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Preface v

Preface

Primary objective of this lecture note is to provide a basic text for the students to study
plasma physics and controlled fusion researches. Secondary objective is to offer a reference book
describing analytical methods of plasma physics for the researchers. This was written based
on lecture notes for a graduate course and an advanced undergraduate course those have been
offered at Department of Physics, Faculty of Science, University of Tokyo.

In ch.1 and 2, basic concept of plasma and its characteristics are explained. In ch.3, orbits
of ion and electron are described in several magnetic field configurations. Chapter 4 formulates
Boltzmann equation of velocity space distribution function, which is the basic relation of plasma
physics.

From ch.5 to ch.9, plasmas are described as magnetohydrodynamic (MHD) fluid. MHD equa-
tion of motion (ch.5), equilibrium (ch.6) and diffusion and confinement time of plasma (ch.7) are
described by the fluid model. Chapters 8 and 9 discuss problems of MHD instabilities whether
a small perturbation will grow to disrupt the plasma or will damp to a stable state. The basic
MHD equation of motion can be derived by taking an appropriate average of Boltzmann equa-
tion. This mathematical process is described in appendix A. The derivation of useful energy
integral formula of axisymmetric toroidal system and the analysis of high n ballooning mode are
described in appendix B.

From ch.10 to ch.14, plasmas are treated by kinetic theory. This medium, in which waves and
perturbations propagate, is generally inhomogeneous and anisotropic. It may absorb or even
amplify the wave. Cold plasma model described in ch.10 is applicable when the thermal velocity
of plasma particles is much smaller than the phase velocity of wave. Because of its simplicity,
the dielectric tensor of cold plasma can be easily derived and the properties of various wave
can be discussed in the case of cold plasma. If the refractive index becomes large and the
phase velocity of the wave becomes comparable to the thermal velocity of the plasma particles,
then the particles and the wave interact with each other. In ch.11, Landau damping, which
is the most characteristic collective phenomenon of plasma, as well as cyclotron damping are
described. Chapter 12 discusses wave heating (wave absorption) in hot plasma, in which the
thermal velocity of particles is comparable to the wave phase velocity, by use of the dielectric
tensor of hot plasma. In ch.13 the amplification of wave, that is, the growth of perturbation
and instabilities, is described. Since long mathematical process is necessary for the derivation of
dielectric tensor of hot plasma, its processes are described in appendix C. In ch.14 instabilities
driven by energetic particles, that is, fishbone instability and toroidal Alfvén eigenmodes are
described.

In ch.15, confinement researches toward fusion grade plasmas are reviewed. During the last
decade, tokamak experiments have made remarkable progresses. Now realistic designs of toka-
mak reactors have been actively pursued. In ch.16, research works of critical subjects on tokamak
plasmas and reactors are explained. As non-tokamak confinement systems, reversed field pinch,
stellarator, tandem mirror are described in ch.17. Elementary introduction of inertial confine-
ment is added in ch.18.

Readers may have impression that there is too much mathematics in this lecture note. However
there is a reason for it. If a graduate student tries to read and understand, for examples,
frequently cited short papers on the analysis of high n ballooning mode by Connor, Hastie,
Taylor, fishbone instability by L.Chen, White, Rosenbluth without preparative knowledge, he
must read and understand a few tens of cited references and references of references. I would
guess from my experience that he would be obliged to work hard for a few months. It is one
of motivation to write this lecture note to save his time to struggle with the mathematical
derivation so that he could spend more time to think physics and experimental results.
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Ch.1 Nature of Plasma

1.1 Introduction

As the temperature of a material is raised, its state changes from solid to liquid and then
to gas. If the temperature is elevated further, an appreciable number of the gas atoms are
ionized and become the high temperature gaseous state in which the charge numbers of ions and
electrons are almost the same and charge neutrality is satisfied in a macroscopic scale.
When the ions and electrons move collectively, these charged particles interact with coulomb

force which is long range force and decays only in inverse square of the distance r between the
charged particles. The resultant current flows due to the motion of the charged particles and
Lorentz interaction takes place. Therefore many charged particles interact with each other by
long range forces and various collective movements occur in the gaseous state. The typical cases
are many kinds of instabilities and wave phenomena. The word “plasma” is used in physics
to designate the high temperature ionized gaseous state with charge neutrality and collective
interaction between the charged particles and waves.
When the temperature of a gas is T (K), the average velocity of the thermal motion, that is,

thermal velocity vT is given by

mv2
T/2 = κT/2 (1.1)

where κ is Boltzmann constant κ = 1.380658(12) × 10−23 J/K and κT indicates the thermal
energy. Therefore the unit of κT is Joule (J) in MKSA unit. In many fields of physics, one
electron volt (eV) is frequently used as a unit of energy. This is the energy necessary to move
an electron, charge e = 1.60217733(49)×10−19 Coulomb, against a potential difference of 1 volt:

1eV = 1.60217733(49)× 10−19 J.

The temperature corresponding to the thermal energy of 1eV is 1.16×104 K(= e/κ). The ioniza-
tion energy of hydrogen atom is 13.6 eV. Even if the thermal energy (average energy) of hydrogen
gas is 1 eV, that is T ∼ 104 K, small amount of electrons with energy higher than 13.6 eV exist
and ionize the gas to a hydrogen plasma.
Plasmas are found in nature in various forms (see fig.1.1). There exits the ionosphere in the

heights of 70∼500 km (density n ∼ 1012 m−3, κT ∼ 0.2 eV). Solar wind is the plasma flow origi-
nated from the sun with n ∼ 106∼7 m−3, κT ∼ 10 eV. Corona extends around the sun and the
density is ∼ 1014 m−3 and the electron temperature is ∼ 100 eV although these values depend
on the different positions. White dwarf, the final state of stellar evolution, has the electron
density of 1035∼36 m−3. Various plasma domains in the diagram of electron density n(m−3) and
electron temperature κT (eV) are shown in fig.1.1. Active researches in plasma physics have
been motivated by the aim to create and confine hot plasmas in fusion researches. Plasmas play
important roles in the studies of pulsars radiating microwave or solar X ray sources observed
in space physics and astrophysics. The other application of plasma physics is the study of the
earth’s environment in space. Practical applications of plasma physics are MHD (magnetohy-
drodynamic) energy conversion for electric power generation, ion rocket engines for space crafts,
and plasma processing which attracts much attention recently.

1.2 Charge Neutrality and Landau Damping

One of the fundamental property of plasma is the shielding of the electric potential applied to
the plasma. When a probe is inserted into a plasma and positive (negative) potential is applied,
the probe attracts (repulses) electrons and the plasma tends to shield the electric disturbance.
Let us estimate the shielding length. Assume that the ions are in uniform density (ni = n0)
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Fig.1.1 Various plasma domain in n - κT diagram.

and there is small perturbation in electron density ne or potential φ. Since the electrons are in
Boltzmann distribution usually, the electron density ne becomes

ne = n0 exp(eφ/κTe) � n0(1 + eφ/κTe).

Poisson’s eqation is

E = −∇φ, ∇(ε0E) = −ε0∇2φ = ρ = −e(ne − n0) = −e
2n0

κTe
φ

and

∇2φ =
φ

λ2
D

, λD =
(
ε0κTe

nee2

)1/2

= 7.45× 103
(
1
ne

κTe

e

)1/2

(m) (1.2)

where ne is in m−3 and κTe/e is in eV. When ne ∼ 1020cm−3, κTe/e ∼ 10keV, then λD ∼ 75µm.
In spherically symmetric case, Laplacian ∇2 becomes ∇2φ = (1/r)(∂/∂r)(r∂φ/∂r) and the
solution is

φ =
q

4πε0
exp(−r/λD)

r
.

It is clear from the foregoing formula that Coulomb potential q/4πε0r of point charge is shielded
out to a distance λD. This distance λD is called the Debye length. When the plasma size is a
and a � λD is satisfied, then plasma is considered neutral in charge. If a < λD in contrary,
individual particle is not shielded electrostatically and this state is no longer plasma but an
assembly of independent charged particles.
The number of electrons included in the sphere of radius λD is called plasma parameter and

is given by

nλ3
D
=

(
ε0
e

κTe

e

)3/2 1

n
1/2
e

. (1.3)

When the density is increased while keeping the temperature constant, this value becomes small.
If the plasma parameter is less than say ∼1, the concept of Debye shielding is not applicable
since the continuity of charge density breaks down in the scale of Debye length. Plasmas in the
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region of nλ3 > 1 are called classical plasma or weakly coupled plasma, since the ratio of electron
thermal energy κTe and coulomb energy between electrons Ecoulomb = e2/4πε0d (d � n−1/3 is
the average distance between electrons with the density n) is given by

κTe

Ecoulomb
= 4π(nλ3

D)
2/3 (1.4)

and nλ3 > 1 means that coulomb energy is smaller than the thermal energy. The case of
nλ3

D
< 1 is called strongly coupled plasma (see fig.1.1). Fermi energy of degenerated electron

gas is given by εF = (h2/2me)(3π2n)2/3. When the density becomes very high, it is possible to
become εF ≥ κTe. In this case quantum effect is more dominant than thermal effect. This case
is called degenerated electron plasma. One of this example is the electron plasma in metal. Most
of plasmas in experiments are classical weakly coupled plasma.
The other fundamental process of plasma is collective phenomena of charged particles. Waves

are associated with coherent motions of charged particles. When the phase velocity vph of
wave or perturbation is much larger than the thermal velocity vT of charged particles, the wave
propagates through the plasma media without damping or amplification. However when the
refractive index N of plasma media becomes large and plasma becomes hot, the phase velocity
vph = c/N (c is light velocity) of the wave and the thermal velocity vT become comparable
(vph = c/N ∼ vT), then the exchange of energy between the wave and the thermal energy of
plasma is possible. The existence of a damping mechanism of wave was found by L.D. Landau.
The process of Landau damping involves a direct wave-particle interaction in collisionless plasma
without necessity of randamizing collision. This process is fundamental mechanism in wave
heatings of plasma (wave damping) and instabilities (inverse damping of perturbations). Landau
damping will be described in ch.11, ch.12 and appendix C.

1.3 Fusion Core Plasma

Progress in plasma physics has been motivated by how to realize fusion core plasma. Necessary
condition for fusion core plasma is discussed in this section. Nuclear fusion reactions are the
fused reactions of light nuclides to heavier one. When the sum of the masses of nuclides after
a nuclear fusion is smaller than the sum before the reaction by ∆m, we call it mass defect.
According to theory of relativity, amount of energy (∆m)c2 (c is light speed) is released by the
nuclear fusion.
Nuclear reactions of interest for fusion reactors are as follows (D; deuteron, T; triton, He3; helium-

3, Li; lithium):

(1) D+D→T(1.01MeV)+p(3.03MeV)
(2) D+D→ He3(0.82MeV)+n(2.45MeV)
(3) T+D→ He4(3.52MeV)+n(14.06MeV)
(4) D+He3 → He4(3.67MeV) +p(14.67MeV)
(5) Li6+n→T+He4+4.8MeV
(6) Li7+n(2.5MeV)→T+He4+n

where p and n are proton (hydrogen ion) and neutron respectively (1MV=106 eV). Since the
energy released by chemical reaction of H2 + (1/2)O2 → H2O is 2.96 eV, fusion energy released
is about million times as large as chemical one. A binding energy per nucleon is smaller in
very light or very heavy nuclides and largest in the nuclides with atomic mass numbers around
60. Therefore, large amount of the energy can be released when the light nuclides are fused.
Deuterium exists aboundantly in nature; for example, it comprises 0.015 atom percent of the
hydrogen in sea water with the volume of about 1.35× 109 km3 .
Although fusion energy was released in an explosive manner by the hydrogen bomb in 1951,

controlled fusion is still in the stage of research development. Nuclear fusion reactions were
found in 1920’s. When proton or deuteron beams collide with target of light nuclide, beam
loses its energy by the ionization or elastic collisions with target nuclides and the probability
of nuclear fusion is negligible. Nuclear fusion researches have been most actively pursued by
use of hot plasma. In fully ionized hydrogen, deuterium and tritium plasmas, the process of
ionization does not occur. If the plasma is confined in some specified region adiabatically, the
average energy does not decrease by the processes of elastic collisions. Therefore if the very hot
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Fig.1.2 (a) The dependence of fusion cross section σ on the kinetic energy E of colliding nucleous.
σDD is the sum of the cross sections of D-D reactions (1) (2). 1 barn=10−24 cm2. (b) The dependence of
fusion rate 〈σv〉 on the ion temperature Ti .

