators, we obtained in [15, Sect. 7] weak solutions E and H of the initial
and boundary value problems for the vector wave equation in £ with respect
to the boundary conditions (1.1) and (1.2). In [16] we studied regularity
properties of 4 and A’. In particular, we have shown that £ and H are
classical solutions if the initial data and the boundary 6f2 are sufficiently
smooth. As we have pointed out in [15, Sect. 2], our analysis includes the
initial and boundary value problem of perfect reflection for electromagnetic
wave fields in the case that 2 is filled by an isotropic, homogeneous medium.

The main object of this paper is the investigation of the spectra of the
operators 4 and A’. We start with the discussion of the null spaces N(4) and
N(A’) of A and A’ and show in Sections 2 and 3 that the dimensions of N(4)
and N(4') are nand p=p, + --- + p,, respectively, where n is the number of
reflecting bodies and p, denotes the topological genus of the boundary S; of
the jth reflector. It turns out that the eigenelements belonging to the eigen-
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value 1 =0 are harmonic vector fields satisfying the boundary condition
n X E =0 in the case of the operator 4 and n - H=0 in the case of 4.

In Sections 4 and 5 we discuss the spectral families {P,} and {P}} of 4
and A4’, by using the well-known relationship between the spectral family and
the resolvent R, of a selfadjoint operator. If F is a sufficiently smooth vector
field with bounded support, then R,F = (4 —zI)~' F can be identified for
z & |0, co) with the L,-solution E = E[F] of the boundary value problem

AE + k*E=—F in £,
nxXE=0, V- E=0 on 012, (1.3)

where x¥?> =z and Im « > 0. This boundary value problem has been studied
in [11], by employing integral equation methods. In particular, we have
shown in [11] that the principle of limiting absorption holds in the following
form: There exists an open subset B, of the complex x-plane, containing the
set {x:Imk >0, x+ 0}, such that E [F](x), as a function of k, can be
analytically extended onto B, for every x € . Furthermore, the extended
function E = E_[F] satisfies, for real x # 0, Eq. (1.3) and the radiation con-
dition

E=0(1/r), (%—ix)E:o(l/r) as r=lx|->o. (14)

In agreement with the physical interpretation of the radiation condition, a
- solution E of (1.3) with real x+# 0 is called outgoing (incoming) if (1.4)
holds with k > 0 (kx < 0). By using the principle of limiting absorption, we
derive in Section 4 the formula

(PP = (PooP)) + 5 [ (ElFI0) ~ElFI@)do (1)

for 1> 0 and x € 2 under suitable smoothness assumptions on F and 2
(compare Theorem 4.1). Note that P_, is the projection of L,(£2) onto N(4).
The integrand in (1.5) may be discontinuous at ¢ = 0, but we shall show that
the (improper) integral in (1.5) converges uniformly in every bounded subset
of Q. In particular, we obtain P, F€ C(2). The formula (1.5) relates the
spectral family {P,} of 4 to the outgoing and incoming solutions of (1.3)
with real k. Furthermore, our analysis yields: A = 0 is the only eigenvalue of
A, and the continuous spectrum of A consists of the half axis [0, o).

Similar results can be derived for the operator 4’. As we shall show in
Section 5, the methods developed in [11] can also be applied to the magnetic
boundary value problem

AH + k*H = —F in 0,
nX (VXH)=0, n-H=0 on oQ, (1.6)
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so that we obtain an analogous formula relating the spectral family {P}} of
A’ to the outgoing and incoming solutions of (1.6) for real «.

In Sections 6-8 we use the results of Sections 4 and 5 to derive generalized
eigenfunction expansions with respect to the boundary value problems (1.3)
and (1.6). The kernels of the generalized Fourier integrals are solutions of
(1.3) and (1.6), respectively, with F =0 and real x, which behave at infinity
like plane waves ae’” * with a, p € R?® and | p|* = k? (distorted plane waves).
Results of this type have been obtained for the Schrédinger equation in R’
by Ikebe [2] and for the scalar wave equation in exterior domains with
smooth boundaries by Shenk [6] and, under more general assumptions on
the boundary, by Wilcox [18]. First results on generalized eigenfunction
expansions in the vector case are due to Grieb [1]. In addition to [1], the
unitary character of the expansions will be established in Section 8, by
employing a method developed by Wilcox [18] in the scalar case. The
generalized Fourier transforms, studied in Sections 6-8, can be used to
derive orthogonal decompositions of the Hilbert space L,(2) into closed
subspaces, consisting of irrotational or solenoidal vector fields, respectively,
as we shall show in Section 9. Section 10 contains a proof of a regularity
statement which is used several times in the preceding sections.

The results of this paper can be applied to the initial and boundary value
problems for the vector wave equation studied in [15,16] and allow a
discussion of the behavior of the solutions as ¢— co. In particular, it is
possible to derive necessary and sufficient conditions for the validity of the
principle of limiting amplitude. We shall discuss this problem and related
applications to the time-dependent theory in a subsequent paper.

2. THE NULL SPACE OF A4

In the following we assume that 02 € C%. It follows from the classical
theory of the exterior Dirichlet problem for the scalar Laplace equation that
there exist uniquely determined functions ¢,,..., ¢, € C'(2)N C®(R2) such
that 4¢;=0 in 2,¢9;,=9; on §; (4, := Kronecker’s symbol), and D?p, =
O(r~'"~1) as r=|x| - oo for every differential operator D” = 971952053 of
order |p|=p,+p,+p, (compare, for example, [9,Satz4] and [9,
Lemma 15]). The vector field

E;=Vp, (i=1l,.,n) @2.1)

satisfies the equations V. E; =0, V X E; =0 and hence

AE,=V(V-E)—VX(VXE)=0
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in Q2. Furthermore, E; satisfies the boundary conditions (1.1) on 22 and the
asymptotic relation D’E,;=O(r '"'~?) as r=|x|-> 0. Lemma 2.1 shows
that E belongs to C*(R).

LEMMA 2.1. Assume that k>2, oQ€C**, E€CQ)NCHQ),
VXEECQ), V-EEC®), nXE=0 and V-E=0 on 02, and
F:=—AE — AE € H\(Q) for a suitable complex number A. Then we have
E € CKQ).

A proof will be given in Section 10.
Recall the definition of the linear space S introduced in [15], Section 3:

S:={EEC*2):nXE=0andV - E=0o0naw;
E;,0,E,0,0,E=0(r"*)fori,k=1,2,3andr=|x|- oo }.

The Properties of E; collected above imply that E,ES c D(4) and AE;=0
since 4 =~4 on D(4). Hence E,,..., E, belong to the null space N(4) of 4.
The fields E,,..,E, are linearly independent. In fact, assume that
GE +++c¢,E,=0and set 9 :=c,0, + -+ +¢,9,. Formula (2.1) implies
49 =0 and hence ¢ =0, since ¢(x) - 0 as |x|— oo. Since ¢ =¢; on §;, we
obtain ¢, =--- =¢,=0. In order to verify that the fields E,,..., E, form a
basis of N(4), we consider an arbitrary element E € N(4). Since E € D(4),
AE=0, and 00 € C®, we have E € C*(Q2) by [14], Theorem 6.3 (with
F =0, A=0). Furthermore, E satisfies the boundary conditions (1.1) by |14,
Theorem 7.1]. Now we use the following elementary fact on L ,-functionals:

LEMMA 2.2. Assume that u € C(2) N\ L,(R2), where Q is the exterior of
a finite collection of disjoint bodies with smooth boundaries. Let F, denote
the linear functional on C(R2), generated by u,

F,p:= Jn updx  for ¢ € CL(02). (2.2)

Then the improper integral [, |u|® dx exists, and we have
IF? =] |ul ax. (2.3)
Q

| --- || denoting the norm in L,(R).

Remark, As in [12], the elements of L,(£2) are interpreted as
distributions, and every function u € C(£2) is identified with the functional F,
defined by (2.2). In particular, u € L,(£2) means that F, is bounded with
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respect to the norm |¢|| = [[|e|* dx]'/? in CP(R2), and the norm of F, is
defined by

| F, |l :== sup{|F,0|: 0 € CZ(R), ]| = 1} (2.4)
(compare [12, Sect. 2], in particular, Definition 2.1).

Proof of Lemma 2.2. Let F, be the restriction of the functional F, to
CP(R2;) with Q, = {x € 2:|x| <R}. By [12, Lemma 2.5] we have

[ 1wl dx =1 Fyll 0 < IFIP

Qg

for every R > R,:=max{|x|:x€82}. By applying the monotone
convergence theorem of elementary calculus, it follows that the improper
integral |, |u|? dx exists and that

| lul ax<|IEI
Q

The opposite inequality follows from (2.4), (2.2), and Schwarz’s inequality.
Since E € D(4) = H,(R2) and E € C*(2), Lemma 2.2 implies that

|E|dx<o  and  [o|d,E|Pdx<o  (i=1,2,3), 25
Q Q1%

and hence, by Schwarz’s inequality,

JalEl- [[VXE|+|V-E|]dx < o0. (2.6)

Set
f(r>=J‘z |E| - [|[VXE|+|V - E|] dS .7)

for r > R, with X, := {x € R*:|x| =r}. By (2.6) we have

J': f(rdr <
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for R > R,. Hence, there exists a sequence {r,} such that r,— oo and
f(r)—0. By using VX (VXE)—V(V.-E)=—4E=0 and the boundary
conditions (1.1), we obtain for r > R,

| [VXEP+|V-El')dx
Y Q

r

=J‘ V.|[-EX(VXE)+EV-E]dx

=| [~(exE)- (VXE)+(n-E)V -E|dS <f(r)-
z,
Since r,— oo and f(r,)— 0, it follows that
J’ ([VXE]?+|V-E]’)dx=0
Q
and hence
VXE=0, V.E=0 in Q. (2.8)

Now we want to show that
E=0(r"% as r=|x|> . (2.9)

The asymptotic relation (2.9) follows from (2.8) and the following represen-
tation theorem for harmonic vector fields in exterior domains:

LEMMA 2.3. Let 2 be the exterior of a finite collection of disjoint bodies
with smooth boundaries and assume that E € C*(Q)N\L,(2) and that E
satisfies the equations VX E=0 and V- E=0. Then we have for every
xen

E(r)=—— [n(y) E()V

4n Jag T lx~yl

1
+ (n(2) X E( ) xvxm] s, .

Proof. Consider positive numbers r, p such that the sphere o,(x):=
{y —x|=p} is contained in 2,={y€E€ N2:|y|<r} and denote the region
between g,(x) and 012, by £2,. By applying the integral theorem of Gauss to
fields E,, E, € C*(£2,) with V(V - E;) — V X (V X E,) = 4E; = 0, we obtain

J- n-[E\V-E,~E,V-E +E X(VXE)—E,X(VXE,)]dS
20,

=J’ V.[E\V-E,—E,V-E +E X(XE,)—E,x(VXE,)]dx=0.
2

0
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Now set E,:=FE and E,(y):=e/|x—y|, where e; denotes the ith unit
vector. Since VX E=0 and V - E = 0, we obtain as p— 0

L,—a [(n(J’) E(y)) » +((y)xE(y))( Txi—ﬂxef)]dsv

i 1x—yl
e, o o258 on () s,

=E(x)- [—z(e; - 2) + 2 X (z X €,)] dS = —4nE(x) - ¢,

Iz]=

and hence

= Yaf (@0)-EG) 5

Vi |x—yl
1
+ )X EG) - (%, xe) |ds,
or, equivalently,

E(x)—— [(n(y) E(y))vl —

1
+ (n(3) X E(»)) X V"Ix——yT] as,. (2.10)

Now we discuss the part of the right-hand side in (2.10) which is integrated
over X,. Schwarz’s inequality implies that

’«[x,["']dsy 2 [LrlEP dy ]’/2 er |xd_S;|4 ]1/2' 1)

Now assume that r > 2 |x|. Since |y|=r, we have | y — x| > #/2 so that the
last integral in (2.11) can be estimated by 4nr?(2/r)* = 64nr~2. This yields

1/2
16‘[ U lElzdy] for r>2]x|. (2.12)

[ 1elas, |<

Set
g(r) :=J |E|* dy.
lxt=r

Since

f g(r)dr=f |E|* dx <
R Ix|>R
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for R > R, by Lemma 2.2, there exists a sequence {r,} with r, - co and
g(r,) - 0 and hence, by (2.12),

[--]dS, -0 as k- 0.

Lo

By inserting this estimate into (2.10), we obtain Lemma 2.3. After these
preparations, the basis property of the fields E|,..., E, follows from

LEMMA 2.4. Assume that EEC'(2), VXE=0and V-E=0 in Q,
nXE=0 on R, and E=0(r"?) as r=|x|— . Then E is a linear
combination of the fields E, ..., E,, introduced in the beginning of this section.

Proof. The proof of [11, Lemma 14] shows that the n X n matrix

(1) = (fsj%‘ff_ds) = (Lin - E, dS)

has rank n. Hence we can find real numbers c,...., ¢, such that

Y ckJ’ n-E,dS={ n-EdS (i=1,.,n).

k=1 S; S;

Set

Ey:=E— ) ¢E,. (2.13)

We have E, € C}(2), VX E,=0and V-E,=0in 2, n X E,=0 on 412,
E,=O(R"?) as r=|x| - o0, and

J’ n-E,dS=0  (i=1,.,n). (2.14)
S.

In order to show that E, vanishes in £, we consider a fixed point x, € 2 and
form the potential

w(x) :=cj E,- tds+ a,, 2.15)
X

where x is an arbitrary point in 2, C is a smooth curve connecting x, and x
within £, and a, is a suitably chosen number. Since V X E; =0 in 2 and
nX E,=0 on 0, it follows from the integral theorem of Stokes that the
integral in (2.15) does not depend on the choice of C. Since E, = O(r~?) as
r— o0, @, can be chosen in such a way that y = O(r ') as r - co. Note that
Vy =E,. Hence y satisfies the assumptions of [11, Lemma 14| with



LAPLACE OPERATOR SPECTRAL PROPERTIES 9

a,=---=a,=0 (because of (2.14)). Therefore the uniqueness part of [11,
Lemma 14] implies w =0 and hence E,= V@ =0, Thus, by (2.13), E is a
linear combination of E|...., E,,.

We collect our results in

THEOREM 2.1. Assume that Q is the exterior of n disjoint bodies with
boundaries S,,...,S, € C5. Then the null space N(A) of the operator A
introduced in [13, Sect. 3] has the dimension n. E belongs to N(A) if and
only if EEC*(Q), VXE=0and V-E=0in 2, nXE=0 on 2, and
E=0(r"% as r=|x| - 00. 4 basis of N(A) is given by the fields E, ..., E,
introduced in the beginning of this section.