D-T plasmas or D-D plasmas are confined, the ions have velocities large enough to overcome
their mutual coulomb repulsion, so that collision and fusion take place.
Let us consider the nuclear reaction that D collides with T. The effective cross section of T

nucleous is denoted by σ. This cross section is a function of the kinetic energy E of D. The
cross section of D-T reaction at E = 100keV is 5× 10−24 cm2 . The cross sections σ of D-T, D-
D, D-He3 reaction versus the kinetic energy of colliding nucleous are shown in fig.1.2(a).1,2 The
probability of fusion reaction per unit time in the case that a D ion with the velocity v collides
with T ions with the density of nT is given by nTσv (we will discuss the collision probability
in more details in sec.2.7). When a plasma is Maxwellian with the ion temperature of Ti , it is
necessary to calculate the average value 〈σv〉 of σv over the velocity space. The dependence of
〈σv〉 on ion temperature Ti is shown in fig.1.2(b).3 A fitting equation of 〈σv〉 of D-T reaction as
a function of κT in unit of keV is4

〈σv〉(m−3) =
3.7× 10−18

H(κT )× (κT )2/3
exp

(
− 20
(κT )1/3

)
, H(κT ) ≡ κT

37
+

5.45
3 + κT (1 + κT/37.5)2.8

(1.5)

Figure 1.3 shows an example of electric power plant based on D-T fusion reactor. Fast neutrons
produced in fusion core plasma penetrate the first wall and a lithium blanket surrounding the
plasma moderates the fast neutrons, converting their kinetic energy to heat. Furthermore the
lithium blanket breeds tritium due to reaction (5),(6). Lithium blanket gives up its heat to
generate the steam by a heat exchanger; steam turbine generates electric power. A part of
the generated electric power is used to operate heating system of plasma. As α particles are
charged particles, α particles can heat the plasma by Coulomb collisions directly (see sec.2.6).
The total heating power Pheat is the sum of α particle heating power Pα and the heating power
Pext by the external heating system. The necessary total heating power to sustain the plasma in
steady state must be equal to the energy loss rate of fusion core plasma. Therefore good energy
confinement (small energy loss rate) of hot plasma is the most important key issue.
The thermal energy of plasma per unit volume is given by (3/2)nκ(Ti + Te). This thermal

energy is lost by thermal conduction and convective losses. The notation PL denotes these
energy losses of the plasma per unit volume per unit time (power loss per unit volume). There
is radiation loss R due to bremsstrahlung of electrons and impurity ion radiation in addition to
PL. The total energy confinement time τE is defined by

τE ≡ (3/2)nκ(Te + Ti)
PL +R

� 3nκT
PL +R

. (1.6)
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Fig.1.3 An electric power plant based on a D-T fusion reactor

The necessary heating input power Pheat is equal to PL + R . In the case of D-T reaction, the
sum of kinetic energies Qα = 3.52MeV of αparticle (He4 ion) and Qn = 14.06MeV of neutron
is QNF=17.58 MeV per 1 reaction (Qn :Qα=0.8 : 0.2).
Since the densities of D ions and T ions of equally mixed plasma are n/2 , number of D-T

reaction per unit time per unit volume is (n/2)(n/2)〈σv〉, so that fusion output power per unit
volume PNF is given by

PNF = (n/2)(n/2)〈σv〉QNF . (1.7)

When the fusion powers by the neutron and α particle are denoted by Pn and Pα respectively,
then Pn=0.8PNF and Pα=0.2PNF. Denote the thermal-to-electric conversion efficiency by ηel
and heating efficiency (ratio of the deposit power into the plasma to the electric input power of
heating device) by ηheat. Then the total heating power Pheat is

Pheat = (0.8ηelγηheat + 0.2)PNF.

The burning condition is

Pheat = PL +R =
3nκT
τE

= ηPNF (1.8)

where

η ≡ (0.8ηelγηheat + 0.2),

that is
3nκT
τE

= η
QNF

4
n2〈σv〉,

nτE >
12κT

ηQNF〈σv〉 (1.9)

The right-hand side of the last foregoing equation is the function of temperature T only. When
κT = 104 eV and η ∼ 0.3 (γ ∼ 0.4, ηel ∼ 0.4, ηheat ∼ 0.8), the necessary condition is
nτE > 1.7× 1020 m−3 · sec. The condition of D-T fusion plasma in the case of η ∼ 0.3 is shown
in fig.1.4. In reality the plasma is hot in the core and is cold in the edge. For the more accurate
discussion, we must take account of the profile effect of temperature and density and will be
analyzed in sec.16.11.
The condition Pheat = PNF is called break even condition. This corresponds to the case of η = 1

in the condition of fusion core plasma. The ratio of the fusion output power due to α particles
to the total is Qα/QNF = 0.2. Since α particles are charged particles, α particles can heat
the plasma by coulomb collision (see sec.2.8). If the total kinetic energy (output energy) of α
particles contributes to heat the plasma, the condition Pheat = 0.2PNF can sustain the necessary
high temperature of the plasma without heating from outside. This condition is called ignition
condition, which corresponds the case of η = 0.2.
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Fig.1.4 Condition of D-T fusion core plasma in nτE -T diagram in the case of η = 0.3, critical
condition (η = 1) and ignition condition (η = 0.2).
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Ch.2 Plasma Characteristics

2.1 Velocity Space Distribution Function, Electron and Ion Temperatures

Electrons as well as ions in a plasma move with various velocities. The number of electrons
in a unit volume is the electron density ne and the number of electrons dne(vx) with the x
component of velocity between vx and vx + dvx is given by

dne(vx) = fe(vx)dvx.

Then fe(vx) is called electron’s velocity space distribution function. When electrons are in
thermally equilibrium state with the electron temperature Te, the velocity space distribution
function becomes following Maxwell distribution:

fe(vx) = ne
(
β

2π

)1/2
exp

(
−βv

2
x

2

)
, β =

me

κTe
.

By the definition the velocity space distribution function satisfies following relation:∫ ∞

−∞
fe(vx)dvx = ne.

Maxwell distribution function in three dimensional velocity space is given by

fe(vx, vy, vz) = ne
(
me

2πκTe

)3/2
exp

(
−me(v2x + v2y + v2z)

2κTe

)
. (2.1)

Ion distribution function is also defined by the same way as the electron’s case. The mean square
of velocity v2x is given by

v2T =
1
n

∫ ∞

−∞
v2xf(vx)dvx =

κT

m
. (2.2)

The pressure p is

p = nκT.

Particle flux in the x direction per unit area Γ+,x is given by

Γ+,x =
∫ ∞

0
vxf(vx)dvx = n

(
κT

2πm

)1/2
.

When an electron beam with the average velocity vb is injected into a plasma with a Maxwell
distribution, the distribution function becomes humped profile as is shown in fig.2.1(b). Follow-
ing expression can be used for the modeling of the distribution function of a plasma with an
electron beam:

fe(vz) = ne
(
me

2πκTe

)1/2
exp

(
−mev

2
z

2κTe

)
+ nb

(
me

2πκTb

)1/2
exp

(
−me(vz − vb)2

2κTb

)
.
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Fig.2.1 (a) Velocity space distribution function of Maxwellian with electron temperature Te. (b)
velocity space distribution function of Maxwellian plasma with electron temterature Te and injectedelectron beam with the average velocity vb.

2.2 Plasma Frequency, Debye Length

Let us consider the case where a small perturbation occurs in a uniform plasma and the
electrons in the plasma move by the perturbation. It is assumed that ions do not move because
the ion’s mass is much more heavy than electron’s. Due to the displacement of electrons, electric
charges appear and an electric field is induced. The electric field is given by Poisson’s equation:

ε0∇ · E = −e(ne − n0).
Electrons are accelerated by the electric field:

me
dv

dt
= −eE.

Due to the movement of electrons, the electron density changes:

∂ne
∂t

+∇ · (nev) = 0.

Denote ne − n0 = n1 and assume |n1| � n0, then we find

ε0∇ · E = −en1, me
∂v

∂t
= −eE, ∂n1

∂t
+ n0∇ · v = 0.

For simplicity the displacement is assumed only in the x direction and is sinusoidal:

n1(x, t) = n1 exp(ikx− iωt).
Time differential ∂/∂t is replaced by −iω and ∂/∂x is replaced by ik, then

ikε0E = −en1, − iωmev = −eE, − iωn1 = −ikn0v
so that we find

ω2 =
n0e

2

ε0me
. (2.3)

This wave is called electron plasma wave or Langmuir wave and its frequency is called electron
plasma frequency Πe:

Πe =

(
nee

2

ε0me

)1/2

= 5.64× 1011
(
ne
1020

)1/2
rad/sec.

There is following relation between the plasma frequency and Debye length λD:

λDΠe =
(
κTe
me

)1/2
= vTe.
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Fig.2.2 Larmor motion of charged particle in magnetic field

2.3 Cyclotron Frequency, Larmor Radius

The equation of motion of charged particle with the mass m and the charge q in an electric
and magnetic field E, B is given by

m
dv

dt
= q(E + v × B). (2.4)

When the magnetic field is homogenous and is in the z direction and the electric field is zero,
the equation of motion becomes v̇ = (qB/m)(v × b) (b = B/B) and

vx = −v⊥ sin(Ωt+ δ),

vy = v⊥ cos(Ωt+ δ),

vz = vz0,

Ω = −qB
m
. (2.5)

The solution of these equation is a spiral motion around the magnetic line of force with the
angular velocity of Ω (see fig.2.2). This motion is called Larmor motion. The angular frequency
Ω is called cyclotron (angular) frequency. Denote the radius of the orbit by ρΩ, then the
centrifugal force is mv2⊥/ρΩ and Lorentz force is qv⊥B. Since both forces must be balanced, we
find

ρΩ =
mv⊥
| q | B . (2.6)

This radius is called Larmor radius. The center of Larmor motion is called guiding center.
Electron’s Larmor motion is right-hand sence (Ωe > 0), and ion’s Larmor motion is left-hand
sence (Ωi < 0) (see fig.2.2). When B = 1T, κT = 100 eV, the values of Larmor radius and
cyclotron freqency are given in the following table:

B=1T, κT=100eV electron 　 proton
thermal velocity vT = (κT/m)1/2 4.2× 106 m/s 9.8× 104 m/s
Larmor radiusρΩ 23.8 µm 10.2mm
(angular) cyclotron frequencyΩ 1.76× 1011/s −9.58× 107/s
cyclotron freqeuncyΩ/2π 28GHz −15.2MHz
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Fig.2.3 Drift motion of guiding center in electric and gravitational field (conceptional drawing).

Fig.2.4 Radius of curvature of line of magnetic force

2.4 Drift Velocity of Guiding Center

When a uniform electric field E perpendicular to the uniform magnetic field is superposed,
the equation of motion is reduced to

m
du

dt
= q(u × B)

by use of

v = uE + u, uE =
E × b

B
. (2.7)

Therefore the motion of charged particle is superposition of Larmor motion and drift motion uE
of its guiding center. The direction of guiding center drift by E is the same for both ion and
electron (fig.2.3). When a gravitational field g is superposed, the force is mg, which corresponds
to qE in the case of electric field. Therefore the drift velocity of the guiding center due to the
gravitation is given by

ug =
m

qB
(g × b) = −g × b

Ω
. (2.8)

The directions of ion’s drift and electron’s drift due to the gravitation are opposite with each
other and the drift velocity of ion guiding center is much larger than electron’s one (see fig.2.3).
When the magnetic and electric fields change slowly and gradually in time and in space (|ω/Ω| �
1, ρΩ/R � 1), the formulas of drift velocity are valid as they are. However because of the
curvature of field line of magnetic force, centrifugal force acts on the particle which runs along
a field line with the velocity of v‖. The acceleration of centrifugal force is

gcurv =
v2‖
R

n

where R is the radius of curvature of field line and n is the unit vector with the direction from
the center of the curvature to the field line (fig.2.4).
Furthermore, as is described later, the resultant effect of Larmor motion in an inhomogeneous

magnetic field is reduced to the acceleration of

g∇B = −v
2
⊥/2
B

∇B.
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Therefore drift velocity of the guiding center due to inhomogenous curved magnetic field is given
by the drift approximation as follows:

ug = − 1
Ω

(
v2‖
R

n − v2⊥
2

∇B
B

)
× b. (2.9)

The first term is called curvature drift and the second term is called∇B drift. Since∇×B = µ0j,
the vector formula reduces

1
2B

∇(B · B) = (b · ∇)B + b × (∇× B) =
∂

∂l
(Bb) + b × µ0j

=
∂B

∂l
b +B

∂b

∂l
− µ0∇p

B
=
∂B

∂l
b −Bn

R
− µ0∇p

B
.

We used the following relation (see fig.2.4)

∂b

∂l
= −n

R
.

Then we have

n × b

R
= −

(∇B
B

+ µ0
∇p
B2

)
× b.

If ∇p is much smaller than ∇B2/(2µ0), we find

ug = − 1
Ω

v2‖ + v
2
⊥/2

R
(n × b).

The parallel motion along the magnetic field is given by

m
dv‖
dt

= qE‖ +mg‖ −
mv2⊥/2
B

∇‖B

where l is the length along the field line.
Let us consider the effect of inhomogeneity of magnetic field on gyrating charged particle. The

x component of Lorentz force F L = qv × B perpendicular to the magnetic field (z direction)
and the magnitude B of the magnetic field near the guiding center are

FLx = qvyB = −|q|v⊥ cos θB

B = B0 +
∂B

∂x
ρΩ cos θ +

∂B

∂y
ρΩ sin θ.

The time average of x component of Lorentz force is given by 〈FLx〉 = 1
2(∂B/∂x)(−|q|)v⊥ρΩ and

the y component is also given by the same way, and we find (see fig.2.5)

〈F L〉⊥ = −mv
2
⊥/2
B

∇⊥B.

Next it is necessary to estimate the time average of z component of Lorentz force. The equation
∇ ·B = 0 near the guiding center in fig.2.5 becomes Br/r+ ∂Br/∂r + ∂Bz/∂z = 0 and we find

〈FLz〉 = −〈qvθBr〉 = |q|v⊥ρΩ∂Br

∂r
= −mv

2
⊥/2
B

∂B

∂z
,

since r is very small. Thus the necessary expression of g∇B is derived.
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Fig.2.5 Larmor motion in inhomogeneous magnetic field.

2.5 Magnetic Moment, Mirror Confinement, Longitudinal Adiabatic Constant

A current loop with the current I encircling the area S has the magnetic moment of µm = IS.
Since the current and encircling area of gyrating Larmor motion are I = qΩ/2π, S = πρ2Ω
respectively, it has the magnetic moment of

µm =
qΩ

2π
πρ2Ω =

mv2⊥
2B

. (2.10)

This physical quantity is adiabatically invariant as is shown later in this section. When the
magnetic field changes slowly, the magnetic moment is conserved. Therefore if B is increased,
mv2⊥ = µmB is also increased and the particles are heated. This kind of heating is called
adiabatic heating.
Let us consider a mirror field as is shown in fig.2.6, in which magnetic field is weak at the

center and is strong at both ends of mirror field. For simplicity the electric field is assumed to be
zero. Since Lorentz force is perpendicular to the velocity, the magnetic field does not contribute
the change of kinetic energy and

mv2‖
2

+
mv2⊥
2

=
mv2

2
= E = const. (2.11)

Since the magnetic moment is conserved, we find

v‖ = ±
(
2
m
E − v2⊥

)1/2
= ±

(
v2 − 2

m
µmB

)1/2
.

When the particle moves toward the open ends, the magnetic field becomes large and v‖ becomes
small or even zero. Since the force along the parallel direction to the magnetic field is −µm∇‖B,
the both ends of the mirror field repulse charged particles as a mirror reflects light. The ratio
of magnitude of magnetic field at open end to the central value is called mirror ratio:

RM =
BM

B0
.

Let us denote the parallel and perpendicular components of the velocity at the mirror center
by v‖0 and v⊥0 respectively. The value v2⊥ at the position of maximum magnetic field BM is
given by

v2⊥M =
BM

B0
v2⊥0.

If this value is larger than v2 = v20 , this particle can not pass through the open end, so that the
particle satisfying the following condition is reflected and is trapped in the mirror field:

(
v⊥0
v0

)2
>
B0

BM
=

1
RM

. (2.12)
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Fig.2.6 Mirror field and loss cone in v‖ - v⊥ space.

Particles in the region where sin θ ≡ v⊥0/v0 satisfies

sin2 θ ≤ 1
RM

are not trapped and the region is called loss cone in v‖ - v⊥ space (see Fig.2.6).
Let us check the invariance of µm in the presence of a slowly changing magnetic field (|∂B/∂t| �

|ΩB|). Scalar product of v⊥ and the equation of motion is

mv⊥ · dv⊥
dt

=
d
dt

(
mv2⊥
2

)
= q(v⊥ · E⊥).

During one period 2π/|Ω| of Larmor motion, the change ∆W⊥ of the kinetic energyW⊥ = mv2⊥/2
is

∆W⊥ = q
∫
(v⊥ · E⊥)dt = q

∮
E⊥ · ds = q

∫
(∇× E · n)dS

where
∮
ds is the closed line integral along Larmor orbit and

∫
dS is surface integral over the

encircled area of Larmor orbit. Since ∇× E = −∂B/∂t, ∆W⊥ is

∆W⊥ = −q
∫
∂B

∂t
· ndS = |q|πρ2Ω

∂B

∂t
.

The change of magnetic field ∆B during one period of Larmor motion is ∆B = (∂B/∂t)(2π/|Ω|),
we find

∆W⊥ =
mv2⊥
2

∆B
B

=W⊥
∆B
B

and

µm =
W⊥
B

= const.

When a system is periodic in time, the action integral
∮
pdq, in terms of the canonical vari-

ables p, q, is an adiabatic invariant in general. The action integral of Larmor motion is J⊥ =
(−mρΩΩ)2πρΩ = −(4πm/q)µm. J⊥ is called transversal adiabatic invariant.
A particle trapped in a mirror field moves back and forth along the field line between both

ends. The second action integral of this periodic motion

J‖ = m
∮
v‖dl (2.13)

is also another adiabatic invariant. J‖ is called longitudinal adiabatic invariant. As one makes
the mirror length l shorter, 〈v‖〉 increases (for J‖ = 2m〈v‖〉l is conserved), and the particles are
accelerated. This phenomena is called Fermi acceleration.
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Fig.2.7 Probability of collision of a sphere a with spheres b.

The line of magnetic force of mirror is convex toward outside. The particles trapped by the
mirror are subjected to curvature drift and gradient B drift, so that the trapped particles move
back and forth, while drifting in θ direction. The orbit (r, θ) of the crossing point at z = 0
plane of back and forth movement is given by J‖(r, θ, µm, E) = const.

2.6 Coulomb Collision Time, Fast Neutral Beam Injection

The motions of charged particles were analyzed in the previous section without considering
the effects of collisions between particles. In this section, phenomena associated with Coulomb
collisions will be discussed. Let us start from a simple model. Assume that a sphere with the
radius a moves with the velocity v in the region where spheres with the radius b are filled with
the number density n (see fig.2.7). When the distance between the two particles becomes less
than a+ b, collision takes place. The cross section σ of this collision is σ = π(a+ b)2. Since the
sphere a moves by the distance l = vδt during δt, the probability of collision with the sphere b
is

nlσ = nσvδt

since nl is the possible number of the sphere b, with which the sphere a within a unit area of
incidence may collides, and nlσ is the total cross section per unit area of incidence during the
period of δt. Therefore the inverse of collision time tcoll is

(tcoll)−1 = nσv.

In this simple case the cross section σ of the collision is independent of the velocity of the
incident sphere a. However the cross section is dependent on the incident velocity in general.

Let us consider strong Coulomb collision of an incident electron with ions (see fig.2.8) in
which the electron is deflected strongly after the collision. Such a collision can take place when
the magnitude of electrostatic potential of the electron at the closest distance b is the order of
the kinetic energy of incident electron, that is,

Ze2

4πε0b
=
mev

2
e

2
.

The cross section of the strong Coulomb collision is σ = πb2. The inverse of the collision time

Fig.2.8 Coulomb collision of electron with ion.
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of the strong Coulomb collision is

1
tcoll

= niσve = niveπb2 =
niπ(Ze2)2ve

(4πε0mev2e/2)2
=

Z2e4ni
4πε20m2

ev
3
e

.

Since Coulomb force is long range interaction, a test particle is deflected by small angle even
by a distant field particle, which the test particle does not become very close to. As is described
in sec.1.2, the Coulomb field of a field particle is not shielded inside the Debye sphere with
the radius of Debye length λD and there are many field particles inside the Debye sphere in the
usual laboratory plasmas (weakly coupled plasmas). Accumulation of many collisions with small
angle deflection results in large effect. When the effect of the small angle deflection is taken into
account, the total Coulomb cross section increases by the factor of Coulomb logarithm

lnΛ � ln
(
2λD
b

)
�
∫ λD

b/2

1
r
dr � 15 ∼ 20.

The time derivative of the momentum p‖ parallel to the incident direction of the electron is
given by use of the collision time τei‖ as follows:1,2

dp‖
dt

= − p‖
τei‖

,

1
τei‖

=
Z2e4ni lnΛ
4πε20m2

ev
3
e

(2.14)

where τei‖ indicates the deceleration time of an electron by ions.
When a test particle with the charge q, the mass m and the velocity v collides with the field

particles with the charge q∗, the mass m∗ and the thermal velocity v∗T = (κT ∗/m∗)1/2 in general,
the collision time of the test particle is given by1,2

1
τ‖

=
q2q∗2n∗ lnΛ
4πε20mmrv3

=
(
qq∗n∗

ε0m

)2 lnΛ
4π(mr/m)v3n∗

(2.15)

under the assumption of v > v∗T. mr is the reduced mass mr = mm∗/(m + m∗). Taking the
average of (m/2)v2 = (3/2)κT , 1/τ‖ becomes

1
τ‖

=
q2q∗2n∗ lnΛ

31/212πε20(mr/m1/2)(κT )3/2
. (2.16)

This collision time in the case of electron with ions is

1
τei‖

=
Z2e4ni lnΛ

31/212πε20m
1/2
e (κT )3/2

. (2.17)

This collision time of electron with ions is within 20% of Spitzer’s result4

1
τei‖ Spitzer

=
Z2e4ni lnΛ

51.6π1/2ε20m
1/2
e (κTe)3/2

. (2.18)

When an ion with the charge Z and the mass mi collides with the same ions, the ion-ion collision
time is given by

1
τii‖

=
Z4e4ni lnΛ

31/26πε20m
1/2
i (κTi)3/2

. (2.19)
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Fig.2.9 Elastic collision of test particle M and field particle m in laboratory system (a) and
center-of-mass system (b).

Electron-electron Coulomb collision time can be derived by substitution of mi → me and
Z → 1 into the formula of τii‖.

1
τee‖

=
nee

4 lnΛ

31/26πε20m
1/2
e (κTe)3/2

. (2.20)

However the case of ion to electron Coulomb collision is more complicated to treat because
the assumption vi > v∗T is no longer hold. Let us consider the case that a test particle with
the mass M and the velocity vs collides with a field particle with the mass m. In center-of-
mass system where the center of mass is rest, the field particle m moves with the velocity of
vc = −Mvs/(M +m) and the test particleM moves with the velocity of vs−vc = mvs/(M +m)
(see fig.2.9). Since the total momentum and total kinetic energy of two particles are conserved
in the process of elastic collision, the velocities of the test particle and the field particle do not
change and two particles only deflect their direction by the angle of θ in center-of -mass system.
The velocity vf and scattering angle φ of the test particle after the collision in laboratory system
are given by (see fig.2.9)

v2f = (vs − vc)2 + vc2 + 2(vs − vc)vc cos θ = v2s
(M2 + 2Mm cos θ +m2)

(M +m)2
,

sinφ =
m sin θ

(M2 + 2Mm cos θ +m2)1/2
.

Denote the momentum and the kinetic energy of the test particle before and after the collision
by ps, Es, and pf , Ef respectively, then we find

∆E
Es

≡ Ef − Es

Es
= − 2Mm

(M +m)2
(1− cos θ).

When the average is taken by θ, we obtain the following relations in the case of m/M � 1:

〈∆E
Es

〉 � −2m
M
, 〈∆p‖

ps
〉 � −m

M
.

From the foregoing discussion, the inverse of collision time 1/τie‖ where a heavy ion collides
with light electrons is about me/mi times the value of 1/τei‖ and is given by1,2

1
τie‖

=
me

mi

Z2e4ne lnΛ

(2π)1/23πε20m
1/2
e (κTe)3/2

. (2.21)

When the parallel and perpendicular components of the momentum of a test particle are
denoted by p‖ and p⊥ respectively and the energy by E, there are following relations

E =
p2‖ + p

2
⊥

2m
,
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dp2⊥
dt

= 2m
dE
dt

− 2p‖
dp‖
dt
.