3. THE NULL SPACE OF A’

Recall that 2 is the exterior of a finite collection of disjoint bodies
B,...., B, with smooth boundaries. More precisely, we assume that B,,..., B
are bounded, open, connected subsets of R® with B, B, =@ for i # k and
that £ is the complement of B,\U--- U B, in R®. Let p; be the topological
genus of S, := 9B, and set p :=p, + --- + p,. In particular, B, has p, handles.
Each of the p handles H 1 H, of the bodies B,..,B, may possess
nontrivial knots, and different handles may be intertwisted like olympic
rings.

.Consider p smooth closed curves C,,..,C, in 0 with the property that C,
runs around the ith handle H, exactly once, without circulating around any
other handle H;. It follows from the integral theorem of Stokes that the
curves C,,..., C, form a homology basis for £ in the following sense: For
every closed curve C in 0 there exist integers a, .., a, such that

jH-zdszia,.j H-tds @3.1)
c j=1 C;

for every field H € C(2) N C'(R2) with V X H = 0. Furthermore, consider p
smooth closed curves Cf,.,CF in R’ —Q=B,U-. UB, such that C¥
runs along the ith handle H, exactly once, without circulating along any
other handle H;. Choose the orientations of C; and C* such that C; encircles
C¥ in a positive sense. According to the law of Biot—Savart, we consider the
fields

1 1
(%) :=—— . 3.2
Hi() = VX 1) s, (32)

It is well known that
VXH! =0 in 2 and totds=6;  (bj=1..p). (3.3)

CI
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A proof of (3.3) is contained in [4, Sect. 1.2]. A different proof will be
sketched at the end of this section.

It follows from the classical theory of the exterior Neumann problem for
the scalar Laplace equation that there exist uniquely determined functions
Wy W, € C'(R2) N C*(R2) such that Ay, =0 in £, (8/én) y,=—n - H! on
00, and Dy, = O(r~'"'~') as r = |x| - oo for every differential operator D”
of order |p| (compare, for example, [9], in particular the Corollary after
Satz 3 and the remark [9, p. 50]). Set

H;:=H] + Vy, @i=1,.,p). (3.4)

H, satisfies the equations V.- H,=0, V X H,=0 and hence 4H;=0 in Q.
Furthermore, H; satisfies the boundary conditions (1.2) on 62 and the
asymptotic relation D?H,= O(r~'"'~2) as r = |x|— oo for every differential
operator of order |p|. As in Section 2, we assume that &2 € C%. The
following variant of Lemma 2.1 shows that H belongs to C*(Q):

LEMMA 3.1. Assume that k>2, 0Q€ C***, He C(Q)NCH®Q),
VXHEC®), V-HEC&), nX (VX H)=0 and n- H=0 on 30, and
F:=—AH — AH € H,(RQ) for a suitable complex number A. Then we have
H € CXQ).

The properties of H; collected above imply that H,ES’' < D(4’') and
AH;=—A4H,;=0. Hence H,,.., H, belong to the null space N(4’) of 4’.
Note that (3.3) and (3.4) imply that

j Hy-tds=6;  (ij=lu.p). (3.5)
Ci

The fields H,,.,H, are linearly independent, since it follows from
cHy+--+¢c,H,=0 and (3.5) by integration over C, that ¢,=0 for
i=1,..,p.

In order to show that the fields H,,..., H, form a basis of N(4'), we
consider an arbitrary element H € N(4'). Since H € D(4’), AH =0, and
0N € C% we have HE Cz(ﬁ) by [14, Theorem 6.3], and H satisfies
boundary conditions (1.2) by [14, Theorem 7.1]. The same argument as in

Section 2 implies that
VXH=0, V-H=0 in Q (3.6)
and

H=0("?) as r=|x|- co. 3.7
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Note that the argument leading to (2.8) remains valid if boundary
conditions (1.1) are replaced by (1.2) and that Lemma 2.3 does not depend
on the assigned boundary data. Set

Hy:=H-> a;H, (3.8)
with
a :=j H - tds. (3.9)
<

It follows from (3.5) that

and hence, by (3.1),

jHO.zds=0 (3.10)
C

for every closed curve C in . Thus the potential

|//(x):=CfH0-tds+az0 (X5, X € 2) (3.11)

has the same value for every smooth curve connecting x, and x within £.
Since Hy=0(r"?) as r—» o by (3.2) and (3.7), the number @, can be
chosen such that yw = O(r~') as r -+ co. Note that yw € C'(2), 4y =0 in 2,
and (6/on)y =0 on &f2. Hence the uniqueness theorem for the exterior
Neumann problem yields H, = Vi =0 so that H is a linear combination of
the fields H,,..., H,. Thus we obtain:

THEOREM 3.1. Assume that Q is the exterior of n disjoint bodies with
boundaries S,,...,S, € C°. Then the null space N(A') of the operator A’
introduced in [13, Sect. 3] has the dimension p=p, + --- +p,, where p,
denotes the topological genus of S;. H belongs to N(A') if and only if
HeC¥Q), VXH=0 and V-H=0 in 2, n-H=0 on 82, and
H=0(r"?)as r=|x|- . 4 basis of N(A’) is given by the fields H ..., H,
introduced in the beginning of this section.

We conclude this section with some remarks on formula (3.3). Suppose
first that C}* is the boundary of a piecewise smooth surface S*. S* can be
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chosen such that C, intersects S in exactly one point x; and C;N\S* =@
for j # i. The integral theorem of Stokes implies for smooth functions f

J' ftds=j n X Vfds, (3.12)
G s;

with suitably chosen orientation of S}, since

j fz-e,dszj n- [VX(erj)]ds=j (X Vf)-e;dS
(ol S7 s;
for every unit vector e; (j = 1, 2, 3). Hence (3.2) yields for x & S}

1 1
'(x) = — vV —
Hi(x) 4HVXL?n(y)X STe =1 as,
—Lux|vx| ny)y——as
B [ Js; ares] y}

4n
_Llylv ()ldS—V()
4n [ -L;ny x -l yJ_ b
with
1 o 1
x)=——-—] ———dS,. 3.13
00 == | T T % (3.13)

Note that V X H; =0 in 2 and

JH,.’-tds=0 for j#i
]

since H/ €C'(2), H/=Vgp, in R*—S¥ and C,NS}=g@. The jump
relation for the double potential (3.13) yields

J Hj - tds=J Vo, tds=9;(x)— o/ (x)=L
Cy C

This concludes the proof of (3.3) in the special situation considered above.
In order to extend the argument to curves C} with nontrivial knot structure,
we choose a finite number of closed curves C},...,CT without knots such that
C¥=C} +--- + CP, by subdividing C and inserting auxiliary curves which
are passed in both directions, and apply the above argument to C},..., CI". In
particular, we choose piecewise smooth surfaces S¥ with oSf= C% The
surfaces S¥ can be choosen such that C}¥ intersects S | in exactly one point
x;, C¥NSt=@ for k> 1, and C¥NS¥=@ for j+i In the case of a
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FIGURE 1

trefoil C = C}¥, closed curves C' and C? with the required properties can be
chosen as in Fig. 1, by using two subdivision points P and Q and one
auxiliary curve which connects P and Q and is passed in both directions.

4. THE SPECTRAL FAMILY OF 4

In this section we investigate the spectral family {P,}, 4 > O of the selfad-
joint, positive operator A. The basic properties of the projection operators P,
have been collected in [15, p. 152-153]. Note that formula |15, Eq. (7.11)]
holds also for piecewise continuous functions f (compare [8, Section 9]).
Furthermore, we shall use the following elementary fact: For every 4 >0
there exists a projection operator P, ,, such that P,F—» P,  F as ¢ | A for
every F € L,(2), and P, ,,— P, is the orthogonal projection of L,(£2) onto
the null space of 4 — AI. At first we show:

LEMMA 4.1. Assume that 92 € C¥**. Then we have P,F € C¥(Q2) for
every FEL,(2) and every u>0. Furthermore, P, F satisfies boundary
conditions (1.1) if j > 1.

Proof. Note that
“n
P.F= f d(P, F). (.1)
0

By using [15, (7.11)] k-times, we obtain

P,FEDAY),  A*P,F=| “ 1 d,F) (4.2)
[1]
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for every positive integer k. In particular, we have A*(P,F)€ D(4) for
k=0,1,.,j+1. By applying [16, Theorem 6.1] (with G=A’(P,F),
k=0,4=0), it follows that

A'(P,F)EH,(Q') forevery Q'C R (4.3)

(compare the notation introduced in the beginning of [16, Sect. 6]). By a
second application of [16, Theorem 6.1] (with G =A4’"'(P, F), k= 2,1 =0),
(4.3) implies that

AP, F)EH(Q") forevery Q'rC . (4.4)

By repeating this argument (j— 2) times, we obtain A(P,F) € H,,(2') for
every £'C Q and hence, by [16, Theorem 6.3], P,F€& C¥(2). The
boundary conditions (1.1) follow from [16, Lemma 7.1].

In the following we assume as in the preceding sections that 02 € C°. The
resolvent R, = (4 — zI)~' and the spectral family {P,} of 4 are related by

RZF:JOO(l—z)“d(PlF) for FEL,(Q) and z &[0, 00) (4.5)

(compare [15, Eq. (7.11)]). It follows from (4.5), by using Plemelj’s
inversion formula for Cauchy-Stieltjes integrals ([7, Sect. 29]), that

((PB+PB+0)F’G)—((Pa+Pa+0)F’G)

1 B
= lim — J R,,isF—R,_i,F.G)dA for F,GEL,Q). (4.6)

This well-known formula is the basis of our further discussion of the spectral
family {P,}.

In order to study the behavior of the resolvent R, as Im z — 0, we consider
the following boundary value problem for sufficiently smooth vector fields F
with bounded support and for Im x > 0, k¥ # O:

(A) Find a vector field E € C*(Q) such that
(i) 4E +Kk’E=—F in @,
(i) nXE=0,V-E=0ondQ,
(i) E=0(@""), (0/or—ix)E=o0(r"") as r=|x| > .
We show:
LEMMA 4.2. Assume that F has bounded support and belongs to C*(2).

Then problem (A) has a uniquely determined solution for every x with
Imk>0and x+0.
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Proof. The uniqueness argument is contained in [11] (compare, in
particular, the beginning of Section II and the first part of the proof of |11,
Lemma 6]). Now set

1 - ix|x—yl
T(x):=—| F(y)——d 4.7
@) = | FO T 47)
and
c:=—nXT, y=—V.T on o9Q. 4.8)

By the classical theory of volume potentials, we have T € C'(2) N C?*(Q),
AT + k*T =—F in 2, and VT satisfies a Holder condition uniformly on 692.
In particular, ¢ and y satisfy the assumptions made in [11] (compare the
formulation of problem (B) on [11, p. 355]). Hence [11, Theorem I| implies
that there exists a field E’ such that E' € C*(2)NC(2), V X E' € C(2),
V-E'€C(Q), dE' +x’E'=0in 2, n XE'=c and V- E’ =y on 622, and
E'=0(r"") and (8/0r — ik) E=0(r"') as r = |x| - co. The field

E:=T+E (4.9)

satisfies the properties (i)-(iii) stated above. Furthermore, we have
EECH(2)NCQ), VXEEC®), V- EEC(Q) and F € C*(2) c H,(Q).
Hence Lemma 2.1 yields E € C*(Q). This concludes the proof of Lemma
4.2.

It follows from (4.7) and the analysis in [11] (compare, in particular, the
representation [11, Eq. (2.3)] for E') that E, ,E and 9,6, E decay exponen-
tially if Im x > 0 and supp F is bounded. This implies that E € S = D(4) and
(4 —k*) E=—(4 + k*) E=F in this case. Thus we obtain:

LEMMA 4.3. Assume that F has bounded support and belongs to C*(Q2).
Let E=E,[F] be the solution of problem (A). Then the resolvent R, of A
satisfies

R,F=E.F] with k*=z and Imkx>0 (4.10)

for everv complex number z € |0, ).

Note that T, ¢, and y depend analytically on x in the whole x-plane and
that the corresponding power series expansions converge uniformly on 012.
Hence the argument in [11, Sect. IV] shows that E_[F] depends analytically
on x for Im x > 0 and k # 0. More precisely, we obtain:

LEMMA 4.4. Under the assumptions of Lemma 4.3, E [F|(x) depends
analytically on k in By:={k€C:Imk>0,k+0} for every x€ Q.

409/92/1-2
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Furthermore, for every x, € B, there exists a p(x,) > 0 such that the power
series expansion of E_[F|(x) at k, converges uniformly in |k:|k —k,| <
p(ry)} X M for every compact subset M of £2.

Remark. 1t is possible to prove the analyticity of E [F|(x) also for
x € 822 and to extend the second part of Lemma 4.4 to bounded subsets A
of £, by using the methods developed in [10]. This situation requires
additional considerations since the first term in |11, Formula (2.3)],

ilx—yl|

E(x)=VX jm a(y)——ds

7] (xEN), (4.11)

y

cannot be continuously extended onto £ for arbitrary continuous tangential
fields a. The argument in [10] suggests to replace the Banach space B, of
continuous tangential fields in {11, Sect. III] by the Banach space B} of
Holder-continuous tangential fields a with Holder exponent a, 0 < a < 1,
where the norm is defined by

ja() — a(y)

4.12
x| (4.12)

lall = sapr laGe) + supr,

It follows as in the proof of [10, Lemma 13| that the operator T
introduced in [11, Sect. III] is completely continuous as operator from the
Banach space B, := B¢ X B, X B, into itself. It can be shown that 7, and
hence (I + T)~', depends analytically on x with respect to the operator norm
for bounded operators acting from B, into itself. Since also ¢ depends
analytically on x with respect to the norm (4.12), it follows that (a, b,4) =
(I+ T)""'(c, 0, y) depends analytically on « in B,. In particular, a depends
analytically on x with respect to the norm (4.12). Now consider the region
£, between 00 and a sufficiently close (exterior) parallel surface 92, =
{x=1z 4 dn(z): z € 6R2}. Note that

ixlx—yl

e
E}()C)::fl90 [a(y) —a(l)] X Vy-|x—_y|—dsy
ei:clx—yl
+a(z)><f V,——dS, for x=z+m(z)EQR,. (413)
a0 |x =yl

The last integral can be continuously extended onto £ (see {5, Lemma 70)).
Since a depends analytically on x with respect to the norm (4.12), the
representation (4.13) shows that E,(x) depends analytically on x in £, and
hence in £2. We omit a detailed presentation of the proofs and add the
remark that the following weaker statement can be obtained by the same
argument as the corollary to [10, Sect.5, Satz 1] and by observing [10,
Lemma 3]:
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LEMMA 4.5. Under the assumptions of Lemma 4.3, E, [F|(x) depends
continuously on (x,x) in 2 X B,, where By={x € C:Imx >0, x # 0}.

After these preparations we return to the discussion of the spectral family
{P,} of A. We assume as above that F € C*(2) and that the support of F is
bounded. Suppose that 0 < a < f < 0 and G € CJ’(R). By (4.6) we have

((Py+ Py, o) F,G)— (P, + Po i) F, G)

. 1 8 —
= L’ﬂEL Uﬂ Ry, F—R,_,F)- de] dl.  (4.18)
Since the integrand depends continuously on (A, ¢, x) in the compact subset
[a, B8] X [0,1] X supp G of R® by Lemmas 4.3 and 4.4, the order of the
integrations and the limit ¢ | O can be interchanged. Note that

Ry;wF->E.lF] as 6|0 (4.15)
by Lemmas 4.3 and 4.4. Thus we obtain for every GECF(2)and 0 < a < f

((Ps+ Py o) F, G) = ((Py + Pp i) F, G)

_1 U" (E\/;F—E_\/;[F])dl] .G dx. (4.16)

ﬂiQ a

As a first consequence of (4.16), we obtain:

LEMMA 4.6. The operator A has no positive eigenvalues.

Proof. Assume that a > 0. Formula (4.16) implies, since the integrand
depends continuously on A and x by Lemma 4.4, that

(Py+Pyoo) F,G) = (B + Po ) F.G)  as Bla  (417)

for F,G€ CP(2). On the other hand, we have P,F—» P, ,F and hence
Py, F—> P, ,F as B | a so that the left-hand side of (4.17) converges to
2(P,,,F,G) as B|a Thus (4.17) implies (P, F,G)=(P,F,G) for
F, G € C(RQ2). Since C(R2) is dense in L,(£2), we obtain P, F=P_F for
every F € CP(£2), and hence for every F € L,(2), since the projections P,
and P,,, are bounded. Since P, ,— P, is the orthogonal projection of
L,(22) onto the null space N(4 —al) of A—al, we conclude that
N(4 — ol) = {0}, so that a is not an eigenvalue of 4.
Since P, ,= P, for 1 > 0, (4.16) can be simplified to

1 B —
(PsF—P,F,G) =5 f,, Ua (E zlF)—E_ s[F]) d,l] . Gdx (4.18)



18 P. WERNER

for every GECP(R) and 0<a<p Note that P,F—P,F and the
expression |---] on the right-hand side of (4.18) are continuous in 2 by
Lemmas 4.1 and 4.4, respectively. Hence (4.18) yields

(P F)e) — (o)) =5 | (ELAIFI) ~ E_ alFIe) dh - (4.19)

for x € 2 and 0 < a < . By Lemma 4.5, (4.19) holds also for x € 2.

Now we assume in addition that n X F=0 and V-F=0 on dQ. In
particular, we have F € S c D(4). Hence it follows immediately from the
functional calculus for selfadjoint operators (compare [15, Egs. (7.11)]) that

AP F)=P,(AF) = * 1 dP,F). (4.20)

Recall that
|P,G—P, ,G|»0 as alO (4.21)

for every G € L,(Q). By setting G = AF, we conclude from (4.20) and (4.21)
that

|A(PF)—P AF)}|-0 as alO. (4.22)

Note that AF € N(4)" since (AF,G)= (F,AG)=0 for every G € N(4).
Since P, is the projection of L,(£2) onto N(4), we obtain P_ ,(4F)=0 and
hence, by (4.22),

AP F)|-»0 as alO. (4.23)
Since P_,F € N(A), (4.23) can be rewritten as
AP, F =P, F)|-0 as alo. (4.24)

Now we apply [16, Theorem 6.2] (with k=0) to the field G:=P F —
P_,F & D(A). 1t follows that, for every bounded subset M of £, there exists
a ¢ > 0 such that

(P F)(x) = (PyoF)(X) S (| Po F — P o F| + | AP, F — P o F)|) (4.25)

for every x € M. This inequality implies by (4.21) and (4.24) that (P, F)(x)
converges to (P, F)(x) as « | O uniformly in every bounded subset of £2.
Hence we obtain, by letting & | 0 in (4.19),

(Py F)(X)—(P+0F)(X)+—J (EzlFlx) = E_ zlF)(x))dd  (4.26)
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for every x € 2. Formula (4.26) relates the spectral family {P,} of the
operator A to the solutions E, [F| of problem (A) for real k¥ # 0 and to the
nullspace N(4) of A characterized by Theorem 2.1. The integral in (4.26)
may be improper since Lemmas 4.4 and 4.5 guarantee the continuity of the
integrand only in the open interval 4 > 0. The analysis above shows that the
convergence of the improper integral in (4.26) is uniform with respect to x in
every bounded subset of Q.
In a similar way we can perform the limit - co. Note that

| P,G—G| -0 as fio 4.27)

for every G €L,(£2) since {P,} is the spectral family of a selfadjoint
operator. By setting G = AF in (4.27) and observing (4.20), we obtain also

|A(PsF —F)| -0 as f-o o (4.28)
and hence, by using [14, Theorem 6.2],
Py F(x)— F(x) as f- o0 (4.29)

uniformly in every bounded subset of £2. By combining (4.26) and (4.29), we
get the identity

FO =P + 5o | EAFIE) - B slFIe) dl (¢30)

the improper integral converging uniformly in every bounded subset of Q.
It follows from (4.26) that

L BP0 =5 BAFIW - E_alFIe)  @31)

for 1>0 and x€ Q2. In particular, (4.31) and Lemma4.4 show that
(P, F)(x), as a function of 4, has derivatives of arbitrary order for A > 0 and
Xx € Q under the assumptions on ¥ made above.

The preceding results can be used to locate the spectrum of 4. We show:

LEMMA 4.7. The spectrum o(A) of A consists of the positive half-axis:
o(4)= [0, ).

Proof. Assume that 4 > 0 and ¢ & o(4). We use the elementary fact that
P, is constant in (A —e¢, ¢ + €) for a suitable ¢ > 0 (compare, for example,
[8, Bemerkung 19.13]). By (4.31) we have

E zIF](x) — E_ /iF](x)=0 (4.32)
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for FECP(2), x€ 2 and A € (u—¢,u + ¢). By Lemma 4.4, the left-hand
side of (4.32) depends analytically on 4 in (0, o0). Hence it follows by
analytic continuation that (4.32) holds for every 4 > 0. By inserting (4.32)
into (4.30), we obtain F=P, ,FE N(A) for every FECP(Q), in
contradiction to the fact that N(4) is finite-dimensional by Theorem 2.1.

The main results of this section are collected in the following theorem:

THEOREM 4.1. Assume that 2 is the exterior of n disjoint bodies with
boundaries S,,...,S, € C°®. Let A be the selfadjoint operator introduced in
[15, Sect. 3| and denote the spectral family of A by {P,}. Then the following
statements hold:

(a) A =0 is the only eigenvalue of A. The spectrum of A is given by
0(A) = [0, o). Furthermore, we have P, F € C*(2) for every F € L,(Q) and
A >0, and P, F satisfies the electric boundary conditions (1.1) on 60.

(b) Assume, in addition, that F€ C*(Q), supp F is bounded, and
nXF=0and V. -F=0 on d2. Then {P,} and the solutions E_[F| of the
exterior boundary value problem (A) are related by

PLFYD = (ProFY) + 5 | (EIFI) — B 5lFI(w) do

Jor 4> 0 and x € 2, where P, , denotes the projection of L,(f2) onto the null
space N(A) of A characterized in Theorem 2.1. Furthermore, the identity

FO) = (PooP)) + 5 | (B GlFIC) — B elFlon) do

holds for x € Q. The improper integrals on the right-hand sides converge
uniformly with respect to x in every bounded subset of Q.

5. THE SPECTRAL FAMILY OF A’

The spectral family {P}} of A’ can be discussed by the methods developed
in Section 4. In contrast to problem (A), however, the related exterior
boundary value problem (A'), which corresponds to the magnetic boundary
conditions (1.2), has not yet been discussed in the literature from a similar
point of view, so that some additional remarks seem to be appropriate. We
begin with the formulation of problem (A’):

(A’) Find a vector field H € C*(22) such that
(i) 4H +x*H=—F in 9,
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(iil) nX(VXH)=0,n-H=0o0nQ,
(iii)) H=0(""), (@/or—ikYH=o0(r"") as r==|x|- .
We show:

LEMMA 5.1. Assume that 2 is the exterior of a finite collection of
disjoint bodies with surfaces S,,..., S, € C® and that F has bounded support
and belongs to C*(2). Then problem (A') has a uniquely determined solution
Sfor every k with Imk > 0 and x + 0.

Proof. The uniqueness follows as in [11]. Consider the volume potential
T defined by (4.7) and set

c:=—nX((VXT), yi=—n-T on 40. (5.1)

We shall construct below a field H’ with the following properties:
(a) H'EC®(RQ)NC(R), VXH €C@), V- -H €CQ);
(b) 4H' +x*H' =0 in Q;
(c) nX(VXH')Y=c¢c,n-H =yondf;
(d) H'=0("), (@/or—ik)H =o(r") as r=|x| - .
It follows from Lemma 3.1, that H:=T+ H’ is a solution of (A’). Set

Q,:=R*— Q. We try to choose surface and volume layers a, b, A such that
the field

()= a(y) () dS, = [ b() 0uy)dy

1 ei;dx—_vl

-V Ln Ay) @(x,y)dS,,  D(x,y):= (5.2)

21 [x—y]

has the required properties. The field a in (5.2) is supposed to be tangential
on 9. By the jump relations of potential theory (compare [11, Formulas
(2.5)-(2.7)), boundary conditions (c) are equivalent to the integral equations

at) +| )X [V, 9(7) x a(»)] 5,

- %J n(x) X [V, @(x,y) X b(»)] dy = ¢(x) for x€8 (5.3)
and '
Alx) + Ln n(x) - a(y) @(x, y)dS, — % JQ‘ n(x) - b(y) P(x, y) dy

0
on,

- j A(y) — ®(x,y)dS,=y(x)  for x€ES. (5.4)
aqQ
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Now we choose a function ¢ € C'(£2;) with ¢ > 0 in 2, and ¢ = 0 on 92 and
set t=1(k)=1if Rex >0 and (k)= —1 if Rex < 0. We try to determine
the vector field b in (5.2) such that H' satisfies the equation

AH' + (k* +itp) H' =0 in @, (5.5)

By Poisson’s formula for the second derivatives of volume potentials, (5.5) is
equivalent to the integral equation

b0 +icp() || a(3) 0(x,)dS, 4] 003 9x.)

i

- l(y)chD(x,y)dSy]:O for x€Q, (5.6)
o9

As in [11], we consider the Banach spaces B, of continuous tangential fields
a on 892, B, of continuous vector fields b in £, and B, of continuous
functions A on 0£2, all equipped with the corresponding maximum norm, and
set B=B, X B, X B,, the norm in B being defined by

(@, b, D)5 =llalls, + [|61ls, + |4 115, (5.7)

The system of integral equations (5.3), (5.4), and (5.6) can be rewritten as
operator equation

(a,b,A)+ K(a, b, 1) =(c, 0, y), (5.8)

where K is a 3 X 3 matrix of integral operators K“ acting from B, into B,. It
follows by standard arguments (compare the proofs of [11, Lemma 5; 10,
Lemma 16]) that each operator K%, and hence K as an operator from B into
itself, is completely continuous. In the case of the operator K23, given by

(KBA)(x) := —ito(x) J AMp)V, P(x,y)dS, for x€2, (59
20
the verification of the complete continuity is based on the fact that ¢
vanishes on &2 so that an estimate of the form

lo(x) V, D(x, )| < A/|x — p| (5.10)

holds for every x € 2, and every y € 9Q. As the next step in the proof of
Lemma 5.1, we verify:

LEMMA 5.2. Let (a,b,A) € B be a solution of (5.8). Then the field H'
defined by (5.2) has the properties (a)-(d). Furthermore, we have
H €C(),VXH €C(Q,),and V- H' € C(2).
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Remark. H’ is defined by (5.2) only in QU £,, but not on 62. The
statement H' € C(2) means that H' can be continuously extended onto Q.
Note that H' € C(2) and H' € C(2,) do not imply that the continuous
extensions of H' from the exterior £ and the interior {2, coincide on 2.

Proof of Lemma 5.2. Properties (b)—(d) are obvious. The field a satisfies
a Holder condition uniformly on 82 by (5.1), (5.3), and {11, Lemma 1]. The
same is true for 4 by (5.1), (5.4), and [9, Lemma 5]. Hence [11, Lemma 3]
implies that the first two terms in (5.2) have continuously differentiable
extensions onto £ and !5,., while the third term,

Hy(x)==V | 1(») 9(x.) dS, (5.11)

can be continuously extended onto 2 and Q,. The same is true for V X H,
and V. H, since VX H;=0 and A®(-,y)=—k’@(-,y) in QU Q;. These
remarks conclude the proof of Lemma 5.2.

In order to complete the proof of Lemma 5.1, we show

LEMMA 5.3. The homogeneous equation (a,b,A)+ K(a,b,A)=0 has
only the trivial solution (a, b, A) = (0,0, 0).

Proof. Consider a triple (a,b,A)EB with (I +K)(a,b,1)=0. By
Lemma 5.2, the field H’ defined by (5.2) has the properties (a)-(d) with
c¢=0 and y = 0. Hence the uniqueness part of Lemma 5.1 yields H' =0 in
0. Note that

VoH()=| a(3) V. 0(x3)dS, 4| b(y): V. O(x))dy

i

+ i J Ay) d(x,»)dS, in QU (5.12)
aQ

The tangential field @ and A satisfy Holder conditions uniformly on o2
(compare the proof of Lemma 5.2). Hence it follows from (5.2), (5.12), and
the jump relation for the gradient of a single potential (see, for example, [11,
Lemma 3]) that

[nX H'|,=[nxH'], and [V-H'];=|V-H|, on &£, (5.13)

where [ ], and [ ], denote the limit values on 052 taken from the interior and
the exterior side, respectively. Thus we have H' € C(Q,), VXH € C(2),
V.H €C(2,), and [n X H'];=0 and [V - H'];=0 on 6R2. Furthermore,
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(5.6) yields b € C'(2,), and hence H' € C*(2;) and (4 + k’ + itp) H' =0 in
£,. Hence Green’s formula implies that

ozf [(MXH)X (VX H )+ (n-H V-H'|dS
an

—[ V. [AX(VXH)+H - H)]dx

Q;

=J' (VXH|*+|V-H|*+H - 4H)dx
Q;

=[ NV XHP+|V-H [~ (" +itg) |[H'[| dx.
@

Here we use that the integrand of the last integral, and hence of all three
volume integrals, is continuous in £2,. By taking the imaginary part, we
obtain

| [Im(x®) + 9] |H'|* dx = 0. (5.14)

Q;

Since Im(x*) + 79 > 0 in £, for Im x > 0 by our choice of ¢ and 7, (5.14)
implies that H' vanishes also in £2;. Hence it follows from (5.2) by the jump
relations and Poisson’s formula for volume potentials that

a=3(InX (VX H)],—[nx (VXHY);)=0 on a0,
b=(A+xk)H =0 in 2,
A=3n-H'],~[n-H]|)=0 on 09Q.
This concludes the proof of Lemma 5.3.