We define the velocity diffusion time τ⊥ in the perpendicular direction to the initial momentum
and the energy relaxation time τ ε by

dp2⊥
dt

≡ p2⊥
τ⊥
,

dE
dt

≡ −E
τ ε

respectively. 1/τ⊥ and 1/τ ε are given by1

1
τ⊥

=
q2q∗2n∗ lnΛ
2πε20v(mv)2

=
q2q∗2n∗ lnΛ
2πε20m2v3

, (2.22)

1
τ ε

=
q2q∗2n∗ lnΛ

4πε20m∗v(mv2/2)
=
q2q∗2n∗ lnΛ
2πε20mm∗v3

(2.23)

respectively under the assumption v > v∗T.
In the case of electron to ion collision, we find

1
τei⊥

� 2
τei‖
, (2.24)

1
τ ε
ei

� me

mi

2
τei‖

. (2.25)

In the case of electron to electron collision, and ion to ion collision, we find

1
τee⊥

� 1
τee‖

,

(
1
τee‖

� 2
Z

1
τei‖

)
, (2.26)

1
τ ε
ee

� 1
τee‖

(2.27)

and

1
τii⊥

� 1
τii‖
, (2.28)

1
τiiε

� 1
τii‖

(2.29)

respectively.
In the case of ion to electron collision we have following relations:1

1
τie⊥

� Z2e4ne lnΛ

(2π)3/2ε20m
1/2
e Ei(κTe)1/2

me

mi
, (2.30)

1
τieε

� Z2e4ne lnΛ

4πε20m
1/2
e (κTe)3/2

4
3(2π)1/2

me

mi
� 1
τie‖

� me

mi

2.77
τei‖

(2.31)

where Ei = (3/2)κTi is the kinetic energy of the ion. The inverse of collision time is called
collisional frequency and is denoted by ν. The mean free path is given by λ = 31/2vT τ .
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High energy neutral particle beams can be injected into plasmas across strong magnetic
fields. The neutral particles are converted to high-energy ions by means of charge exchange
with plasma ions or ionization. The high energy ions (massmb, electric chargeZbe, energyEb)
running through the plasma slow down by Coulomb collisions with the plasma ions (mi, Zi) and
electrons (me,−e) and the beam energy is thus transferred to the plasma. This method is called
heating by neutral beam injection (NBI). The rate of change of the fast ion’s energy, that is, the
heating rate of plasma is

dEb

dt
= −Eb

τ ε
bi

− Eb

τ ε
be

,

1
τ ε
bi

=
(Zbe)2(Zie)2 lnΛni

2πε20mimbv
3
bi

and3

dEb

dt
= −Z

2
be

4 lnΛne
4πε20mevbi

(∑ me

mi

niZ
2
i

ne
+

4
3π1/2

(
meEb

mbκTe

)3/2)
(2.32)

when beam ion’s velocity vb is much less (say 1/3) than the plasma electron thermal velocity
and much larger (say 2 times) than the plasma ion thermal velocity. The first term in the right-
hand side is due to beam-ion collisions and the second term is due to beam-electron collisions
respectively. A critical energy Ecr of the beam ion, at which the plasma ions and electrons are
heated at equal rates is given by

mv2cr
2

= Ecr = 14.8κTeAb

(
1
ne

∑ niZ
2
i

Ai

)2/3
(2.33)

where Ab, Ai are atomic weights of the injected ion and plasma ion respectively. When the
energy of the injected ion is larger than Ecr, the contribution to the electron heating is dominant.
The slowing down time of the ion beam is given by

τslowdown =
∫ Eb

Ecr

−dEb

(dEb/dt)
=
τ ε
be

1.5
ln

(
1 +

(
E

Ecr

)3/2)
,

1
τ ε
be

=
Z2nee

4 lnΛ

(2π)1/23πε20m
1/2
e (κTe)3/2

me

mb
, (2.34)

where τ ε
be is the energy relaxation time of beam ion with electrons.

2.7 Runaway Electron, Dreicer Field

When a uniform electric field E is applied to a plasma, the motion of a test electron is

me
dv

dt
= −eE − 1

τee(v)
mev,

1
τee

= neσv =
e4 lnΛ

2πε20m2
ev

3
.

The deceleration term decreases as v increases and its magnitude becomes smaller than the
acceleration term | − eE| at a critical value vcr. When v > vcr, the test particle is accelerated.
The deceleration term becomes smaller and the velocity starts to increase without limit. Such
an electron is called a runaway electron. The critical velocity is given by

mev
2
cr

2e
=
e2n lnΛ
4πε20E

. (2.35)
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The necessary electric field for a given electron velocity to be vcr is called Dreicer field. Taking
lnΛ = 20, we find

mev
2
cr

2e
= 5× 10−16

n

E
. (MKS units)

When n = 1019m−3, E = 1V/m, electrons with energy larger than 5keV become runaway
electrons.

2.8 Electric Resistivity, Ohmic Heating

When an electric field less than Dreicer field is applied to a plasma, electrons are accelerated
and are decelerated by collisions with ions to be an equilibrium state as follows:

me(ve − vi)
τei

= −eE.

The current density j induced by the electric field becomes

j = −ene(ve − vi) = e2neτei
me

E.

The specific electric resistivity defined by ηj = E is4

η =
meνei‖
nee2

=
(me)1/2Ze2 lnΛ

51.6π1/2ε20
(κTe)

−3/2 (2.36)

= 5.2× 10−5Z lnΛ
(
κTe
e

)−3/2
. (Ωm)

The specific resistivity of a plasma with Te = 1keV, Z = 1 is η = 3.3× 10−8 Ωm and is slightly
larger than the specific resistivity of copper at 20◦C, 1.8 × 10−8 Ωm. When a current density
of j is induced, the power ηj2 per unit volume contributes to electron heating. This heating
mechanism of electron is called Ohmic heating.

2.9 Variety of Time and Space Scales in Plasmas

Various kinds of plasma characteristics have been described in this chapter. Characteristic
time scales are a period of electron plasma frequency 2π/Πe, an electron cyclotron period 2π/Ωe,
an ion cyclotron period 2π/|Ωi|, electron to ion collision time τei, ion to ion collision time τii
and electron-ion thermal energy relaxation time τ ε

ei. Alfv́en velocity vA, which is a propagation
velocity of magnetic perturbation, is v2A = B2/(2µ0ρm) (ρm is mass density)(see chs.5,10). Alfv́en
transit time τH = L/vA is a typical magnetohydrodynamic time scale, where L is a plasma
size. In a medium with the specific resistivity η, electric field diffuses with the time scale of
τR = µ0L2/η (see ch.5). This time scale is called resistive diffusion time.
Characteristic scales in length are Debye lengthλD, electron Larmor radius ρΩe, ion Larmor

radius ρΩi, electron-ion collision mean free pathλei and a plasma sizeL.
The relations between space and time scales are λDΠe = vTe, ρΩeΩe = vTe, ρΩi|Ωi| = vTi,

λei/τei � 31/2vTe, λii/τii � 31/2vTi, L/τH = vA, where vTe, vTi are the thermal velocities v2Te =
κTe/me, v

2
Ti = κTi/mi. The drift velocity of guiding center is vdrift ∼ κT/eBL = vT(ρΩ/L).

Parameters of a typical D-T fusion plasma with ne = 1020m−3, κTe = κTi = 10keV, B =
5T, L = 1m are followings:

2π/Πe = 11.1ps (Πe/2π = 89.8GHz) λD = 74.5µm
2π/Ωe = 7.1ps (Ωe/2π = 140GHz) ρΩe = 47.6µm
2π/|Ωi| = 26ns (|Ωi|/2π = 38MHz) ρΩi = 2.88mm
τei = 0.34ms λei = 25km
τii = 5.6ms λii = 9.5km
τ ε
ei = 0.3 s
τH = 0.13µs
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τR = 1.2 × 103 s.
The ranges of scales in time and space extend to τRΠe ∼ 1014, λei/λD ∼ 1.6× 108 and the wide
range of scales suggests the variety and complexity of plasma phenomena.
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Ch.3 Magnetic Configuration and Particle Orbit

In this chapter, the motion of individual charged particles in a more general magnetic fields
is studied in detail. There are a large number of charged particles in a plasma, thus movements
do affect the magnetic field. But this effect is neglected here.

3.1 Maxwell Equations

Let us denote the electric intensity, the magnetic induction, the electric displacement and the
magnetic intensity by E, B, D, and H , respectively. When the charge density and current
density are denoted by ρ, and j, respectively, Maxwell equations are

∇× E +
∂B

∂t
= 0, (3.1)

∇× H − ∂D

∂t
= j, (3.2)

∇ · B = 0, (3.3)

∇ · D = ρ. (3.4)

ρ and j satisfy the relation

∇ · j + ∂ρ

∂t
= 0. (3.5)

Eq.(3.2),(3.4) and (3.5) are consistent with each other due to the Maxwell displacement current
∂D/∂t. From eq.(3.3) the vector B can be expressed by the rotation of the vector A:

B = ∇× A. (3.6)

A is called vector potential. If eq.(3.6) is substituted into eq.(3.1), we obtain

∇×
(

E +
∂A

∂t

)
= 0. (3.7)

The quantity in parenthesis can be expressed by a scalar potential φ and

E = −∇φ− ∂A

∂t
. (3.8)

Since any other set of φ′ and A′,

A′ = A −∇ψ, (3.9)

φ′ = φ+
∂ψ

∂t
(3.10)

can also satisfy eqs.(3.6),(3.8) with an arbitrary ψ, φ′ and A′ are not uniquely determined.
When the medium is uniform and isotropic, B and D are expressed by

D = εE, B = µH.
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ε and µ are called dielectric constant and permeability respectively. The value of ε0 and µ0 in
vacuum are

ε0 =
107

4πc2
C2 · s2/kg ·m3 = 8.854× 10−12 F/m

µ0 = 4π × 10−7 kg ·m/C2 = 1.257× 10−6 H/m

1
ε0µ0

= c2

where c is the light speed in vacuum (C is Coulomb). Plasmas in magnetic field are anisotropic
and ε and µ are generally in tensor form. In vacuum, eqs (3.2),(3.3) may be reduced to

∇×∇× A+
1
c2
∇∂φ

∂t
+
1
c2

∂2A

∂t2
= µ0j, (3.11)

∇2φ+∇∂A

∂t
= − 1

ε0
ρ. (3.12)

As φ and A have arbitrariness of ψ as shown in eqs.(3.9),(3.10), we impose the supplementary
condition (Lorentz condition)

∇ · A+ 1
c

∂φ

∂t
= 0. (3.13)

Then eqs.(3.11),(3.12) are reduced to the wave equations

∇2φ− 1
c2

∂2φ

∂t2
= − 1

ε0
ρ, (3.14)

∇2A − 1
c2

∂2A

∂t2
= −µ0j. (3.15)

In derivation of (3.15), a vector relation

∇× (∇× a)−∇(∇ · a) = −∇2a

is used, which is valid only in (x, y, z) coordinates. The propagation velocity of electromagnetic
field is 1/(µ0ε0)1/2 = c in vacuum.
When the fields do not change in time, the field equations reduce to

E = −∇φ, B = ∇× A,

∇2φ = − 1
ε0

ρ, ∇2A = −µj, ∇ · A = 0, ∇ · j = 0.

The scalar and vector potentials φ and A at an observation point P (given by the position vector
r) are expressed in terms of the charge and current densities at the point Q (given by r′) by
(see fig.3.1)

φ(r) =
1
4πε0

∫
ρ(r′)
R
dr′, (3.16)

A(r) =
µ0

4π

∫
j(r′)
R
dr′ (3.17)

where R ≡ r − r′, R = |R| and dr′ ≡ dx′d′dz′. Accordingly E and B are expressed by
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Fig.3.1 Observation point P and the location Q of charge or current.

Fig.3.2 Magnetic surface ψ = const., the normal ∇ψ and line of magnetic force.

E =
1
4πε0

∫
R

R3
ρdr′, (3.18)

B =
µ0

4π

∫
j × R

R3
dr′. (3.19)

When the current distribution is given by a current I flowing in closed loops C, magnetic
intensity is described by Biot-Savart equation

H =
B

µ0
=

I

4π

∮
c

s × n

R2
ds (3.20)

where s and n are the unit vectors in the directions of ds and R, respectively.