Continuation of the proof of Lemma 5.1. By applying Fredholm’s alter-
native theorem to the completely continuous operator T, we conclude from
Lemma 5.3 that Eq. (5.8) has a uniquely determined solution (a, b, 4) in B.
Lemma 5.2 implies that the field H’ defined by (5.2) has the properties
(a)~(d). Hence H=T+ H’ is a solution of (A’) by the remarks at the
beginning of this proof. This completes the proof of Lemma 5.1.

The preceding analysis has shown that problem (A’) can be reduced to a
uniquely solvable system of Fredholm integral equations. Hence we can
apply the methods of [11, Sect. IV] to obtain results on the dependence of
the solution H = H_[F] of problem (A’) on k. In particular, Lemma 4.4
remains valid if E_[F] is replaced by H |F|. Also Lemma 4.5 can be
extended to problem (A’). In this case B; has to be replaced by the Banach
space BY of functions A satisfying a Holder condition uniformly on 92 with
exponent a, 0 < @ < 1, the norm being defined as in (4.12). It can be shown
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as in the proof of [10, Lemma 13] that T is a completely continuous
operator from the Banach space B/, = B, X B, X Bf into itself. It follows as
in the proof of the corollary to [10, Satz 1}, that H,[F](x) depends
continuously on (x, k) in 2 X B, where B, := {x € C:Im k >0, x # 0}. The
remaining parts of Section 4 can be immediately extended to the magnetic
case so that we restrict our presentation to the formulation of the main
results.

THEOREM 5.1. Assume that (2 is the exterior of n disjoint bodies with
boundaries S,,..,S,€ C® and set p=p, +--- +p,, where p, denotes the
topological genus of S,. Let A’ be the selfadjoint operator introduced in [13,
Sect. 3] and denote the spectral family of A’ by {P}}. Then the following
statements hold:

(@) If p=0, then A’ has no eigenvalues. If p >0, then A=0 is the
only eigenvalue of A'. The spectrum of A' is given by a{d")= [0, o).
Furthermore, we have P,F € C*(Q) for every FE L,(R) and A >0, and
P\ F satisfies the magnetic boundary conditions (1.2) on 012.

(b) Assume, in addition, that F € Cz(ﬁ), supp F is bounded, and
nX(VXF)=0and n-F=0 on 0. Then {P}} and the solution H [F| of
the exterior boundary value problem (A') are related by

1 A
(PLPE) = (P F)) + 5 [ (HGIFI) — Ho 5l FI)) do - (5.15)
for >0 and x € Q, where P',, denotes the projection of L,() onto the null
space N(A') of A’ characterized in Theorem 3.1. Furthermore, the identity

FX) = (PLoP)0) + 5 | (HGFIW) — . GlFIe)ds (5.16)

holds for x € Q. The improper integrals on the right-hand sides converge
uniformly with respect to x in every bounded subset of 5.

6. GENERALIZED FOURIER TRANSFORM

Ikebe has developed a generalized Fourier transformation theory for the
Schrodinger operator —4 4+ g(x) in R® in his fundamental paper [2].
Analogous results have been obtained by Shenk [6] for the scalar Laplace
operator in an exterior domain Q. In the following we shall extend some of
these results to the vector Laplace operator in 2 with respect to electric or
magnetic boundary conditions. Our representation is influenced in many
points by Wilcox’s treatment of the scalar case (see |18, Sect. 6}).
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Consider the plane wave solutions
Wolx, ps a) = (2m) ¥ ae™'” (6.1)
of the reduced (vector) wave equation
@+|pl)w=0 (6.2)

with x € R® and p, a € R’ — {0}. Plane wave solutions of the corresponding
scalar equation form the kernel of the classical Fourier transform. In analogy
to |2, 6], we replace w, by distorted plane waves in £ which arise from the
reflection of w, at 002 with regard to the boundary conditions (1.1) or (1.2).
In each case we consider two types of distorted plane waves. In the electric
case, the distorted plane waves w, (x, p; a) and w_(x, p; a) are defined as the
solutions of the following boundary value problems:

(l) w:t('sp; a)ecz(ﬁ)’
(i) @ +|p/)w.(xp;a)=0for x€ 2,
(iii) n(x)Xw,.(x,p;a)=0,V,-w,.(x,p;a)=0 for x € 902,

(iv) wy(x,psa)—wylx, p;a)=0(r~") and (9/0r ¥ i| p)|w . (x, p;a) —
wo(x, psa)] =o(r~') as r=|x| - .

For fixed a, p € R’, w, is given by w, = w, + E, where E is the solution of
problem (B) on [l1, p.355] with k=4 |p|, c=—nXw,, y=—=V-w,
satisfying the radiation condition {11, Eq. (1.25)]. Hence the existence and
dependence theory developed in [11] can be applied, and we obtain, by
observing Lemma 2.1 and the remarks leading to Lemma 4.5:

LEMMA 6.1. Assume that 2 is the exterior of a finite collection of
disjoint bodies with surfaces S,,..,S, € CS. Then problem (i)-(iv) has a
uniquely determined solution w,(x,p;a) for all p, a€ R’ — {0}, and
w,(x, p;a) depends continuously on (x,p) in 2 X (R*—1{0}) and has
derivatives of arbitrary order with respect to x and p in 2 X (R* — {0}).
Furthermore, w_(x, p;a) depends linearly on a.

Note that the linear dependence on a follows immediately from the
uniqueness part of Lemma 6.1.
Now we define operators @, and @_ from CP(R) into C*(R* — {0}) by
3 .
(@.NP):= 2 | f0x) w,(npie)dx
is

1

for

SECFR) and pER’—10}, 6.3)
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where e; denotes the jth unit vector. Note that @, f€ C*(R’ — {0}) by
Lemma 6.1. By replacing 2 by R® and w, by w,, the right-hand side of
{(6.3) changes into

S el (Flx)-ede ™2 dx
(27[)3/2 jé] J JRJ WA
1 ~ 7
=WJR3f(x)e‘”‘“’ dx=:f(p) (6.4)

so that @, and @ _ can be considered as generalizations of the classical
Fourier transform in R*.

In a similar way we can define generalized Fourier transforms @/, and @'
in the magnetic case, by replacing w, in (6.3) by the solution w’, (x, p; a) of
the corresponding magnetic boundary value problem, satisfying (i), (ii), (iv),
and

(i) n(x) X [V X wl(x,p;a)] =0, n(x) - wi(x,p;a)=0 for x € 09.

The argument in Section 5 shows that Lemma 6.1 is also valid in the
magnetic case. In the following we restrict our considerations to the electric
case since the magnetic case can be treated by the same argument. The main
purpose of this section is to prove that @, f belongs to L,(R?) for f€ C3(2)
and that

12, FlLwn =1/ 1E k) = I1Psof e < 1fliyars (6.5)

where P, is the projection of L,(£2) onto the null space of 4. This obser-
vation allows us to extend the definition of ¢, and @ _ onto the whole space
L,(£2) since CP(£2) is dense in L,(02).

In order to verify (6.5), we choose a r, > 0 such that R® — @ is contained
in the sphere {x:|x|<r,}. As in [18, Lecture 6], we choose a function
J € C*(R*) with j(x) =0 for |x| < r, and j(x) =1 for |x| > r, + 1, and set

v, (%, p; a) = w(x, p; a) — j(x) wy(x, p; a). (6.6)
Note that
A, +|pI") v, (x, p; @) = M(x, p; a) (6.7)
with

M(x, p; a) == —wy(x, p; @) 4j(x) — 2(2n)*?* a(Vj(x) - V, e™'?). (6.8)

In particular, we have M € C*(R? X R® X R*) and supp M(-, p; a) < {x: 1, <
|x| < ry+ 1}. Furthermore, v, satisfies the electric boundary conditions
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(1.1) and the radiation condition v, =O(r~"), (8/or ¥ i|pl)v. =o(r ') as
r=|x| > co. Hence we obtain, by using Lemmas 4.3 and 4.4,

vi(x’p;a):loi?gv[p\ziia(xap;a) (6‘9)

for x € 2 and p, a € R® — {0}, where
v.(-,p;a) = —R,M(-, p; a). (6.10)

By Lemma 4.4, the convergence in (6.9) is uniform with respect to x in every
compact subset of 2. According to (6.6), we set

w.(X, p; a) = v.(x, p; a) + j(x) wo(x, p; a). (6.11)
It follows from (6.6) and (6.9) that

w. (X, p; (1)=Li?3 wlprziio(x’p; a) (6.12)

for x€ 02 and p,a € R® — {0} uniformly in every compact subset of £2.
Furthermore, we set, according to (6.3),

3

@.1)P) = X | fx): w.(x,piej)dx (6.13)

j=1

for f€ CP(Q), pER? — {0}, and z & [0, 00). In analogy to the scalar case
(compare {18, Lemma 6.3]), the identity

(@./)(p)=(pI* — 2)UR:S)" (p) (6.14)
holds for f€ C2(R2), z & [0, ) and p € R® — {0}, where Ju, for u € C(2),
is defined by
(Ju)(x) ==j(x) u(x), for x€0,
=0, for xER’—-2, (6.15)
and (Ju)" denotes the (classical) Fourier transform of Ju in R3, The proof of

(6.14) proceeds as follows: We conclude from (6.13), by using (6.11) and
(6.1), that

@D =Y (1) + Y ¢ f0):v.(epie) dx

=) (p)— X e(fiR.M(-,p;e))  (by (6.10))

ji=1
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3

= ()" ()= X eRzf, M(, p3 ¢))

=UN D)+ X ¢ | R - @+ pPIIE) Wl i e))] dx
(by (6.8)).

Since the integrand has compact support in £ by (6.8), Green’s formula
yields

(@.N)p)=UN (p)+ Z e fnj(x) wolx, pie)) - (4 + | p|")R=f(x)) dx.

Now (6.14) follows from (6.1) and (6.15), since
@+|p)R:f= A+ 2)+|p] =2} R:f=~f+ (p|" — ) R:S.
The further analysis is based upon the formula

1

B
((Ps=P)ig) =5 lim| (Ryoiof ~Ry_iofig)do (6.16)

for 0<a<pB< oo and f, g€ CP(N2) which follows from (4.6) and the
remark that P, ,,=P, for A > 0 by Lemma 4.6. By the elementary identity
R,—R, =(z—2')R,R,., we have

Riviof—Ri_iof8)=2i6(R;, ioR 1310/, 8) = 2i0(R s 3i5/ s R )71 8)

so that
. a' .ﬁ
((PB_Pa)f;g):Ll?g_n—J (R/Hfio.f’R/lﬁog)d'1
. O’ wﬂ
= lim — jn Ry zi0> IR 1 5i, 8) dA-

The last equation holds by (6.15), since 1 —j(x)? vanishes for |x| > ry+ 1
and

= [1 =6 Rz Y R0 )

converges uniformly to 0 as ¢ | 0 in 2 X [a, 8] by Lemma 4.3 and Lemma
4.5. Note that JR.f, for fixed z & [0, c0), is continuous in R* and exponen-
tially decreasing at infinity by (6.15) and Lemma 4.3 so that (JR;f) €
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C(R)ML,(R?). By Lemma 2.2 we have ||(JR-f)"|"dp < co. Hence,

Parseval’s identity and {12, Lemma 2.5] imply

VR JRzg)=| (R<f) (p): UR:g) () dp.

Thus we obtain, by using (6.14),

(Pasioc/)D) . m dp]dl- (6.17)

i o B
(B =P L) =lim - UR3|p|2—liio P —i%io

In order to investigate the limit in (6.17), we show:

LEMMA 6.2. Assume that f€ CP(Q) and let @, ,, f be defined by (6.13)
for 6>0. Then (®,,,,/)(p) can be extended to a function depending
continuously on (4,0,p) in (0, 0) X [0, 0) X R*. Furthermore, for every
fECP(R2) and every pair (a,f) with 0 < a < < oo, there exists a ¢ >0
such that

[PaLif(P)<e (6.18)
for every (A, a,p) € |a, B] X [0,1] X R*.
Proof. The calculation after (6.15), in connection with (6.1), implies that

. 1
(Parsic/NP)=Uf) (P) + IS

e " P14j(x) = 2ip - V()] (R0 )¥)

(6.19)

« .

Jr0< fx|<ro+1

This representation, together with Lemmas 4.3 and 4.4, shows that @, ,, f
can be continuously extended onto ¢ > 0 and that the first part of Lemma
6.2 holds. By (6.15) and the definition of the classical Fourier transform, the
first term in (6.19) is bounded. Also the integral

J & PN R 310 )6)

ro<lx|<rg+1

is bounded in every region [a, 8] X [0, 1] X R® with 0 < a < < oo since the
integrand is continuous by Lemmas 4.3 and 4.4. In order to discuss the
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remaining term in (6.19), we apply the integral theorem of Gauss. Since
Vj=0 for |x|=r, and |x|=r, + 1, we have for k=1,2,3

_ e ip, @) Rz V) dx

ro<lx|<rg+1

17 ,
ro< Xl <rot1 (a—xke—”""> (OrJX)R y 310/ )x) dx

=— e ™7 Q[ B ()R 310 )] dx

ro<lxl<rg+1

Note that also 9, R+, f depends continuously on (4, g, x) in [a, 8] X [0, 1] X
{x:ry<|x| < ry+ 1} by the existence and dependence theory developed in
Section 3 and in [11]. In fact, the representation [11, Eq. (2.3)] shows that
not only the solution E of problem (B) on [11, p.355], but also arbitrary
derivatives of E depend continuously on x and x in every compact subset of
£. This remark implies that also the remaining term in (6.19) has the
required boundedness property.