3.2 Magnetic Surface

A magnetic line of force satisfies the equations

dx
Bx
=
dy
By
=
dz
Bz
=
dl
B

(3.21)

where l is the length along a magnetic line of force (dl)2 = (dx)2+ (dy)2+ (dz)2. The magnetic
surface ψ(r) = const. is such that all magnetic lines of force lie upon on that surface which
satisfies the condition

(∇ψ(r)) · B = 0. (3.22)

The vector ∇ψ(r) is normal to the magnetic surface and must be orthogonal to B (see fig.3.2).
In terms of cylindrical coordinates (r, θ, z) the magnetic field B is given by

Br =
1
r

∂Az

∂θ
− ∂Aθ

∂z
, Bθ =

∂Ar

∂z
− ∂Az

∂r
, Bz =

1
r

∂

∂r
(rAθ)− 1

r

∂Ar

∂θ
. (3.23)

In the case of axi-symmetric configuration (∂/∂θ = 0),

ψ(r, z) = rAθ(r, z) (3.24)

satisfies the condition (3.22) of magnetic surface; Br∂(rAθ)/∂r+Bθ · 0 +Bz∂(rAθ)/∂z = 0.
The magnetic surface in the case of translational symmetry (∂/∂z = 0) is given by

ψ(r, θ) = Az(r, θ) (3.25)
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and the magnetic surface in the case of helical symmetry, in which ψ is the function of r and
θ − αz only, is given by

ψ(r, θ − αz) = Az(r, θ − αz) + αrAθ(r, θ − αz) (3.26)

where α is helical pitch parameter.

3.3 Equation of Motion of a Charged Particle

The equation of motion of a particle with the mass m and the charge q in an electromagnetic
field E, B is

m
d2r

dt2
= F = q

(
E +

dr
dt

× B

)
. (3.27)

Since Lorentz force of the second term in the right-hand side of eq.(3.27) is orthogonal to the
velocity v, the scalar product of Lorentz force and v is zero. The kinetic energy is given by

mv2

2
− mv0

2

2
= q

∫ t

t=t0
E · vdt.

When the electric field is zero, the kinetic energy of charged particle is conserved. The x
component of eq.(3.27) in the orthogonal coordinates (x, y, z) is written by md2x/dt2 = q(Ex +
(dy/dt)Bz−(dz/dt)By), However the radial component of eq.(3.27) in the cylindrical coordinates
(r, θ, z) is md2r/dt2 �= q(Er + r(dθ/dt)Bz − (dz/dt)Bθ). This indicates that form of eq.(3.27) is
not conserved by the coordinates transformation. When generalized coordinates qi (i = 1, 2, 3)
are used, it is necessary to utilize the Lagrangian formulation. Lagrangian of a charged particle
in the field with scalar and vector potentials φ, A is given by

L(qi, q̇i, t) =
mv2

2
+ qv · A − qφ. (3.28)

Lagrangians in the orthogonal and cylindrical coordinates are given by

L(x, y, z, ẋ, ẏ, ż, t) =
m

2
(ẋ2 + ẏ2 + ż2) + q(ẋAx + ẏAy + żAz)− qφ,

L(r, θ, z, ṙ, θ̇, ż, t) =
m

2
(ṙ2 + (rθ̇)2 + ż2) + q(ṙAr + rθ̇Aθ + żAz)− qφ

respectively. The equation of motion in Lagrangian formulation is

d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (3.29)

The substitution of (3.28) into (3.29) in the case of the orthogonal coordinates yields

d
dt
(mv̇x + qAx)− q

(
v · ∂A

∂x
− ∂φ

∂x

)
= 0,

mẍ = q

(
−∂Ax

∂t
−
(
dx
dt

∂

∂x
+
dy
dt

∂

∂y
+
dz
dt

∂

∂z

)
Ax + v · ∂A

∂x
− ∂φ

∂x

)

= q(E + v × B)x,

and this equation is equivalent to eq.(3.27). Lagrangian equation of motion with respect to the
cylindrical coordinates is mr̈ = q(E + v × B)r + m(rθ̇)2/r and the term of centrifugal force
appears.
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Canonical transformation is more general than the coordinates transformation. Hamiltonian
equation of motion is conserved with respect to canonical transformation. In this formulation
we introduce momentum coordinates (pi), in addition to the space coordinates (qi), defined by

pi ≡ ∂L

∂q̇i
(3.30)

and treat pi as independent variables. Then we can express q̇i as a function of (qj, pj , t) from
eq.(3.30) as follows:

q̇i = q̇i(qj , pj , t). (3.31)

The Hamiltonian H(qi, pi, t) is given by

H(qi, pi, t) ≡ −L(qi, q̇i(qj, pj , t), t) +
∑

i

piq̇i(qj, pj , t). (3.32)

The x component of momentum px in the orthogonal coordinates and θ component pθ in the
cylindrical coordinates are written as examples as follows:

px = mẋ+ qAx, ẋ = (px − qAx)/m,

pθ = mr2θ̇ + qrAθ, θ̇ = (pθ − qrAθ)/(mr2).

Hamiltonian in the orthogonal coordinates is

H=
1
2m

(
(px−qAx)2+(py−qAy)2+(pz−qAz)2

)
+ qφ(x, y, z, t)),

and Hamiltonian in the cylindrical coordinates is

H=
1
2m

(
(pr−qAr)2+

(pθ−qrAθ)2

r2
+(pz−qAz)2

)
+ qφ(r, θ, z, t).

The variation of Lagrangian L is given by

δL =
∑

i

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
=
∑

i

(ṗiδqi + piδq̇i) = δ

(∑
i

piq̇i

)
+
∑

i

(ṗiδqi − q̇iδpi)

and

δ(−L+
∑

i

piq̇i) =
∑

i

(q̇iδpi − ṗiδqi), δH(qi, pi, t) =
∑

i

(q̇iδpi − ṗiδqi).

Accordingly Hamiltonian equation of motion is reduced to

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
. (3.33)

Equation (3.33) in the orthogonal coordinates is

dx
dt
=

px − qAx

m
,

dpx

dt
=

q

m

∂A

∂x
· (p − qA)− q

∂φ

∂x
,

m
d2x

dt2
=
dpx

dt
− q
dAx

dt
= q

[(
v · ∂A

∂x

)
− ∂φ

∂x
−
(
∂Ax

∂t
+ (v · ∇)Ax

)]

= q(E + v × B)x

and it was shown that eq.(3.33) is equivalent to eq.(3.27).
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Fig.3.3 Magnetic surface (dotted line) and particle orbit (solid line).

When H does not depend on t explicitly (when φ ,A do not depend on t),

dH(qi, pi)
dt

=
∑

i

(
∂H

∂qi

dqi

dt
+

∂H

∂pi

dpi

dt

)
= 0,

H(qi, pi) = const. (3.34)

is one integral of Hamiltonian equations. This integral expresses the conservation of energy.
When the electromagnetic field is axially symmetric, pθ is constant due to ∂H/∂θ = 0 as is

seen in eq.(3.33) and

pθ = mr2θ̇ + qrAθ = const. (3.35)

This indicates conservation of the angular momentum. In the case of translational symmetry
(∂/∂z = 0), we have

pz = mż + qAz = const. (3.36)

3.4 Particle Orbit in Axially Symmetric System

The coordinates (r∗, θ∗, z∗) on a magnetic surface of an axially symmetric field satisfy

ψ = r∗Aθ(r∗, z∗) = cM.

On the other hand the coordinates (r, θ, z) of a particle orbit are given by the conservation of
the angular momentum (3.35) as follows;

rAθ(r, z) +
m

q
r2θ̇ =

pθ

q
= const..

If cM is chosen to be cM = pθ/q, the relation between the magnetic surface and the particle orbit
is reduced to

rAθ(r, z) − r∗Aθ(r∗, z∗) = −m

q
r2θ̇.

The distance δ (fig.3.3) between the magnetic surface and the orbit is given by

δ = (r − r∗)er + (z − z∗)ez,

δ · ∇(rAθ) = −m

q
r2θ̇.

From the relations rBr = −∂(rAθ)/∂z, rBz = ∂(rAθ)/∂r, we find

[−(z − z∗)Br + (r − r∗)Bz] = −m

q
rθ̇.
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Fig.3.4 The dotted lines are lines of magnetic force and the solid lines are particle orbit in cusp field.

This expression in the left-hand side is the θ component of the vector product ofBp = (Br, 0, Bz)
and δ = (r − r∗, 0, z − z∗). Then this is reduced to

(Bp × δ)θ = −m

q
rθ̇.

Denote the magnitude of poloidal component Bp (component within (rz) plane) of B by Bp.
Then we find the relation −Bpδ = −(m/q)vθ (vθ = rθ̇) and

δ =
mvθ

qBp
= ρΩp.

This value is equal to the Larmor radius corresponding to the magnetic field Bp and the tan-
gential velocity vθ. If cM is chosen to be cM = (pθ −m〈rvθ〉)/q (〈rvθ〉 is the average of rvθ), we
find

δ =
m

qBp

(
vθ − 〈rvθ〉

r

)
. (3.37)

Let us consider a cusp field as a simple example of axi-symmetric system. Cusp field is given
by

Ar = 0, Aθ = arz, Az = 0, (3.38)

Br = −ar, Bθ = 0, Bz = 2az. (3.39)

From eq.(3.34) of energy conservation and eq.(3.35) of angular momentum conservation, we
find

mrθ̇ =
pθ

r
− qazr,

m

2
(ṙ2 + ż2) +

(pθ − qar2z)2

2mr2
=W

(
=

m

2
v2
0

)
.

These equations correspond to the motion of particle in a potential of X = (pθ−qar2z)2/(2mr2).
When the electric field is zero, the kinetic energy of the particle is conserved, the region con-
taining orbits of the particle with the energy of mv2

0/2 is limited by (see fig.3.4)

X =
1
2m

(
pθ

r
− qarz

)2

<
mv2

0

2
.
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Fig.3.5 Toroidal drift.

3.5 Drift of Guiding Center in Toroidal Field

Let us consider the drift of guiding center of a charged particle in a simple toroidal field
(Br = 0, Bϕ = B0R0/R, Bz = 0) in terms of cylindrical coordinates (R,ϕ, z). The ϕ component
Bϕ is called toroidal field and Bϕ decreases in the form of 1/R outward. The magnetic lines of
force are circles around z axis. The z axis is called the major axis of the torus. As was described
in sec.2.4, the drift velocity of the guiding center is given by

vG = v‖eϕ +
m

qBϕR

(
v2
‖ +

v2
⊥
2

)
ez.

Particles in this simple torus run fast in the toroidal direction and drift slowly in the z direction
with the velocity of

vdr =
m

qB0R0

(
v2
‖ +

v2
⊥
2

)
∼
(
ρΩ

R0

)
v. (3.40)

This drift is called toroidal drift. Ions and electrons drift in opposite direction along z axis. As
a consequence of the resultant charge separation, an electric field E is induced and both ions
and electrons drift outward by E × B/B2 drift. Consequently, a simple toroidal field cannot
confine a plasma (fig.3.5), unless the separated charges are cancelled or short-circuited by an
appropriate method. If lines of magnetic force connect the upper and lower regions as is shown
in fig.3.6, the separated charges can be short-circuited, as the charged particles can move freely
along the lines of force. If a current is induced in a toroidal plasma, the component of magnetic
field around the magnetic axis (which is also called minor axis) is introduced as is shown in
fig.3.6. This component Bp is called poloidal magnetic field. The radius R of the magnetic axis
is called major radius of torus and the radius a of the plasma cross section is called minor radius.
Denote the radial coordinate in plasma cross section by r. When a line of magnetic force circles
the major axis of torus and come back to cross the plane P, the cross point rotates around the
minor axis O by an angle ι in P, there is following relation:

rι

2πR
=

Bp

Bϕ
.

The angle ι is called rotational transform angle and is given by

ι

2π
=

R

r

Bp

Bϕ
. (3.41)

A ≡ R/a is called aspect ratio.

3.5a Guiding Center of Circulating Particles
When a particle circulates torus with the velocity of v‖, it takes T = 2πR0/v‖. Accordingly

the particle rotates around the minor axis with angular velocity of

ω =
ι

T
=

ιv‖
2πR0



3.5 Drift of Guiding Center in Toroidal Field 29

Fig.3.6 The major axis A, the minor axis M of toroidal field and rotational transform angle ι.