By Lemma 6.2, the inner integral in (6.17) converges, for fixed o > 0,
uniformly with respect to 4 in [a, #]. Hence the order of the integrations can
be interchanged, and we obtain

2 (PazicS)P) - (Pr4i58)(P)
P,—P ” = Atio Atio .
@-pofe)=lim 2| | CaeellB) DaaellP) gy 4y (6.0
for ,2€CP(R) and 0 < a < B < 0. Now choose, for fixed a and f§, a
m > 0 such that |A —|p|*|>|p|?/2 for |p|>m and A€ [a,B]. If |p| > m,
then the integrand in (6.20) can be estimated by ¢, |p|™* with a suitable
¢; > 0, by using Lemma 6.2. Hence we obtain

T T - SRt

1pI>m pi>m | DI

so that (6.20) is reduced to

2 (Pasio/)P) - (Pryi08)(P)

((P,—Pf. g —11m— [ Atio = dA | dp.

p=Fol8) pen o AT g
(6.21)

Now we use the following elementary fact:
LEMMA 6.3. Assume that ¢ is continuous in [a,B] X [0, 1]. Set
94, 9)

= ——F—dA 6.22
h(p,0) : j T (6.22)

409/92/1-3
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Then the following statements hold:

(a) h(y, o) is bounded in R X |0, 1];
(b) h(y,06)—0 as o | O uniformly in every compact subset of
— [ Bl;
() h(y,0)—>0(y,0) as 6 | O uniformly in every compact subset of
(a, B)-

Proof. Statements (a) and (b) are obvious. In order to verify (c), we
choose, for a given ¢ > 0 and a given compact subset K of (a, £), € (0, 1)
such that [y — 4,y + 6] = (a, f) for every y € K and |¢(4, 6) — (3, 0)| < ¢/2
for yEK and (4,0) € [y —4,y+J] X [0,8]. Let M be the maximum of |¢|
in [a, B] X [0, 1]. We have for yEK and 00 < d

a3

jy_a-——"’(’l’“) d/1+J"B ~--d,1H
a LYyt s

A—-7}+0
< 2Mo di 2M T arctan i
n J 2+ol 1 ( 2 o )

and
o (7% ¢4, 0)
n Lﬂ; A—7)P+a*

o 7+ e(d,0)—0(»0) di 3
?L,a A—p)P+a° ’ /12+o 2

2 0
dl —o(y,0) - arctan - ‘

These estimates imply that

|h(y, 6) — o(», 0)]

<2—M — arct 2 +—+| . 0) l——2—arctani
- (2 arctan ) 5+, < — a)
¢ 4M /=& 0
£ —=—+— (= —arctan —|.
2 T (2 a)

Now choose ¢, € (0,8) such that the last term is less than g/2 for
0 < 0 < 0,. Then we have |h(y, 0) — ¢(y,0)| <& for 0 o0, and yEK so
that (c) holds.

In order to apply Lemma 6.3 to the right-hand side of (6.21), we
decompose the ball | p| < m into

D,(p) = {pER*|p| <m,||p|—Val|<p|lpl—VBl<p!
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and D,(p) :={p:|p| < m}— D,(p). Lemmas 6.2 and 6.3 imply that

.— g * (¢ + af)(p) (d) iiam
H:t(p’a) '_7j; 4 I(}.—|p|2)2:—0'2

dA (6.23)

converges 10 (P14 10/)(P) - (P,124108)(P) if [p)’ € (a,8) and to O if
|p|* € [a,8] as 0|0, uniformly in D,(p). Note that (@,,,:,/)(p)=
(@, f)(p) by (6.3), (6.12), and (6.13). Hence we obtain

lim H (p,o)dp (6.24)

a10 /p,p)

= ./ P,gdp— ‘Piff‘Pigdp as p-0

pED,(p),a<|pi2<B a<|pl2<fB

since {p: @ <|p|* <B} = {p:|p| < m} by the choice of m. Since H, (p, o) is
bounded uniformly with respect to ¢ by (6.18) and Lemma 6.3(a) and the
volume of D,{(p) converges to 0 as p— 0, we have

lim H, (p,o)dp-0 as p-0. (6.25)
alo)p

By combining (6.21) and (6.23)-(6.25), we obtain
(Ps—P)S8)= | ®.f @ gdp (6.26)

a<|pi2<B

for g€ CF(R2) and 0 < a < f < 0. If f=g,(6.26) yields

1Pof I = I1Po I = |

a<|pli<

0./ dp (6.27)

Since P, f— P,,fas a|0and P,f—fas f— oo in L,(£2), we get

||f||2—||P+0f||2=jm|¢if|2dp for fEC2(Q).  (6:28)

In particular, the improper integral on the right-hand side converges. This
implies that @, f€ C®(R* — {0}) N L,(R*) and that (6.5) holds. By letting
@ | 0 and f— oo in (6.26), we obtain

(f=Piofig)=] @./ ®.gdp for fgECF@). (629)

Note that the convergence of the integral in (6.28) implies that also the
improper integral in (6.29) converges.
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By (6.5), @, is a bounded linear operator from C () into L,(R?). Since
C’(R2) is dense in L,(2), @, can be uniquely extended to a bounded linear
operator from L,(£2) into L,(R?), and the identity (6.5) can be carried over
to the whole space L,(02):

||d>j:F”iz(R3)=||F||iz(ﬂ)_‘|P+0F'|iz(ﬂ) for FeL,(2). (6.30)
This remark completes the definition of the generalized Fourier transforms

@, and @_ in L,(2).
Since P, F =F for FE N(A) and P, ,F =0 for F € N(4)", (6.30) yields

o, F=0 for FEN(A) (6.31)
and

I (piF“iz(RS) = “F“lz,z(n) for Fe€N(4)* (6.32)

By applying the identity
(F,G)=3(IF + G|’ —|F — G| +i||F + iG||* = i | F —iG|*), (6.33)
we conclude from (6.30) that
(PLF, @, G,
=(F, G0y~ P1oFs ProG)yay for F,GEL,(02). (6.34)

Since @ is a bounded linear operator from L,(f2) into L,(R?*), there exists a
uniquely determined (adjoint) bounded linear operator @ * from L,(R’) into
L,(£2) such that

(PLF, Gy = (F, PFC)y 0 (6.35)

for every F € L,(2) and every G € L,(R*). Now assume that F € N(4). It
follows from (6.35) and (6.31) that

(F, ¢fG)Lz(m =(P,.F, G)LZ(RJ) =0
for every G € L,(R?) so that
P*GENUA)* for G € L,(R%). (6.36)

Note that (P, F,P,,G)=(F,P,,G) for F,GEL,(2) since P,, is a
projection operator. Therefore it follows from (6.35) and (6.34) that

F,2fP,G)ya)=(P.F, D, G a3y =(F,G—P,(G)ryq,
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for F, G € L,(£2), and hence
o¥p, =1—-P,,. (6.37)

Now assume that f€ C°(£2) and g ElC(‘;"(R3 — {0}). By (6.35) and (6.3), we
have

fs q):g)Lz(Q) =(P./ g)Lz(R3)

- J'Rig(—p) - [gal ejJ'nf(X) . Wi(x’p; ej) dx} P

= (76 [3 [ (e 8D waGriep dp | a

and hence

3

® Fg)(x) = ZJ g(p)w,(x,p;e) dp (6.38)

for g=(g,,8,,8;) € CP(R®— {0}). In particular, it follows from Lemma
6.1 that @ *g € C®(R) for g€ CP(R® — {0}). Since CL(R® — {0}) is dense
in L,(R*), the adjoint operator @ * is uniquely characterized by (6.38). Note
that w_ (x, p; a) depends linearly on a by Lemma 6.1. Hence (6.38) can be
written in the form

(DFg)x)= J w.(x,p;g(p))dp  for g€ CFR’—{0}). (6.39)

7. REMARKS ON THE FUNCTIONAL CALCULUS

By applying the generalized Fourier transforms @, and & _, the
functional calculus for the selfadjoint operator 4 in the Hilbert space L,(£2)
can be related to multiplication operators in the transformed space L,(R*)
(compare |3, Theorem 3.2; 16, Theorem 6.15] for related results for the
Schrodinger equation and in the scalar case). We prove:

LEMMA 7.1. Assume that y is a bounded, piecewise continuous complex-
valued function defined on |0, o0) and set

vi(p) =y(p|’) for pER’ (7.1)
Then we have

®,y(d)F=y, - ®,F for FEL,Q). (1.2)
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Remark. According to the functional calculus for selfadjoint operators,
w(A) is a bounded linear operator from L,(£2) into L,(£2), defined by

W) F = y(d) d(P,F) (7.3)
It follows immediately from [15, Formula (7.10)] that

lw ) Fll <l vl I FIl, (7.4)

where || w||, :=supr{|y(d): A € [0, co)}. The product on the right-hand side
in (7.2) can be defined by applying |12, Definition 5.1] to every component
of the vector @, F. Lemma 7.1 can be extended to unbounded functions v if
the domains of definition are suitably restricted. A special result in this
direction will be given at the end of this section.

Proof of Lemma 1.1. At first we show that
(@4 (Psf— Pof ) Wyar = | @)D Kpdp (15
a<|p|2<p

for f€ CP(2), h€ CP(R?) and 0 < a < f < . By (6.26), we have

(s =P e = <|p.z<g|¢tf|2 dp (1.6)

for f€ CX(2). In order to extend (7.6) to arbitrary elements F € L,(£2), we
set, for G = (G,, G,, G;) E L,(R?),

G":= (G, Gy, G3), (1.7)
where G/ denotes the restriction of the functional G; € L,(R’) to CF(2,, 5)
with

0,,={pER:a<|pl’<p} (7.8)

It follows from (7.6) that

(P —P,) F, F)Lz(m =|(®.F) H?)M (7.9)
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for FEL,(L). In fact, (7.9) coincides with (7.6) if F=/f¢€ C(£2), since
@, f€ C°(R®— {0}) so that

1@ SN, =] 1@ dp

by [12, Lemma 2.5]. Hence (7.9) follows from (7.6) by the remark that
C3°(£2) is dense in L,(£2) and the operators P, —P,, @, and G- G" are
bounded. Now we apply (7.9) to

F:=(P;—P)f—f (7.10)
with f€ CP(£2). Note that
(Ps—P,)F=0 for O0<a<fi<w (7.11)

since PyP,=P,P, =P .4, Therefore (7.9) yields (?,F) =0 and
hence, by (7.10),

[2.(Psf—P.f—f)]"=0. (1.12)
This implies that

(d)i(st —P,)/f h)Lz(RJ) = (d)if; h)LZ(R3) (7.13)

for h€ CP(2, ). In particular, (7.5) holds for h € CP(R2,, ).
Now set F:=(P;—P,)f. By applying (6.30) and observing that
P (P;—P,)f=0, we obtain

'|¢:t(PB _Pa)f”iz(lﬂ) = ”(Pa _Pa)f”iz(m = ((Pz; _Pa)z.f; (Pa _Pa)f)l.z(ﬂ)
and hence, by (7.9),

l ¢:t(PB _Pa)f“Lz(IN) = ”[(pi(Pﬁ _Pa)f]r”l.z(nmﬂ)- (7.14)

Set G:=® ,(P;,—P,)f and choose a sequence {g,} in CZ(R?) such that
|G — gill = 0 as k- oo. Then we have by [12, Lemma 2.5] and (7.14)

[ 182 do =180l 0, 0~ 16 I ate.on =Gl es

Qo

and

LS I gkl2 dp—~ ”G”iz(mf
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These relations imply

f lg’dp—>0 as k— oo
R3I-Q

a.B

and hence

(@ 4Py~ Po)fi k), = lim [ g, - hdp =0 (1.15)

for h€E CP(R* -0, ,), so that (7.5) holds also for k€ CP(R’ -2, ;).
Since CL(R2, ;U (R — R, 5)) is dense in CP(R’) with respect to the L,-
norm, we conclude from (7.13) and (7.15) that (7.5) holds for every
he CP(R?).

Now we choose a y > 0 and a subdivision 0=:4, <A, < :-- <4, :=y of
the interval [0, y|. Since P, =0, it follows from (7.5) that

(0. [ 2 ves =i )

Ly(R3)

= W(il)(¢iPAl.f; h)Lz(RJ) + Z W(’lk) ‘pif' hdp
k=2 Ag 1 <Ipl2<iy
for fECP(R) and A€ CP(R® — {0}). Consider a sequence {Z,} of such
subdivisions of [0, y] with max(A, —A4,_,)— 0 as n— co. Note that @, is
bounded and @, P, f~> P P, ,f=0as 4, | 0 by (6.31). Hence, by letting
n— oo, we obtain,

(o [[[ v a@ar) |.)

Ly(R3)

=[  wlpl)@./)P)- h(p) dp. (7.16)

ipl2<y

Since y is bounded, we can perform the limit y —» oo in (7.16) and get, by
observing (7.1) and (7.3),

(PLw(A)/, h)Lz(R3) =y, P.f h)L,(m) (7.17)
for f€ CT(Q) and h € CP(R? — {0}), and hence
O WA =y, D, for FEC®), (7.18)

since CP(R? — {0}) is dense in L,(R*). Now (7.2) follows from (7.18) by the
remark that y(4), @, and the multiplication with y, are bounded operators
with respect to the L,-norms. This completes the proof of Lemma 7.1.
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We conclude this section with the verification of

[, AN =|p* (®.f)(p) for FECP() and pER’—|{0}.
(7.19)

Note that Af=-4f€ CP(R2) so that D, (4f)€E C*(R® - {0}). Formula
(7.19) follows from (6.3), by using Green’s formula and observing that
@+1p")wi(,p;a)=0:

(2.4 ==X ¢ 47)-w.lope) dx

==Y ] S@) - 4w, pie) dx=[p@. )

8. PLANE WAVE EXPANSIONS

This section is devoted to the proof of the relation
o, PF=1 (8.1

The formulas (6.37) and (8.1) can be interpreted as an expansion theorem
for vector fields F € N(4)*. In fact, since P, ,F=0 for F€ N(4), (6.37)
says that every F € N(4)" can be represented in the form

F=0*G (8.2)

with a suitable G € L,(R?). Formula (8.1) implies that G is uniquely deter-
mined by F and given by

G=¢®,F. 8.3)
Since CP(R*® — {0}) is dense in L,(R?), there exists a sequence {g,} in

CP(R® — {0}) such that |G —g,|| — 0. Since @ ¥ is bounded, it follows from
(6.39) and (8.2) that every F € N(4)* is the L,-limit of the sequence

(@28))= w.(xp;8.(p) dp. (8.4)

In this sense, formula (8.2) can be interpreted as a plane wave expansion for
fields F € N(4)*.
In order to prove (8.1), we consider an arbitrary G € L,(R?) and set

H:=0,07G—G. (8.5)
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We have to show that H=0. Since @f®, =I-P , by (6.37) and

@ *G € N(A)" by (6.36), we obtain
QPYH=I—-P,,)PfG-P}G=—P_PFG=0.

Since @ }H =0, it follows from Lemma 7.1 that

@ ¥y, - H)=0 (8.6)

for every bounded, piecewise continuous complex-valued function y, where
v, is defined by (7.1). In fact, by observing [12, Lemma 5.3], we have for
every f€ CP(2)
(Pf(y, - H)’f)l.z(ﬂ) =(y, - H, ¢:tf)L2(R3) =(H,y,- ‘pif)LZ(RJ)
= (H, @, (J(A) v,y = (P IH, ¥(4) /) =0,
so that (8.6) holds.
Now we set as in [18, Sect. 6] for 0 < a < f < o
w(d)=e VA for a’<A<BY
=0, for A<a? and 4> g% (8.7)

By (7.1) we have

vi(p)=e""",  for a<|p|<B,
=0, elsewhere. (8.8)

Note that, for every given & € CP(R’), there exists a sequence {g,} in
CZ(R? — {0}) such that [ |w,h—g,|* dp— 0 as n— oo. Hence we obtain, by
applying (6.38) to g =g, and letting n - oo,

3
XM=Y [ e h(pw.(pie)dp  (89)
iZ17a<ipi<s
for h = (h,, hy, h;) € CP(R?). In particular, we have @* (y, - h) € C(Q). Set
H=(H,,H,,H;) and denote the restriction of the functional H; to
C(a<|p|<pB) by Hj. By choosing a sequence {h,} in CP(R?) with
|H—h,|| - 0 as n— oo, we conclude from (8.6) and (8.9) that

3 (e P HT, (W )i 06 3 )i sacipi<p =0 (8.10)

J=

—

for x€Q and k=1,2,3 with (w,),=e,w,. Here e " H’ denotes the
product of the function g(p)=e ?" and the functional



LAPLACE OPERATOR SPECTRAL PROPERTIES 41

Hj € L,(a <|p| <B) (compare |12, Definition 5.1]). By (6.6), Eq. (8.10)
can be written in the form

Jx) ug(x, 1) + u, (x, 1) =0 (8.11)
with
3 .
Ug(X, 1) 1= 3 (e """ H, (Wo)y (%, 3 €L xa<ipi<B) (8.12)
j=1
and
3 .
u (x, 1) = Z (e P UHG, () (x, -5 e)Lya<ipi<s (8.13)
=

We shall show below that
[, e O dx = il oo (8.14)

for every real ¢t and

f luy(x, D> dx~ 0 as [— (8.15)
R3

for k=1,2,3. Relations (8.14) and (8.15) imply that H} =0, and hence
H,p=0 for every 9 € C’(a < |p| < B). Since a, § are arbitrary numbers
with 0 <@ < B < 00, we have H,9 =0 for every ¢ € CP(R®— {0}), and
hence H=(H,,H,, H,)=0, since CP(R* — {0}) is dense in C°(R?) with
respect to the L,-norm. By (8.5), H = 0 is equivalent to (8.1). Thus the proof
of (8.1) is reduced to the verification of (8.14) and (8.15).

Verification of (8.14). Choose, for fixed k, a sequence {h,} in
CP(a < |p| < B) such that | H, — h,|| » 0 as n - oo in L,(a < | p| < §). Since
(Wo)k (x, ps ;) = (2m)~** 6,,€™"? by (6.1), formula (8.12) can be rewritten
as -

1 i itx-p—tiph)
= e . 8.16
uO(x’ t) (27[)3/2 ’}LIBJ a<ipl<B hn(p) e dp ( )

By Schwarz’s inequality, the convergence is uniform with respect to x and ¢
in R® X R. Set

ku(p, ) = e~ """'h,(p). (8.17)
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Note that k,(-, 1) € C°(a < | p| < B) and |k, (p, t) =|h,(p)|. By (8.16) and
(8.17), we have

uy(x, ) = lim k,(—x,t), (8.18)

where £, denotes the classical Fourier transform of k, with respect to the
first variable. By applying Parseval’s equation, we obtain

| Ve 0 dx=] Jk(p 0P dp=] |h(p) dp,
R3 R3 JR3
and hence

JR3|I€,,(—x, D) dx = | Hill7 e 1<) as n-— . (8.19)

Since the convergence in (8.16) and (8.18) is uniform, we get, by observing
(8.19),

J’ luo(x, £)|? dx = lim J £, (—x, )* dx
1xt<p =

|x]<p

< m ijén(—x, 1 dx = | Hy|?

for every p > 0. This estimate shows that the improper integral

J [ug(x, 1)|* dx
R3
exists for every real ¢t. Another application of Parseval’s equation yields

J‘ luo(x, £) — K (—x, )} dx = lim |£, (=, ) — & ,(—x, )| dx
Ixl<p

m=wo Jix|<p

< Tim j 1K, (=, 1) — K (—x, 1)|? dx
R3

m~—o0

m-— oo

= I [ [y byl dp =BG~

for every p > 0, and hence

j lug(x, £) — Kp(—x, D)? dx < ||Hy — h,|> >0 as n—co. (8.20)
R3
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By applying the triangle inequality in L,(R?*), it follows from (8.20) that
[ Jexof deo | luodx s noo.  (821)
R3 R3

By comparing (8.19) and (8.21), we obtain (8.14).

Verification of (8.15). We shall use the following elementary estimate:

LEMMA 8.1. Assume that Av + kv =0 for |x| > r,, with real k + 0, and
that v=0(r~") and (8/0r — ix)v =0(r*) as r =|x|— co. Then we have

uc|x|
v(x) = t‘)(xo) Pl +0(x|7?) as |x|- (8.22)
with x, = x/|x| and
1
B =g [ |00+ ) [enas,. 823)

The proof follows from the representation

mlx vl P ixlx—yl

v(x)‘—ﬂjmm, [3n (y)lx ¥l u(y)a—mm]dsy (8:24)

for |x| > r, (with d/on, = (y/|y|) - V,) and the estimates

einlx—yl ] -y _2
—-lx_yl =H|—exp ix | x] (1 IR ) §+0(|x| )
1 .
=mem|x|—mxo‘y + 0(|x|—2)

and

p] ei'clx—yl y y—x < einlx—.vl einlx—yl)

- . K —
on, |x—yl |yl ly—x| \" |x=y| |x—»
; ix|x—yi
iKxy-ye s
=— +0(x|™%
rojx—yl .
ikx,-y 1

eix|x| —ikxg y + 0(|x|—2)

ro x|

as |x| - oo. Note that both estimates hold uniformly with respect to y on the
sphere | y|=r,.
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Now we apply Lemma 8.1 to the function (v, ),=¢, v, (,p5¢e))
introduced in (6.6). Since j(x)=1 for |x|>r,+ 1, (v.), satisfies the
assumptions of Lemma 8.1 with r=r,+ 1 and x = ¢ | p|- Hence there exist
functions #/*(x,, p) and ¢’f(x, p) such that

tilpllx]

. e o
(i) (%P3 ) = 87K(xy, p) + g’ (x, p) (8.25)
| x|

and
7*(x,p)=0(x|?) as |x|- co. (8.26)

The function #f is given by (8.23) with u=e,- v (-, pie;), k= +|p]|, and
r=ry+ 1. In particular it follows from (6.6), Lemma 6.1, and (8.23) that
191"(x0, p) and g’*(x, p) depend continuously on both variables for |x,|= 1,
x € 2 and pER3 {0}. Furthermore, the proof of Lemma 8.1 shows that
the estimate (8.26) holds uniformly for a | p| < f.

Now choose sequences {A,;} in C3°(a < |p| < f) such that |H ~ h,l| - 0
as n— oo in L,(a < |p| < f). It follows from (8.13) and (8.25) that

u (x, 0 =ul(x, 0+ ui(x1) (8.27)

for (x,¢) € 2 + R with
1 3 . .
uy(x, 1) =— lim LJ el = X013 (xy, p) hyy(p)dp  (8.28)
|x| 20 2y a<pl<B

and

u’(x,f)= lim \’

n=o0 G 1J‘a<|p|<5

e—itlplqll((x, p) hnj(p) dp. (8.29)

We have by (8.28), for fixed &,

3
ul (x, t)=—1— lim > fY(x[x] =1 xp) (8.30)
|x| s ji=1
with
SUmx)=] &8k p) hy(p) dp. (831)
a<|pt<B

Since h,;€ CP(a < |p| <B), we obtain, by setting p=pp, in (8.31) with
=|pland |py| = 1,

. 1
fi’(nxo)=@n—)3~,—2j e™g"(p, x,) dp (8.32)
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with
U %)= @m)p* [ 8K(xo, ppo) hyoP) S, (8.33)

Ipol =1

Note that g%(-, x,) € CP(—0, ) and supp g(-, x,) € (o, f). By (8.32), 1V
is the Fourier transform of g"tf with respect to the first variable. Hence,
Parseval’s equation implies that

| 1 x) de

B .
= [ 18%0. %) dp

2

3 A 4
=Qn} [ p dp
p=a

J.| - 19]1(()‘0, PPO) hnj(pPO) dSPo
Pol =

<@y jB [ |

), P hatopo a5, | 4
Pol =

P 04, o) dS,,|

lpol=1

<C|  |hyp)Ndp

a<|pl<p

with a suitable constant C > 0, since #f(x,,pp,) is bounded for |x,|=1,
|pol=1 and a <p < B. Set

fixy) = '}Lrgj S, x,). (8.34)

It follows from (8.31) and Schwarz’s inequality that the limit in (8.34) is
uniform with respect to 7 and x, for t € R and |x,| = 1. The above estimate
implies that

~T

<T2 . 2 :
(71 xol de = lim [ 17 xo) e

<C lim |

n=0 Ja<|p|<

B|hnj(p)|2 dp=0C ||H;||i2(a<|ﬁ‘<3)
for all real 7,, 7,. This yields

J |fj¢(f’ x0)|2 dT<C||H,"”iz(a<|p|</})- (8.35)
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In particular, the improper integral on the left-hand side converges.
Furthermore, since the convergence in (8.34) is uniform, we have by (8.30)
fory>0and t€R

2

|l (x, )" dx = )_f’ (£ x| = 1, X0)

Jl):l<)' l 12

J1x1<y
3

SX [ |[rher-xrar]as,,

j=1

and hence, by substituting 7 = +r — ¢, dr = +dt in the inner integral,

fm ylui(x, O dx < +3 Z j

1xol=1

[ty R
f Lf4 (3, %) dr] ds,. (8.36)

By observing (8.35), we obtain

3
j ul,(x, ) dx < 122C 3 || H}|? = 12aC | H'|)%,
lx| <y j=1

and hence

(8.37)

Ha<Ipi<B

[ luhx of dx < 122C | B,
R

for every real t. In particular, the improper integral on the left-hand side
converges. Furthermore, since the integrals on the left-hand sides in (8.35)
and (8.37) converge, it follows from (8.36), by letting y —» oo, that

3 too
[ juieoopax<s3 Y | U 12 (2, %) dr] ds.,. (8.38)
R3 J=3 el =1 L -t

By (8.35) the function
3

w(r) = Z J

—17]xpl=1

| 1rie o de | as,,

is monotone and bounded by 12zC|H'||*> in (—o0, o). Hence w(r)
converges to a finite limit ¢, as r » +oo. By (8.38) we have

J Jusln OF dx < 2 3@, — w(-0),
and hence

Jﬁ lul(x,)*dx—>0 as t- Fco. (8.39)
R3
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Now we turn to the discussion of u%. Since (8.26) holds uniformly for
a <|p| < B, there exists a C; > 0 such that

1g%(x, ) < Cy |x| 77 for x€R® and a<|p|<B.
Thus (8.29) implies that

3
us(x,t h .(p) d
1 (x, I < im |x FX el
C, 3 C
— =LY lim h (p)dp=—5
ﬁ x Z:‘ n—o a<|pl<B| ,,,(p)| P |x|2

with C, = (4n/3) 8°C, || H"|*. Since

we obtain, with C := 47C3,
’ 2 2 ¢
} [u? (x, 8)|* dx <T for tER and r>r,. (8.40)
x| >r
Let ¢ > 0 be given. By (8.39), there exists a z, > O such that
1 2 £
J |ul (x, 1) dx<? for 1< —t,
R3
and
| W (o dx <—  for t>t,. (8.41)
R3 8
Furthermore, by (8.40), there exists a R > r, + 1 such that

J lu? (x, 1)) dx < % for {ER. (8.42)
ix} >R

It follows from (8.27), (8.41), and (8.42) that

[ ol dx< L for t<—ty (8.43)
Ix{ >R 2
and
| luGnofdr< L for 1>, (8.44)
{x{>R 2

409/92/1-4
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Since j(x)=1 for |x| > R > ry + 1, we conclude from (8.11) that

J|x| >R

|u0(x,t)|2dx<% for || > ¢,. (8.45)

In order to complete the proof of (8.15), we have to show that there exists a
t, >ty such that
€

> for >4 (8.46)

J‘ luy(x, 1)) dx <
Ixt <R

Since the convergence in (8.16) is uniform, there exists a h € Cy’(a < | p| < )
with

J{xf<R

2

Ug(x, 1) — h(p)e'™?~""Pdp | dx < /4

(27[)3/2 Ja<|lil<[5

for every ¢. Note that

JIx|<R

2

dx

f h(p) ei(x~p—tlpl)dp

a<|pl<B

2

dx.

B i R
J’I - [f h(ppo) emx-pop2e—ttn dp] dpo
Pol= =

x| <R p=a

By performing an integration by parts in the inner integral (with
du = e~ " dp), it follows that the last expression converges to 0 as 7 — oo. In
particular, by the triangle inequality in L,(|x| < R), there exists a ¢, > ¢, such
that (8.46) holds. Formulas (8.45) and (8.46) yield

J. luglx, )> dx <& for t>t,.
R3

This concludes the proof of (8.15), and hence of (8.1), by the remarks after
(8.15).

We collect the main results on the generalized Fourier transforms @ and
@ _ in the following theorem:

THEOREM 8.1. Assume that Q2 is the exterior of n disjoint bodies with
boundaries S,,..., S, € C® Define @, f and ®_f, for fE CP(R), by (6.3).
Then we have @, f€ C®(R® — {0}) N L,(R*®) and

“ ¢;tf”%.z(k3) = ”f”iz(m - ”P+of“2Lz(m’ (8.47)

where P, denotes the projection of L,(Q) onto the null space N(A) of A
characterized in Theorem 2.1. By (8.47), ¢, and ®_ can be extended, by
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continuity, to bounded linear operators on L,(R2). Let @ }:L,(R*)—>L,(Q2)
be the adjoint operator of @, . Then we have

@, N(4)= {0}, &, N(4)* = Ly(R?), (8.48)
® ¥L,(R*) = N(4)%, (8.49)
PrD, =I-P,,, (8.50)
O, Ox=1I (8.51)

In particular, the restriction of ®, to N(A)" is a unitary operator from
N(A) onto L,(R®). If g€ CP(R® — {0}), then @} g is given by (6.38) or
(6.39), and we have @ *g € C(Q)NC®(R). The same results (with P,
instead of P, and A’ instead of A) hold for the generalized Fourier
transforms @', and @' in the magnetic case.