Fig.3.7 Orbits (solid lines) of guiding center of circulating ions and electrons and magnetic surfaces
(dotted lines).

and drifts in z direction with the velocity of vdr. Introducing x = R −R0 coordinate, the orbit
of the guiding center of the particle is given by

dx
dt
= −ωz,

dz
dt
= ωx+ vdr.

The solution is (
x+

vdr

ω

)2

+ z2 = r2.

If a rotational transform angle is introduced, the orbit becomes a closed circle and the center of
orbit circle deviates from the center of magnetic surface by the amount of

∆ = −vdr

ω
= −mv‖

qB0

2π
ι

(
1 +

v2
⊥
2v2

‖

)
, (3.42)

|∆| ∼ ρΩ

(
2π
ι

)

where ρΩ is Larmor radius. As is seen in fig.3.7, the sign of the deviation is ∆ < 0 for the case
of v‖ > 0, q > 0 (ion) since vdr > 0, ω > 0 and the sign becomes ∆ > 0 for the case of v‖ < 0
(opposit to v‖ > 0) q > 0 (ion).

3.5b Guiding Center of Banana Particles
In the case of |Bϕ| � |Bp|, the magnitude of toroidal field is nearly equal to Bϕ and

B =
B0R0

R
=

B0

1 + (r/R) cos θ
 B0

(
1− r

R0
cos θ

)
.
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Fig.3.8 (r, θ) coordinates

Fig.3.9 Banana orbit of ion

Denote the length along magnetic line of force by l, and denote the projection of a location on
the magnetic line of force to (R, z) plane by the coordinates (r, θ) as is shown in fig.3.8. Since
the following relations

rθ

l
=

Bp

B0
, θ =

l

r

Bp

B0
= κl

holds, we find

B = B0

(
1− r

R0
cos(κl)

)
.

If v‖ (parallel component to magnetic field) is much smaller than v⊥ component and satisfies
the condition;

v2
⊥
v2

> 1− r

R
,

v2
‖
v2

<
r

R
(3.43)

the particle is trapped outside in the weak region of magnetic field due to the mirror effect as
is described in sec.2.5 (The mirror ratio is (1/R)/(1/(R + r))). This particle is called trapped
particle. Circulating particle without trapped is called untrapped particles. Since v2

‖ � v2
⊥ for

the trapped particle, the r component of the toroidal drift vdr of trapped particle is given by

ṙ = vdr sin θ =
m

qB0

v2
⊥
2R
sin θ.

The parallel motion of the guiding center is given by (see sec.2.4)

dv‖
dt
= −µm

m

∂B

∂l
,

v̇‖ = −µm

m

r

R
κB0 sinκl = − v2

⊥
2R

Bp

B0
sin θ.

The solution is d
dt

(
r +

m

qBp
v‖

)
= 0,
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r − r0 = − m

qBp
v‖. (3.44)

Here r = r0 indicates the radial coordinate of turning point by mirror effect. Since the orbit is
of banana shape, the trapped particle is also called banana particle (see fig.3.9). The width of
banana ∆b is given by

∆b =
m

qBp
v‖ ∼

mv

qB0

v‖
v

B0

Bp
∼ B0

Bp

(
r

R

)1/2

ρΩ ∼
(
R

r

)1/2 (2π
ι

)
ρΩ. (3.45)

3.6 Orbit of Guiding Center and Magnetic Surface

The velocity of guiding center was derived in sec.2.4 as follows:

vG = v‖b+
1
B
(E × b) +

mv2
⊥/2

qB2
(b ×∇B) +

mv2
‖

qB2
(b × (b · ∇)B) (3.46)

and

µm = mv2
⊥/(2B) = const.

When the electric field E is static and is expressed by E = −∇φ, the conservation of energy

m

2
(v2

‖ + v2
⊥) + qφ =W

holds. Then v‖ is expressed by

v‖ = ±
(
2
m

)1/2

(W − qφ − µmB)1/2. (3.47)

Noting that v‖ is a function of the coodinates, we can write

∇× (mv‖b) = mv‖∇× b+∇(mv‖)× b

= mv‖∇× b+
1
v‖
(−q∇φ− µm∇B)× b

and
v‖
qB

∇× (mv‖b) =
mv2

‖
qB

∇× b+
1
B
(E × b) +

mv2
⊥/2

qB2
(b ×∇B).

Then eq.(3.46) for vG is reduced to

vG = v‖b+

(
v‖
qB

∇× (mv‖b)−
mv2

‖
qB

∇× b

)
+

mv2
‖

qB2
(b × (b · ∇)B)

= v‖b+
v‖
qB

∇× (mv‖b)−
mv2

‖
qB
(∇× b − b × (b · ∇)b).

As the relation ∇(b · b) = 2(b · ∇)b + 2b × (∇ × b) = 0 ( (b · b) = 1 ) holds (see appendix
Mathematical Formula), the third term in right-hand side of the equation for vG becomes
( ) = (∇×b)− (∇×b)⊥ = (∇×b)‖ = (b · (∇×b))b. Since ∇×B = B∇×b+∇B×b = µ0j,
we have b ·∇× b = µ0j‖/B. The ratio of the third term to the first one, which are both parallel
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Fig.3.10 Coordinate system for explanation of Ware’s pinch.

to the magnetic field, is usually small. If the third term can be neglected, eq.(3.46) for vG is
reduced to

drG

dt
=

v‖
B
∇×

(
A+

mv‖
qB

B

)
. (3.48)

The orbit of guiding center is equal to the field line of magnetic field B∗ = ∇ × A∗ with the
vector potential

A∗ ≡ A+
mv‖
qB

B.

By reason analogous to that in sec.3.2, the orbit surface of drift motion of guiding center is given
by

rA∗
θ(r, z) = const. (3.49)

in the case of axi-symmetric configuration.

3.7 Effect of Longitudinal Electric Field on Banana Orbit

In the tokamak configuration, a toroidal electric field is applied in order to induce the plasma
current. The guiding center of a particle drifts by E × B/B2, but the banana center moves in
different way. The toroidal electric field can be described by

Eϕ = −∂Aϕ

∂t

in (R,ϕ, z) coordinates. Since angular momentum is conserved, we can write

R(mRϕ̇+ qAϕ) = const.

Taking the average of foregoing equation over a Larmor period, and using the relation

〈Rϕ̇〉 = Bϕ

B
v‖

we find

R

(
mv‖

Bϕ

B
+ qAϕ

)
= const. (3.50)

For particles in banana motion (v‖ � v⊥), v‖ becomes 0 at the turning points of the banana
orbit. The displacement of a turning point (R,Z) per period ∆t is obtained from

0 = ∆(RAϕ(R,Z)) = ∆r
∂

∂r
RAϕ +∆t

∂

∂t
RAϕ
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where r is the radial coordinate of the magnetic surface. The differentiations of RAϕ = const.
with respect to ϕ and θ are zero, since RAϕ = const. is the magnetic surface. By means of the
relation

1
R

∂

∂r
(RAϕ) =

1
R

(
∂R

∂r

∂(RAϕ)
∂R

+
∂Z

∂r

∂(RAϕ)
∂Z

)

= cos θBZ − sin θBR = Bp,

we obtaine the drift velocity

∆r

∆t
=

Eθ

Bp
. (3.51)

When the sign of Bp produced by the current induced by the electric field Eϕ is taken account
(see fig.3.10), the sign of ∆r/∆t is negative and the banana center moves inward. Since |Bp| �
|Bϕ|  B, the drift velocity of banana center is (B/Bp)2 times as fast as the the drift velocity
EϕBp/B

2 of guiding center of particle. This phenomena is called Ware’s pinch.
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Ch.4 Velocity Space Distribution Function and
Boltzmann’s Equation

A plasma consists of many ions and electrons, but the individual behavior of each particle can
hardly be observed. What can be observed instead are statistical averages. In order to describe
the properties of a plasma, it is necessary to define a distribution function that indicates particle
number density in the phase space whose ordinates are the particle positions and velocities. The
distribution function is not necessarily stationary with respect to time. In sec.4.1, the equa-
tion governing the distribution function f(qi, pi, t) is derived by means of Liouville’s theorem.
Boltzmann’s equation for the distribution function f(x,v, t) is formulated in sec.4.2. When the
collision term is neglected, Boltzmann’s equation is called Vlasov’s equation.

4.1 Phase Space and Distribution Function

A particle can be specified by its coordinates (x, y, z), velocity (vx, vy, vz), and time t. More
generally, the particle can be specified by canonical variables q1, q2, q3, p1, p2, p3 and t in phase
space. When canonical variables are used, an infinitesimal volume in phase space
∆ = δq1δq2δq3δp1δp2δp3 is conserved (Liouville’s theorem). The motion of a particle in phase
space is described by Hamilton’s equations

dqi

dt
=

∂H(qj , pj, t)
∂pi

,
dpi

dt
= −∂H(qj , pj, t)

∂qi
. (4.1)

The variation over time of ∆ is given by

d∆

dt
=
(

d(δq1)
dt

δp1 +
d(δp1)

dt
δq1

)
δq2δp2δq3δp3 + · · · ,

d
dt

δqi = δ

(
∂H

∂pi

)
=

∂2H

∂pi∂qi
δqi,

d
dt

δpi = −δ

(
∂H

∂qi

)
= − ∂2H

∂qi∂pi
δpi,

d∆

dt
=
∑

i

(
∂2H

∂pi∂qi
− ∂2H

∂qi∂pi

)
∆ = 0. (4.2)

Let the number of particles in a small volume of phase space be δN

δN = F (qi, pi, t)δqδp (4.3)

where δq = δq1δq2δq3, δp = δp1δp2δp3, and F (qi, pi, t) is the distribution function in phase space.
If the particles move according to the equation of motion and are not scattered by collisions, the
small volume in phase space is conserved. As the particle number δN within the small phase
space is conserved, the distribution function (F = δN/∆) is also constant, i.e.,

dF

dt
=

∂F

∂t
+

3∑
i=1

(
∂F

∂qi

dqi

dt
+

∂F

∂pi

dpi

dt

)
=

∂F

∂t
+

3∑
i=1

(
∂H

∂pi

∂F

∂qi
− ∂H

∂qi

∂F

∂pi

)
= 0. (4.4)

In the foregoing discussion we did not take collisions into account. If we denote the variation of
F due to the collisions by (δF/δt)coll, eq.(4.4) becomes

∂F

∂t
+

3∑
i=1

(
∂H

∂pi

∂F

∂qi
− ∂H

∂qi

∂F

∂pi

)
=
(

δF

δt

)
coll

. (4.5)
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Fig.4.1 Movement of particles in phase space.

4.2 Boltzmann’s Equation and Vlasov’s Equation

Let us use the space and velocity-space coordinates x1, x2, x3, v1, v2, v3 instead of the canonical
coordinates. The Hamiltonian is

H =
1

2m
(p − qA)2 + qφ, (4.6)

pi = mvi + qAi, (4.7)

qi = xi (4.8)

and

dxi

dt
=

∂H

∂pi
= vi, (4.9)

dpi

dt
= −∂H

∂xi
=
∑
k

(pk − qAk)
m

q
∂Ak

∂xi
− q

∂φ

∂xi
. (4.10)

Consequently eq.(4.5) becomes

∂F

∂t
+

3∑
i=k

vk
∂F

∂xk
+ q

3∑
i=1

(
3∑

k=1

vk
∂Ak

∂xi
− ∂φ

∂xi

)
∂F

∂pi
=
(

δF

δt

)
coll

. (4.11)

By use of eqs.(4.7) (4.8), independent variables are transformed from (qi, pi, t) to (xj , vj , t) and

∂vj(xk, pk, t)
∂pi

=
1
m

δij ,

∂vj(xk, pk, t)
∂xi

= − q

m

∂Aj

∂xi
,

∂vj(xk, pk, t)
∂t

= − q

m

∂Aj

∂t
.

We denote F (xi, pi, t) = F (xi, pi(xj , vj , t), t) ≡ f(xj, vj , t)/m3. Then we have m3F (xi, pi, t) =
f(xj, vj(xi, pi, t), t) and

m3 ∂

∂pi
F (xh, ph, t) =

∂

∂pi
f(xj, vj(xh, ph, t), t) =

∑
j

∂f

∂vj

∂vj

∂pi
=

∂f

∂vi

1
m

,
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m3 ∂

∂xk
F (xh, ph, t) =

∂

∂xk
f(xi, vi(xh, ph, t), t) =

∂f

∂xk
+
∑

i

∂f

∂vi

∂vi

∂xk

=
∂f

∂xk
+
∑

i

∂f

∂vi

(−q

m

)
∂Ai

∂xk

m3 ∂

∂t
F (xh, ph, t) =

∂

∂t
f(xi, vi(xh, ph, t), t) =

∂f

∂t
+
∑

i

∂f

∂vi

(−q

m

)
∂Ai

∂t
.

Accordingly eq.(4.11) is reduced to

∂f

∂t
+
∑

i

∂f

∂vi

(−q

m

)
∂Ai

∂t
+
∑
k

vk

(
∂f

∂xk
+
∑

i

∂f

∂vi

(−q

m

)
∂Ai

∂xk

)

+
∑

i

(∑
k

vk
∂Ak

∂xi
− ∂φ

∂xi

)
q

m

∂f

∂vi
=
(

δf

δt

)
coll

,

∂f

∂t
+
∑
k

vk
∂f

∂xk
+
∑

i

(
−∂Ai

∂t
−
∑
k

vk
∂Ai

∂xk
+
∑
k

vk
∂Ak

∂xi
− ∂φ

∂xi

)
q

m

∂f

∂vi
=
(

δf

δt

)
coll

.

Since the following relation is hold∑
k

vk
∂Ak

∂xi
=
∑
k

vk
∂Ai

∂xk
+ (v × (∇× A))i =

∑
k

vk
∂Ai

∂xk
+ (v × B)i.

we have
∂f

∂t
+
∑

i

vi
∂f

∂xi
+
∑

i

q

m
(E + v × B)i

∂f

∂vi
=
(

δf

δt

)
coll

. (4.12)

This equation is called Boltzmann’s equation. The electric charge density ρ and the electric
current j are expressed by

ρ =
∑
i,e

q

∫
fdv1dv2dv3, (4.13)

j =
∑
i,e

q

∫
vfdv1dv2dv3. (4.14)

Accordingly Maxwell equations are given by

∇ · E =
1
ε0

∑
q

∫
fdv, (4.15)

1
µ0

∇× B = ε0
∂E

∂t
+
∑

q

∫
vfdv, (4.16)

∇× E = −∂B

∂t
, (4.17)

∇ · B = 0. (4.18)

When the plasma is rarefied, the collision term (δf/δt)coll may be neglected. However, the
interactions of the charged particles are still included through the internal electric and magnetic
field which are calculated from the charge and current densities by means of Maxwell equations.
The charge and current densities are expressed by the distribution functions for the electron and
the ion. This equation is called collisionless Boltzmann’s equation or Vlasov’s equation.

When Fokker-Planck collision term1 is adopted as the collision term of Boltzmann’s equation,
this equation is called Fokker-Planck equation (see sec.16.8).
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Ch.5 Plasma as MHD Fluid

5.1 Magnetohydrodynamic Equations for Two Fluids

Plasmas can be described as magnetohydrodynamic two fluids of ions and electrons with mass
densities ρmi, ρme, charge density ρ, current density j, flow velocities V i, V e, and pressures pi,
pe. These physical quantities can be expressed by appropriate averages in velocity space by
use of the velocity space distribution functions fi(r,v, t) of ions and electrons, which were
introduced in ch.4. The number density of ion ni, the ion mass density ρm,i, and the ion flow
velocity V i(r, t) are expressed as follows:

ni(r, t) =
∫
fi(r,v, t)dv, (5.1)

ρmi(r, t) = mini(r, t), (5.2)

V (r, t) =
∫

vfi(r,v, t)dv∫
fi(r,v, t)dv

=
1

ni(r, t)

∫
vfi(r,v, t)dv. (5.3)

We have the same expressions for electrons as those of ions. Since magnetohydrodynamics
will treat average quantities in the velocity space, phenomena associated with the shape of the
velocity space distribution function (ch.11) will be neglected. However the independent variables
are r, t only and it is possible to analyze geometrically complicated configurations.

Equations of magnetohydrodynamics are followings:

∂ne

∂t
+ ∇ · (neV e) = 0, (5.4)

∂ni

∂t
+ ∇ · (niV i) = 0, (5.5)

neme
dV e

dt
= −∇pe − ene(E + V e × B) + R, (5.6)

nimi
dV i

dt
= −∇pi + Zeni(E + V i × B) − R. (5.7)

Here R denotes the rate of momentum (density) change of the electron fluid by the collision with
the ion fluid. The rate of momentum change of the ion fluid due to the collision with electron
fluid is −R. The change of the number n(x, y, z, t)∆x∆y∆z of particles within the region of
∆x∆y∆z is the difference between the incident particle flux n(x, y, z, t)Vx(x, y, z, t)∆y∆z into
the surface A in fig.5.1 and outgoing particle flux n(x+∆x, y, z, t)Vx(x+∆x, y, z, t)∆y∆z from
the surface A′, that is,

(n(x, y, z, t)Vx(x, y, z, t) − n(x+∆x, y, z, t)Vx(x+∆x, y, z, t))∆y∆z

= −∂(nVx)
∂x

∆x∆y∆z.

When the particle fluxes of the other surfaces are taken into accout, we find (5.4), that is

∂n

∂t
∆x∆y∆z = −

(
∂(nVx)
∂x

+
∂(nVy)
∂y

+
∂(nVz)
∂z

)
∆x∆y∆z.
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Fig.5.1 Particle flux and force due to pressure

The term −∇p in eqs.(5.6),(5.7) is the force per unit volume of plasma due to the pressure
p by the following reason. The force applied to the surface A in fig.5.1 is p(x, y, z, t)∆y∆z and
the force on the surface A′ is −p(x+∆x, y, z, t)∆y∆z. Therefore the sum of these two forces is

(−p(x+∆x, y, z, t) + p(x, y, z, t))∆y∆z = −∂p
∂x
∆x∆y∆z

in the x direction. When the effects of the pressure on the other surfaces are taken account, the
resultant force due to the pressure per unit volume is

−
(
∂p

∂x
x̂ +

∂p

∂y
ŷ +

∂p

∂z
ẑ

)
= −∇p

where x̂, ŷ, ẑ are the unit vector in x, y, z directions respectively. The second term in right-hand
side of eqs.(5.6),(5.7) is Lorentz force per unit volume. The third term is the collision term of
electron-ion collision as is mentioned in sec.2.8 and is given by

R = −neme(V e − V i)νei (5.8)

where νei is coulomb collision frequency of electron with ion.
Let us consider the total time differential in the left-hand side of equation of motion. The

flow velocity V is a function of space coordinates r and time t. Then the acceleration of a small
volume of fluid is given by

dV (r, t)
dt

=
∂V (r, t)
∂t

+
(

dr

dt
· ∇
)

V (r, t) =
∂V (r, t)
∂t

+ (V (r, t) · ∇)V (r, t).

Therefore the equations of motion (5.6),(5.7) are reduced to

neme

(
∂V e

∂t
+ (V e · ∇)V e

)
= −∇pe − ene(E + V e × B) + R (5.9)

nimi

(
∂V i

∂t
+ (V i · ∇)V i

)
= −∇pi + Zeni(E + V i × B)− R. (5.10)

Conservation of particle (5.4),(5.5), the equations of motion (5.9), (5.10) can be derived from
Boltzmann equation (4.12). Integration of Boltzmann equation over velocity space yields eqs.(5.4),
(5.5). Integration of Boltzmann equation multiplied by mv yields eqs. (5.9),(5.10). The process
of the mathematical derivation is described in Appendix A.

5.2 Magnetohydrodynamic Equations for One Fluid

Since the ion-to-electron mass ratio is mi/me = 1836A (A is atomic weight of the ion), the
contribution of ions to the mass density of plasma is dominant. In many cases it is more con-
venient to reorganize the equations of motion for two fluids to the equation of motion for one
fluid and Ohm’s law.

The total mass density of plasma ρm, the flow velocity of plasma V , the electric charge
density ρ and the current density j are defined as follows:
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ρm = neme + nimi, (5.11)

V =
nemeV e + nimiV i

ρm
, (5.12)

ρ = −ene + Zeni, (5.13)

j = −eneV e + ZeniV i. (5.14)

From eqs.(5.4),(5.5), it follows that

∂ρm

∂t
+ ∇ · (ρmV ) = 0, (5.15)

∂ρ

∂t
+ ∇ · j = 0. (5.16)

From eqs.(5.9) (5.10), we find

ρm
∂V

∂t
+ neme(V e · ∇)V e + nimi(V i · ∇)V i

= −∇(pe + pi) + ρE + j × B. (5.17)

The charge neutrality of the plasma allows us to write ne � Zni. Denote ∆ne = ne − Zni, we
have

ρm = nimi

(
1 +

me

mi
Z

)
, p = pi + pe, V = V i +

meZ

mi
(V e − V i),

ρ = −e∆ne, j = −ene(V e − V i).

Since me/mi � 1, the second and third terms in left-hand side of eq.(5.17) can be written to be
(V · ∆)V . Since V e = V i − j/ene � V − j/ene, eq.(5.9) reduces to

E +
(

V − j

ene

)
× B +

1
ene

∇pe − R

ene
=
me

e2ne

∂j

∂t
− me

e

∂V

∂t
. (5.18)

By use of the expression of specific resistivity η, (see sec.2.8) the collision term R is reduced to

R = ne

(
meνei
nee2

)
(−ene)(V e − V i) = neeηj. (5.19)

Equation (5.18) corresponds a generalized Ohm’s law. Finally the equation of motion for one
fluid model and a generalized Ohm’s law are give by

ρm

(
∂V

∂t
+ (V · ∇)V

)
= −∇p+ ρE + j × B, (5.20)

E +
(

V − j

ene

)
× B +

1
ene

∇pe − ηj =
me

e2ne

∂j

∂t
− me

e

∂V

∂t
� 0.

(|ω/Ωe| � 1) (5.21)

The equation of continuity and Maxwell equations are

∂ρm

∂t
+ ∇ · (ρmV ) = 0, (5.22)
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∂ρ

∂t
+ ∇ · j = 0, (5.23)

∇× E = −∂B
∂t
, (5.24)

1
µ0

∇× B = j +
∂D

∂t
, (5.25)

∇ · D = ρ, (5.26)

∇ · B = 0. (5.27)

From eqs.(5.25),(5.24), it follows ∇×∇×E = −µ0∂j/∂t−µ0ε0∂
2E/∂t2. A typical propagation

velocity of magnetohydrodynamic wave or perturbation is Alfven velocity vA = B/(µ0ρm)1/2

as is described in sec.5.4 and is much smaller than light speed c and ω2/k2 ∼ v2
A � c2. Since

|∇×(∂B/∂t)| = |∇×∇×E| ∼ k2|E|, and µ0ε0|∂2E/∂t2| ∼ ω2|E|/c2, the displacement current,
∂D/∂t in (5.25) is negligible. Since the ratio of the first term (me/e)∂j/∂t in right-hand side
of eq.(5.21) to the term (j × B) in left-hand side is ω/Ωe, the first term can be neglected, if
|ω/Ωe| � 1. The second term (me/e)∂V /∂t in the right-hand side of eq.(5.21) is of the order of
ω/Ωe times as large as the term V × B in the left-hand side. Therefore we may set the right-
hand side of eq.(5.21) nearly zero. When the term j × B is eliminated by the use of eq.(5.20),
we find

E + V × B − 1
en

∇pi − ηj =
∆ne

ne
E +

mi

e

dV

dt
.