9. ORTHOGONAL DECOMPOSITIONS

The generalized Fourier transforms lead to simple orthogonal decom-
positions of the Hilbert space L,(2) into closed subspaces, consisting of
irrotational or solenoidal vector fields, respectively. We begin with the
verification of some properties of the operators @} and (®/,)*. Recall that,
by Lemma 6.1, & ¥g € C®(R2) and (9',)* g€ C*(R) if g € CP(R* — {0}).

LEMMA 9.1. Assume that g € CP(R® — {0}). Then we have:
@ If gp)Lp for every pER*—{0}, then V. .@fg=
V.- (2,)*g=0in;
(o) if g(p)|p for every pER’—{0}, then VX®Ffg=
VX(®,)*g=0in Q.
Proof. Recall that w,(,p;a)=wy(-,p;a)+E, and w.(,p;a)=
wo(,p;a)+ H,, where E, and H, belong to C}(2)NC>(R) and are
solutions of the boundary value problems

(d+|p)E, =0 in 0
nXE,=—nXwy,p;a),
V-E, ==V wy,p;a) on &9,
E,=0(""),

(%?ilpl)Ei=o(r“) as r=|x|->0 (9.1)
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and
d+|p|H)H, =0 in £,
nX (VXH,)=—nX|VXwy,p;a)l,
n-H,=—n-wy,p;a) on 02,
H, =0(""),
o _ .
(ﬁqitlpI)Hi:o(r ) as r=|x|- o0, (9.2)

respectively. By [11, formula (2.3)] and (5.2), also the derivatives of E, and
H _ satisfy the radiation condition (1.4) with k¥ = +|p|.

Verification of (a). Note that V- wy(x,p;a)=0if p L a by (6.1), since
V.- (ae™P)=ia - pe™'?. Hence (9.1) implies for p Lathat p:=V . E, is a
solution of the scalar Dirichlet problem (4 + k*)p =0 in 2,9 =0 on 02,
and ¢ = O(r~"), (8/or —ik)p=0(r™') as r— |x| - oo, with x = +|p|. By
the well-known uniqueness theorem for this problem (compare, for example,
[9, Satz 2]), we obtain V- E, =¢ =0 in 2, and hence

Ve-w,(x,p;a)=0 if pla 9.3)

Furthermore, if p 1 a, it follows from (9.2) and V - wy(-, p; a) = 0 that

P
—V.H,=n-V(V-H,)=n-[VX(VXH,)+4H,|

on
=—V,- [nX(YXH)|—|p’n-H,
=Vo - [nX (VX W) +|pl>n-w,
=—n-[VX(VXW)+dwy)=—n-V(V-w)=0

on 212, where V, - a denotes the surface divergence of the tangential field a.
Hence w:=V.H, is a solution of the scalar Neumann problem
d+x)y=0in 2, (8/on)y=0 on 82, and y=0(r~"), (@/or —ix) y =
o(r~') as r=|x|- oo, with k= + | p|. This implies that V- H, =y =0 in
£2, and hence

V, - wi(x,p;a)=0 if pla (9.4)
Now Lemma 9.1(a) follows from (6.39), (9.3), (9.4), and the formula
(PL)* g)x) = fm wi(x,p;g(p))dp  for g€CFR’—{0}), (9.5)

which can be proved in the same way as (6.39).
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Verification of (b). Since V, X (ae'*'?)=ip X ae™'? =0 if p||a, we have
V, X wy(x, p;a)=0. Set A :=V X E, . It follows from (9.1) that, for p| a,

n-A=n-(VXE,)=-Vy-(nXE,)=V,- (nXw,)
=—n-(VXwy)=0
and

nX(VXA)=nX|VX(VXE,)|=nX|V(V-E,)]—4E,]
=nX[V(V-E)]+|p’nXE,
=—nX [Vo(V - wp)] —|p|* n X w,
=—nX [V(V - wy) —dw,] =—n X [V X (VX w)]=0.

Hence A is a solution of the boundary value problem (A’), formulated at the
beginning of Section 5, with F=0 and x = + | p|. Thus the uniqueness part
of Lemma 5.1 implies that VX E, =4 =0 in £, and hence

V. Xw,(xpia)=0 if pla. 9.6)

Now set B:=V X H,.If p|la, B is a solution of the boundary value problem
(A), formulated at the beginning of Section 4, with F=0 and k= +|p|,
since V-B=0in 2 and n X B=nX (VX H,)=—nX(VXw,) by (9.2).
Thus the uniqueness part of Lemma 4.2 implies that VX H, =B=0in £,
and hence

V. Xw,(x,p;a)=0 if pla. 9.7)

Lemma 9.1(b) follows from (6.39), (9.5), (9.6), and (9.7).
Set

_p-8(p)

= P gz(p):=g(p)—g‘(p)=—1——p><[g(p)xp] 9.8)

g'(p):
(#) | pI®

for g € CP(R® — {0}). Note that g', g2 € CP(R’ — {0}), and g'(p)|p and
g*(p) L p for every p € R — {0}. Hence Lemma 9.1 implies that

VX (P¥g')=0 and V.(@%¥g)=0 in 2  (9.9)

for g € CP(R® — {0}). The operators g— g' and g— g* from CF(R* — {0})
into C®(R® — {0}) are bounded with respect to the L,-norm. Hence these
operators can be uniquely extended to bounded operators G — G' and
G- G* from L,(R?) into L,(R*). The relations (9.9) remain valid for
G € L,(R?) if the differential operators VX and V. are interpreted in the
sense of distributions. In fact, choose a sequence {g,} in C3’(R’ — {0}) such
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that ||G — g, > 0 in L,(R*). Since the operators G~ G', G- G* and @ *
are bounded, we have

defGl‘q):g;“L;(m"O and ”q)sz_‘pfgrz.“Lz(m“*O- (9.10)

Denote the ith component of the vector @FG' by (®FG'),. Since
VX (P}Xgh)=0 by (9.9), we obtain for p € CL(R2) and i, k=1,2,3, by
applying the definition of distribution derivatives, the limit relation (9.10),
and the integral theorem of Gauss,

[ai(¢:Gl)k_ak(¢i*Gl)i] 14

=—(PFG) (6,0) + (P LGC"); (1)

lim | [~(@2g)id0+ (P18 09] dx

= lim | (0028~ @2 g)] 9 dx =0,

and hence VX (®FG')=0. A similar argument implies that

V. (d>;“62) =0.
Now we show that
(¢;‘G', <D;“H2)L1m, =0 for G,H€E L,R?). 9.11)

Choose sequences {g,} and {A,} in CP(R® — {0}) such that |G—g,|l =0
and |H — h,|| - 0 in L,(R?). It follows from (6.34), (8.1), and (6.36) that

(‘prl’ dj:Hz)Lz(ﬂ)
=(?, ¢:Gl’ @, ¢:H2)L2(R3) + (P+0¢;Gl’P+o‘p:G2)Lz(m
= (G, Hz)L,(Rs) = }L’g (&ns hi)Lz(Rl)
= lim fgﬁi dp=0.
n—+ oo

since gh(p) L hi(p) for pER*— {0} by (9.8). This completes the
verification of (9.11).

Our results on the operators G— G' (i=1,2) lead to an orthogonal
decomposition of the Hilbert space L,(£2). Set

PLF =@} (P, F)] for FEL,(Q) (i=12). (9.12)

Note that
G=G'+G? for GEL,RY), (9.13)
(GH* = 6,,G' for GE€L,(R?) and i k=1,2 (9.14)
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and . .
(G',H)=(G, H") for GGHEL,(R?) and i=1,2. (9.15)

By (9.8), these relations are obvious if G, H € CP(R® — {0}). In the general
case, they follow by approximating G and H by sequences {g,} and {A,} in
CP(R? — {0}) with respect to the L,-norm. By applying (8.1), (9.14), and
(9.15), we obtain for F, G € L,(R2)

PLPLF=0X[0, 0XP, F)|'} = @ X{[(P.F)]')

= 5ik¢:[(¢iF)i] = 5ikPi;tF

and
(Pi:t F, G)Lz(ﬂ) = (¢:[(¢¢F)‘]’ G)LZ(Q) = ((‘DiF)!’ ‘pi G)L,(m)
= ((p:tF’ (¢:t G)i)Lz(RJ) = (F, ¢:>tk[(¢i G)i])x.z(m
= (F, Pii G)Lz(m’
and hence
P‘;P"i =(5,-,(P"i for L,k=1,2 (9.16)
and
(PL)* =P, for i=1,2. (9.17)

Furthermore, we have by (9.13) and (6.37)

PLF+PLF=0}((@,F) + (@, F)}|=0F0,F=(I—P,,)F,

and hence
P +P,+P,. =1L (9.18)
It follows from (6.36) and (9.12) that
P P, =0 for i=1,2. (9.19)

Relations (9.16)-(9.19) show that P’ is an orthogonal projection of the
Hilbert space L,(©2) and that the projections P,,, P., P} yield an
orthogonal decomposition of L,(£2) into the closed subspaces N(4), M and
M?, with ‘ .

M, ={P F:FEL,(2)} i=12) (9.20)

In order to characterize the ranges M, of the projections P!, (i=1,2), we
introduce the linear spaces

M, :={fECQ)NC ()N NA):VXf=0in2,n X f=0o0ndR, and
f=0@r"Hasr=|x|- o},
M, ={fEC@)NC'( Q)N NA)":V . .f=0in2 and

f=0(r"Hasr=|x|-> o}
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Furthermore, we denote the completion of M; with respect to the L,-norm
with M,. We shall prove:

LEMMA 9.2. The ranges M, of the projections P', , introduced in (9.12),
are given by

M. =M'=M, and M =M =M,.
In particular, we have P, = P'_ for i=1,2.

Proof. By using (6.38), (6.6), (6.1), and (8.25) and substituting p = pp,
with p,=p/lp| in the second term, we obtain for g=(g,.8,,8;) €
CP(R*—1{0}) and |x| > ry+ 1

((D g)(x) (2 )S/ZJ elr xg(p) dp+ l l jk l f etirlxl

<[l

3

~

+ Y e d¥p)glp)dp,
1 R}

Jok=

8%(xo. Do) &,(0P0) 9 S, ]dp

pol=1

where a, f§ are positive numbers with supp g < {x:a < |x| < f}. It foliows
from (8.23), with u = (v,), (-, p;e;) and x = + | p|, and Lemma 6.1 that the
inner integral in the second term has continuous derivatives with respect to p,
which are uniformly bounded for |x,/=1 and a<p<p. Hence an
integration by parts implies that the second term can be estimated by
C,|x|7? for |x| > r with a suitable constant C,. Similar estimates can be
obtained for the first term, by integrating by parts, and for the third term, by
using (8.26). This yields

Q¥g=0(r"?% as r=|x|->o for g€ CPR*—{0}). (9.21)
It follows from (6.39), Lemma 9.1, (9.21), and 7 X w, =0 on 012 that
PFX(gHEM, and DX gHeEM, for g€CPR’—{0}). (9.22)

Since CJ(R? — {0}) is dense in L,(R*) and since the operators G- G' and
@ ¥ are bounded, (9.22) implies that

PXGHEM, and DFGHEM, for GEL,R?. (9.23)
In particular, we have by (9.12)
PLFEM, and PLFEM, for FEL,R), (9.23)
and hence M', c M, and M' = M, for i=1, 2.
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Now we show that the linear spaces M, and M, are orthogonal:

(E,H) 0, =0 for E€M,, HEM,. (9.24)

Since M, and M, are dense in M, and M,, it is sufficient to verify (9.24) for
E€M, and HeE M,. Consider the fields E,,..., E, introduced in (2.1). As in
the proof of Lemma 2.4, we can find numbers ¢, ,..., ¢, such that the field

H :=H- ) ¢k, (9.25)
k=1

with given H € M,, satisfies the conditions

J n-HdS=0  (i=1,.,n) (9.26)
S

i

Since V- H' =0 in 2 and H' = O(|x|~?) as |x| - o, it follows from (9.26)
that there exists a field G € C(2) N C'(2) such that

VXG=H' in Q (9.27)

and
G=0(x|"") as |x|- o0. (9.28)

A construction of a field G with these properties is described in [13,
p. 381-382, 5. Schritt; 14, p. 105] and uses [14, Lemma 8.1]. Now consider
a field E € M,. Since E,,..., E, € N(4) and E € N(4)*, we obtain by (9.25),
(9.27), (9.28) and the properties of the space M,

J‘ E-de:J' Eﬁ’dx:J' E-(VXG)dx
Q

Q Q
=J' (an)-GdS+J" (VXE)-Gdx=0
a0 Q

so that (9.24) holds for E € M, and H € M,, and hence also for E € M, and
HE M,.
Since P, ,F =0 for F € N(4)", (9.18) implies

F=P.F+P_F for FENA)- (5.29)
Formula (9.29), in connection with (9.23) and M, L M,, shows that
NAY' =M, ® M, (9.30)

and _ _
range(P.)=M,, range(P%) = M,. (9.31)

This completes the proof of Lemma 9.2.
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In a similar way, by setting
PLF = (0,)* (2, F)| (9.32)
and
M = {P'_F: F € L,(2)) (9.33)
(i=1,2), we obtain a second orthogonal decomposition
L,(Q2)=NA )@ M, &M, (9.34)
of L,(f2) into closed subspaces. Set
M| :={fEC@R)NC(Q)NNUA):VXf=0inR
andf=0(r *)asr=|x| - o0},
M, = {fECR)NC'(R)NNUA)"V - f=0in R,
n-f=0ondQandf=0(r *)asr=|x|- oo}

We shall prove in analogy to Lemma 9.2:

LEMMA 9.3. The ranges M, of the projections P', are given by
M\ =M'=M, and M =M'=M,.
In particular, we have 1'5’; =Pt Jori=1,2.
Proof. The same argument as in the proof of (9.21) yields

() *g=0("?) as r=|x|->o for g&€CPR’— {0}) (9.35)
1t follows from (9.5), Lemma 9.1, (9.35), and n - w/, =0 on 602 that

(@)*(gVEM] and (PL)*(g)EM; for gECP(R’ - {0}),
(9.36)

and hence

(@)*(GHEM, and (P,)*(G)EM; for GELyR®).
(9.37)

In particular, we have by (9.32)
PLFEM, and P FeM, for FEL,(R). (9.38)
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In order to show that M} and M} are orthogonal, we consider fields E € M|
and H € M;. Let H,,..., H, be the fields defined by (3.2) and (3.4) and set

p
E':=E—Y aH, with a;:=[ E-tds. (9.39)
j=1 €

Note that VX E' =0 in 2 and E = O(|x|?) as |x|— co. It follows as in
Section 3 (compare (3.10)) that

JE’-tds=O (9.40)
C
for every closed curve C in 0. Hence, by (3.11), we can find a function
v € C'(Q) such that

Vy=E' in £ 9.41)
and

w=0(x|"" as |x|— 0. (9.42)

Since H,,.., H,E N(A’) and HE N(A')*, we obtain by (9.39), (9.41),
(9.42), and the properties of the space M,

JQE-I-TIdx=L)E’-ﬁdx:fﬂVu/-ﬁdx
=—Ln wn-ﬁdS—jn WV - Hdx =0.

This implies that (E, H)=0 for E€ M| and H € M;, and hence also for
E € M| and H € M;, so that the spaces M| and M/ are orthogonal.
In analogy to (9.29), we have

F=P.F+P.F for FENU')" (9.43)
Formula (9.43), in connection with (9.38) and M| L M}, yields
NA') =M ® M; (9.44)
and
range(P)=M,,  range(P )= M;. (9.45)

This completes the proof of Lemma 9.3.

We collect the main results of this section in
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THEOREM 9.1. Assume that 2 is the exterior of n disjoint bodies with
boundaries S,,..., S, € C® and consider the linear subspaces M, M,, M,
M} of L,(2) introduced above. Then the following two orthogonal decom-
positions of L,(Q2) hold:

L,(2)=NA)DM, ®M,, (9.46)
L,(2)=N(4")®M;® M;. (9.47)

7

The corresponding projections are P, P',, P in the first case and P',,
P\, P’ in the second case, where P'. and P', are defined by (9.12) and
(9.32), respectively, and G — G' is the continuous extension of the mapping
(9.8) to L,(R?). Furthermore, the identities P, = P* and P', = P'_ hold for
i=1, 2. In addition, we have, in the sense of distributions,

VXF=0 in NA®M, andin NA)DM, (9.48)

and
V.-F=0 in NA)®M, andin NA')DM;. (9.49)

By the definition of the spaces M, and M}, the properties F € M, and
G € M}, contain, in addition to (9.48) and (9.49), weak versions of the
classical boundary conditions n X F=0 and n- G=0, respectively. The
orthogonal decompositions of L,(£2) into linear subspaces of irrotational and
solenoidal fields, described in Theorem 9.1, are closely related to the decom-
positions studied by Wey! in his famous paper [17]. By Theorem 9.1, these
decompositions correspond, via the generalized Fourier transforms ¢, and
¢', from L,(2) into L,(R?), to the decomposition of the elements of L,(R"?)
into radial components and fields which are orthogonal to the radial
directions.

10. REGULARITY CONSIDERATIONS

This section is devoted to the proofs of Lemmas 2.1 and 3.1. We shall use
the notations introduced in [16, Sect.3]. Let 2 and E satisfy the
assumptions of Lemma 2.1. Since E € C(£2), it is sufficient to study the
behavior of E near an arbitrary boundary point x,. Choose ¢ and { as in
[16, Sect. 3] and consider the fields £, and E; defined in [16, Lemmas 3.1
and 3.2], respectively. Our first aim is to show that £/ €V,.

It is convenient to set £ (u) =0 for u € R} — Z(J), where R} := {u € R*:
u; > 0} so that E} € C(R}). Choose h € CP(R?) such that

supp A= {u':|u'| <1}, k>0, J.ha’u’zl (10.1)
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with #' = (u,, u,), |u'| = @? + u?)'? and set
1 2 1 2

F(u) = J E; ' +v'/k, u3) h(v') dv'. (10.2)

je’l<1

Note that F,— E] uniformly in Z(5). By substituting u’ +v'/k=w’,
v =k(w' —u'), dv’ = k? dw’, we obtain

8,F, €C(Z©G) for i=1,2. (10.3)

Since n X E=0 on 922, we have E{,:=t,- SE, =0 for u;=0 and i =1, 2,
and hence

F,=F,=0 for u;=0 (10.4)

(with  F, = (F,,, Fi;, F,;). Furthermore, VX E€ C(2) implies that
S(V X E,) € C(Z(d)), and hence by [16, Eq. (3.30)]

8,Ef—8,ELECZ(B) for ij=1,2,3. (10.5)

By differentiating (10.2), we obtain

9,-Fk,-(u) - aiji(u)

= J G:ES; — E)u' +v'fk, u) h(v') dv’ (10.6)
lv’l<1
for u;>0 and i,j=1,2,3. By (10.5), 9,F,; — ¢,F,; can be continuously
extended onto Z(4), and (10.6) holds also for u, = 0. In particular, we have
0,F,;— 0,F; € C(Z(5)) for i,j=1,2,3. (10.7)
Furthermore, it follows from (10.6) that

0;F;— 0,F,— 0,E{,— ,E, as k- oo uniformly in Z(5).
(10.8)

Since V - E € C(2), we have by [16, Eq. (3.31)]

SV-E)=—=2 (/g g"E}) € C(Z(3))

fa

and hence, since E; € C(Z(9)),

g'8,E{, € C(Z(9)). (10.9)



60 P. WERNER

By differentiating (10.2), we obtain for u; > 0

gY6,F =S, + S} (10.10)
with
Stu) = _]'IWI (80w’ + vk us) h(') dv’ (10.11)
and
Siw=| 1870 -8 + vk uy)]
X h(v' WG.E L)' + v' [k, uy) dv'. (10.12)

We conclude from (10.9) as above that
Sy € C(Z(5)) (10.13)
and
Si-gUd,E}, as k- oo uniformlyin Z(5). (10.14)

Since g** =1 and g”? =g* =0 for i=1,2, only the terms with i, j=1,2
give a contribution to S in (10.12). By applying the integral theorem of
Gauss, we obtain for u, > 0 and i = 1, 2 (with v’ = (v, v,))

SH=[ e R kg [+ v k) ~ E )] d

le'I<1

=—| B + v k) = Ef)] T v', k) do’
le’|<1
with

T v/, K) = k= {1 890) — g0 + v/, )] )

=—h(v')(8,8")u’ +v'/k, u3)
+k[g"(w)—g"(u’ +v'/k, uy)| 9;h(v').

By applying the mean value theorem to the last term, it follows that
T'(u,v', k), as a function of u € Z(d) and v’, is bounded uniformly with
respect to k. Hence the last representation for S} yields

Si—0 as k- oo uniformlyin Z(5). (10.15)
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This, together with (10.10), (10.13), and (10.14), implies that
gY8,F,; € C(Z(d)) (10.16)
and
§0,F;~g"9,Ef;, as k- oo uniformlyin Z(5). (10.17)

It follows from (10.3) and (10.7) that 9,F, € C(Z(d)) for (i,j)+ (3,3).
Since g*’ = 1, we conclude from (10.16) that also 8, F,, € C(Z(9)). Thus we
obtain

F,€ C'(Z(5)). (10.18)

In particular, F,; can be approximated by a sequence in C®(Z(5)) with
respect to the 1-norm by [12], Theorem 10.2. By the choice of { (compare
(16, Eq. (3.10)], we have supp E;} < Z(28/3), and hence supp F, < Z(56/6)
if 1/k <3/6 or k> k,:=[6/]. Choose &’ with 5§/6 < &' < 4. It follows
from (10.4) and (10.18) by the argument after |16, Eq. (5.18)] that there
exists a sequence {G,} such that

supp G, = Z(6'), G, € CP(Z(9)) X CP(Z(9)) X C(Z(5))  (10.19)
and
“Fk - Gk||l,z(5) < 1/2k (10-20)

for every k > k,. By (10.19) and |16, Lemma 4.4] we have G, € V,. Since
S, is dense in V, with respect to the 1-norm, there exists a sequence {S,} in
S, such that |G, — S,||; 2 < 1/2k and hence, by (10.20),

1Fe— Sillize0 < 1/k (10.21)

for k > k,. By observing (10.2), (10.8), (10.17), and (10.21), we obtain the
following limit relations in L,(Z(J)):
1Sc—=EV |z~ 05
10: Sk — 0;8k) — (OE; — GE{ Nz~ O (,j=123), (10.22)
| £90; 84y~ "0, E |25~ O as k- oo.

J

In order to deduce from (10.22) that {S,} converges to E| with respect to
the 1-norm, we use the coerciveness properties obtained in [15, Sect.5).
Consider the bilinear forms B, B,, and B introduced in |16, formulas (3.1),
(3.5), and (3.35)-(3.36)]. By [16, Eq. (3.37)] there exists a c; > 0 such that

B*(G,G)>c; |G| s  forevery GES,. (10.23)
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Note that (¢,-SG ,t,-SG ,t,-SG )=(G )" =G=(G,,G,,G,) for
G €S, by [14, Lemma 3.2]. Hence it follows from [16, (3.30)—(3.31)] that

1 tl [2 t3
SVXG )=—=|8, &, & (10.24)
Ve |G, G, G
and
1 )
SV - G—)=7§ai(\/§guq) (10.25)

for G € S,. Furthermore, by [16, Eq. (3.19)] we have
SG~=g"G;t; for GES,. (10.26)
These relations, together with [16, Eq.(3.28)], imply that there exist
numbers c¢,, ¢; > 0 such that, for every GES,,
B (G,G)=By(G ™, G )=|VXG " +|IV- G| + e, |G|
=(S(VXG )4 SVXG N+(SV- -G )4 SV -G))
+¢,(SG™,47SG™)
Le(ISVX G +[S(V -G +]1SG7 1)
3
<a(IGI1P+ X 116:G,—6;,Gill* + 1 8°8,G))I*).
ij=1
By combining this estimate with (10.23), we obtain
3
IGli<e (161 + X 18,6,-8GI +18%,G,)  (10.27)
i, j=1

for every G €S,, where ¢:=c;'c;. By applying (10.27) to G=S,— S,
(10.22) yields || S, — S,|l, = 0 as k, n - oo. Since V, is complete with respect
to the 1-norm, there exists a ¥ € V, such [|.S, — V||, = 0 as k — co. It follows
from the first relation in (10.22) that V=E;. Hence we obtain
| Sy —E{|l;~ 0 as k— oo. This shows that E} € V,.

Our next aim is to verify that

By(E,, G)=(F,, G)rcaix0,8n forevery GEV,, (10.28)
where

> 8¢ OE
F, :=CF+(c2+A)CE—2>_%27—(AC)E. (10.29)
i=1 i i
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Since S, is dense in V, respect to the I-norm, we can assume that G € §,.
Set for 0 <e< ¢

0, :={x=x(u):ui +ud <6% e <u, <d}.

The integral theorem of Gauss yields

[ 9XE) (VXG) +(V-E)T - G)ldx

Qe

:J’ V. [(V.E,)G‘—(VXE,)xG‘]dx—J' G - 4E, dx
Qg

Qg

=j [(V-E)n-G)+ (¥ xEl)-(nxc';')dS—j G - AE, dx.
9, Qe

Since VX E| and V - E, are continuous in £2(x,,d) and since V - E, and
n X G vanish on 92(x,, ), we obtain, by letting ¢ | 0,

B(E,,G)=— limJ G - AE, dx.
610 Q.
Since AE + AE = —F, (10.29) implies that AE, = A((E)= —F, + ¢,E,, and
hence, by the definition of B, ([16, Eq. (3.5)]),

BO(E,,G):—limJ F, - Gdnx. (10.30)
510 Q¢
Since E{ €V,, as shown above, we have E, € V, < H,(2(x,, d)) by [16,
Lemma 3.2] and hence F, € C(2) M L,(2) by (10.29). The argument used

in the proof of Lemma 2.2 shows that the improper integral | Qo) | F W dx
exists and that

. 12
1Flloyn= |, IFilax]|

Q(x¢.,8)

Since G € C(2(x,,d)), the same statement holds if F, is replaced by
F| 4+ aG with complex a. This implies, since

(Fi, @)=3(IFi + G’ —|F, = G|’ + i | F, + iG|* —i[|[F, — iG|]"),

that the right-hand side in (10.30) coincides with the inner product (F,, G) in
L,(Q(x,, d)). This remark concludes the proof of (10.28).
Now we show by induction with respect to j that

E e Hj(.Q(xo, 4)) (Bj)

409/92/1-5
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for 1 <j<k+2. (B))holds since £, €V, © H(Q2(x,, J)). Assume that (B;)
holds, where 1 <j <k + 1. The argument leading to |16, Eq. (3.43)] implies
that

BY*E!G)=(, Q) forevery GEV,, (10.31)
where
J=(,Jy,J;)  with  J,=/g gt - SF,. (10.32)

Since F, € H;_(£2(x,,d)) by (10.29) and (B;), we have J€ H,_,(Z(J)).
Hence it follows from (10.31) by [16, Lemma 5.1] that

E!f €H, (Z(5') for every d’ < 4. (10.33)
Since supp E = Z(26/3), we have even
Ef €H,, ,(Z(5)). (10.34)

In fact, choose &’ with 26/3 < ' < 6 and &€ C®(Z(5)) such that E=1 in
Z(26/3) and supp{c Z(9'). Since EF =¢E/, (10.34) follows from |16,
(5.7)]. The relation (10.34) implies (B;,,), thus concluding the induction
argument. For j=k+2 we obtain E, € H,,(2(x,,5)) and hence, by
Sobolev’s imbedding theorem, E, € C*(2(x,, 6)). Because E=E, in
0(x,, 6/3) by the choice of ¢, this implies E € C¥(€2(x,, 6/3)) and hence
E € CX(Q), since E € C¥(R2) and x, is an arbitrary boundary point. This
concludes the proof of Lemma 2.1.

Lemma 3.1 can be proved in a similar way with obvious modifications. In
order to prove that H} € V), replace E} by H, in the definition (10.2) of
F, so that F,; =0 for u,; =0 (instead of (10.4)). Choose the sequence {G,}
in (10.19)-(10.20) such that G,,, G,, € C*(Z(d)) and G,, € CX(Z(d)). It
follows from [16, Lemma 4.5] that G, € V}. Finally, note that

lim J.Q (V-H)n-G)+(VXH) (nxG)|dS=0

for GES' since n- G=0 and n X (VX H,)=0 on 8Q2(x,, d), so that the
same argument as in the proof of (10.28) can be used to verify that
B(H,,G)=(F,,G) for GE V.
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