The ratio of (mi/e)dV /dt to V ×B is around |ω/Ωi|, and ∆ne/ne � 1. When |ω/Ωi| � 1, we
find

E + V × B − 1
en

∇pi = ηj. ( |ω/Ωi| � 1) (5.28)

5.3 Simplified Magnetohydrodynamic Equations

When |ω/Ωi| � 1, |ω/k| � c, and the ion pressure term ∇pi can be neglected in Ohm’s law,
magnetohydrodynamic equations are simplified as follows:

E + V × B = ηj, (5.29)

ρm

(
∂V

∂t
+ (V · ∇)V

)
= −∇p+ j × B, (5.30)

∇× B = µ0j, (5.31)

∇× E = −∂B
∂t
, (5.32)

∇ · B = 0, (5.33)

∂ρm

∂t
+ (V · ∇)ρm + ρm∇ · V = 0. (5.34)
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We may add the adiabatic equation as an equation of state;

d
dt

(pρ−γ
m ) = 0,

where the quantity γ is the ratio of specific heats and γ = (2+ δ)/δ (δ is the number of degrees
of freedom) is 5/3 in the three dimensional case δ = 3. Combined with eq.(5.34), the adiabatic
equation becomes

∂p

∂t
+ (V · ∇)p+ γp∇ · V = 0. (5.35)

In stead of this relation, we may use the more simple relation of incompressibility

∇ · V = 0. (5.36)

if |(dρ/dt)/ρ)| � |∇ · V |. From eqs.(5.31),(5.32), the energy conservation law is given by

1
µ0

∇ · (E × B) +
∂

∂t

(
B2

2µ0

)
+ E · j = 0. (5.37)

From eq.(5.29), the third term in the right-hand side of eq.(5.37) becomes

E · j = ηj2 + (j × B) · V . (5.38)

By use of eqs.(5.30),(5.34), Lorentz term in eq.(5.38) is expressed by

(j × B) · V =
∂

∂t
(
ρmV

2

2
) + ∇ · (ρmV

2

2
V ) + V · ∇p.

From eq.(5.35), it follows that

−∇ · (pV ) =
∂p

∂t
+ (γ − 1)p∇ · V

and

V · ∇p =
∂

∂t

(
p

γ − 1

)
+ ∇ ·

(
p

γ − 1
+ p

)
V .

Therefore the energy conservation law (5.37) is reduced to

∇ · (E × H) +
∂

∂t

(
ρmV

2

2
+

p

γ − 1
+
B2

2µ0

)
+ ηj2 + ∇ ·

(
ρmV

2

2
+

p

γ − 1
+ p

)
V = 0. (5.39)

The substitution of (5.29) into (5.32) yields

∂B

∂t
= ∇× (V × B)− η∇× j = ∇× (V × B) +

η

µ0
∆B (5.40)

∂B

∂t
= −(V · ∇)B − B(∇ · V ) + (B · ∇)V +

η

µ0
∆B. (5.41)

Here we used vector formula for ∇× (V × B) (see appendix) and ∇× (∇× B) = −∆B (valid
only in the case of orthogonal coordinates). The quantity η/µ0 = νm is called magnetic viscosity.
The substitution of (5.31) into (5.30) yields

ρm
dV

dt
= −∇

(
p+

B2

2µ0

)
+

1
µ0

(B · ∇)B. (5.42)
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The equation of motion (5.42) and the equation of magnetic diffusion (5.41) are fundamental
equations of magnetohydrodynamics. Equation (5.33) ∇ · B = 0, equation of continuity (5.34)
and equation of state (5.35) or (5.36) are additional equations.

The ratio of the first term to the second term of the right-hand side in eq.(5.40), Rm, defined
by

|∇ × (V × B)|
|∆B(η/µ0)| ≈ V B/L

(B/L2)(η/µ0)
=
µ0V L

η
≡ Rm (5.43)

is called magnetic Reynolds number. The notation L is a typical plasma size. Magnetic Reynolds
number is equal to the ratio of magnetic diffusion time τR = µ0L

2/η to Alfven transit time
τH = L/vA (it is assumed that v ≈ vA), that is, Rm = τR/τH. When Rm � 1, the magnetic
field in a plasma changes according to diffusion equation. When Rm � 1, it can be shown that
the lines of magnetic force are frozen in the plasma. Let the magnetic flux within the surface
element ∆S be ∆Φ, and take the z axis in the B direction. Then ∆Φ is

∆Φ = B · n∆S = B∆x∆y.

As the boundary of ∆S moves, the rate of change of ∆S is

d
dt

(∆x) =
d
dt

(x+∆x− x) = Vx(x+∆x)− Vx(x) =
∂Vx

∂x
∆x,

d
dt

(∆S) =
(
∂Vx

∂x
+
∂Vy

∂y

)
∆x∆y.

The rate of change of the flux ∆Φ is

d
dt

(∆Φ) =
dB
dt
∆S +B

d
dt

(∆S) =
(

dB

dt
+ B(∇ · V ) − (B · ∇)V

)
z
∆S =

η

µ
∆Bz(∆S). (.)

(see eq.(5.41)). When Rm → ∞, η → 0, the rate of change of the flux becomes zero, i.e.,
d(∆Φ)/dt→ 0. This means the magnetic flux is frozen in the plasma.

5.4 Magnetoacoustic Wave

As usual, we indicate zeroth-order quantities (in equilibrium state) by a subscript 0 and 1st-
order perturbation terms by a subscript 1, that is, ρm = ρm0+ρm1, p = p0+p1, V = 0+V , B =
B0 + B1. The case of η = 0 will be considered here. Then we find the 1st-order equations as
follows:

∂ρm1

∂t
+ ∇ · (ρm0V ) = 0, (5.45)

ρm0
∂V

∂t
+ ∇p1 = j0 × B1 + j1 × B0, (5.46)

∂p1
∂t

+ (V · ∇)p0 + γp0∇ · V = 0, (5.47)

∂B1

∂t
= ∇× (V × B0). (5.48)

If displacement of the plasma from the equilibrium position r0 is denoted by ξ(r0, t), it follows
that

ξ(r0, t) = r − r0,

V =
dξ

dt
≈ ∂ξ

∂t
. (5.49)
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The substitution of (5.49) into eqs.(5.48),(5.45),(5.47) yields

B1 = ∇× (ξ × B0), (5.50)

µ0j1 = ∇× B1, (5.51)

ρm1 = −∇ · (ρm0ξ), (5.52)

p1 = −ξ · ∇p0 − γp0∇ · ξ. (5.53)

Then equation (5.46) is reduced to

ρm0
∂2ξ

∂t2
= ∇(ξ · ∇p0 + γp0∇ · ξ) +

1
µ0

(∇× B0) × B1 +
1
µ0

(∇× B1) × B0. (5.54)

Let us consider the case where B0 = const. p0 = const., and the displacement is expressed by
ξ(r, t) = ξ1 exp i(k · r − ωt), then eq.(5.54) is reduced to

−ρm0ω
2ξ1 = −γp0(k · ξ1)k − µ−1

0 (k × (k × (ξ1 × B0))) × B0. (5.55)

Using the vector formula a × (b × c) = b (a · c) − c (a · b), we can write eq.(5.55) as(
(k · B0)2 − µ0ω

2ρm0

)
ξ1 +

(
(B2

0 + µ0γp0)k − (k · B0)B0

)
(k · ξ1)− (k ·B0)(B0 · ξ1)k = 0.

If the unit vectors of k, B0 are denoted by k̂ ≡ k/k, b ≡ B0/B0, and the notations V ≡ ω/k,
v2
A ≡ B2

0/(µ0ρm0), β ≡ p0/(B2
0/2µ0), cos θ ≡ (k̂ · b̂) are introduced, we find

(cos2 θ − V 2

v2
A

)ξ1 +
(
(1 +

γβ

2
)k̂ − cos θb

)
(k̂ · ξ1)− cos θ(b · ξ1)k̂ = 0. (5.56)

The scalar product of eq.(5.56) with k̂ and b, and the vector product of k̂ with eq.(5.56), yield

(1 +
γβ

2
− V 2

v2
A

)(k̂ · ξ1)− cos θ(b · ξ1) = 0,

γβ

2
cos θ(k̂ · ξ1) −

V 2

v2
A

(b · ξ1) = 0,

(cos2 θ − V 2

v2
A

)b · (k̂ × ξ1) = 0.

The solutions of these equations are magnetoacoustic wave. One solution is

V 2 = v2
A cos2 θ, (ξ1 · k) = 0, (ξ1 · B0) = 0. (5.57)

Since ξ1 of this solution is orthogonal to k and B0, this is called torsional Alfvén wave (see
sec.10.4). The other solutions are given by(

V

vA

)4

− (1 +
γβ

2
)
(
V

vA

)2

+
γβ

2
cos2 θ = 0, (5.58)

B0 · (k × ξ1) = 0.
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Since ξ1 of these solutions are coplaner with k and B0, these solutions are compressional mode.
If the velocity of sound is denoted by c2s = γp0/ρm0, eq.(5.58) becomes

V 4 + (v2
A + c2s )V

2 + v2
A
c2s cos2 θ = 0

and

V 2
f =

1
2

(
v2
A + c2s ) + ((v2A + c2s )

2 − 4v2Ac
2
s cos2 θ)1/2

)
, (5.59)

V 2
s =

1
2

(
v2
A + c2s )− ((v2A + c2s )

2 − 4v2Ac
2
s cos2 θ)1/2

)
. (5.60)

The solution of eq.(5.59) is called compressional Alfvén wave (see sec.10.4) and the solution of
eq.(5.60) is called magnetoacoustic slow wave. Characteristic velocity

v2
A =

B2

µ0ρm0

is called Alfvén velocity. The plasma with zero resistivity is frozen to the magnetic field. There
is tension B2/2µ0 along the magnetic field line. As the plasma, of mass density ρm, sticks to the
field lines, the magnetoacoustic waves can be considered as waves propagating along the strings
of magnetic field lines (see sec.10.4).
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Ch.6 Equilibrium

In order to maintain a hot plasma, we must confine and keep it away from the vacuum-
container wall. The most promising method for such confinement of a hot plasma is the use of
appropriate strong magnetic fields. An equilibrium condition must be satisfied for such magnetic
confinement systems.

6.1 Pressure Equilibrium

When a plasma is in the steady state, magnetohydrodynamic equation (5.30) yields the equi-
librium equation

∇p = j × B, (6.1)

and

∇× B = µ0j, (6.2)

∇ · B = 0, (6.3)

∇ · j = 0. (6.4)

From the equilibrium equation (6.1), it follows that

B · ∇p = 0, (6.5)

j · ∇p = 0. (6.6)

Equation (6.5) indicates that B and ∇p are orthogonal, and the surfaces of constant pressure
coincide with the magnetic surfaces. Equation (6.6) shows that the current-density vector j
is everywhere parallel to the constant-pressure surfaces. Substitution of eq.(6.2) into eq.(6.1)
yields

∇
(
p+

B2

2µ0

)
= (B · ∇)

B

µ0
= B2

(
− 1
R

n+
∂B/∂l

B
b

)
. (6.7)

The following vector relations were used here;

B × (∇× B) + (B · ∇)B = ∇(B2/2), (B · ∇)B = B2[(b · ∇)b + b((b · ∇)B)/B].

R is the radius of curvature of the line of magnetic force and n is the unit vector directed toward
a point on the line of magnetic force from the center of curvature. l is the length along the field
line. We find the right-hand side of eq.(6.7) can be neglected when the radius of curvature is
much larger than the length over which the magnitude p changes appreciably, i.e., the size of
the plasma, and the variation of B along the line of magnetic force is much smaller than the
variation of B in the perpendicular direction. Then eq.(6.7) becomes

p+
B2

2µ0
∼ B2

0

2µ0
,

where B0 is the the value of the magnetic field at the plasma boundary (p=0).
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When the system is axially symmetric and ∂/∂z = 0, eq.(6.7) exactly reduces to

∂

∂r

(
p+

B2
z +B2

θ

2µ0

)
= − B2

θ

rµ0
. (6.8)

By the multiplification of eq.(6.8) by r2 and the integration by parts we obtain
(
p+

B2
z +B2

θ

2µ0

)
r=a

=
1

πa2

∫ a

0

(
p+

B2
z

2µ0

)
2πrdr

i.e.,

〈p〉+ 〈B2
z 〉

2µ0
= pa +

B2
z (a) +B2

θ (a)
2µ0

. (6.9)

〈 〉 is the volume average. As B2/2µ0 is the pressure of the magnetic field, eq.(6.9) is the
equation of pressure equilibrium. The ratio of plasma pressure to the pressure of the external
magnetic field B0

β ≡ p

B2
0/2µ0

=
n(Te + Ti)
B2

0/2µ0
(6.10)

is called the beta ratio. For a confined plasma, β is always smaller than 1, and is used as a figure
of merit of the confining magnetic field. The fact that the internal magnetic field is smaller than
the external field indicates the diamagnetism of the plasma.

6.2 Equilibrium Equation for Axially Symmetric and Translationally Symmetric
Systems

Let us use cylindrical coordinates (r, ϕ, z) and denote the magnetic surface by ψ. The magnetic
surface ψ in an axisymmetric system is given by (see (3.24))

ψ = rAϕ(r, z) (6.11)

where (r, ϕ, z) are cylindrical coordinates and the r and z components of the magnetic field are
given by

rBr = −∂ψ

∂z
, rBz =

∂ψ

∂r
. (6.12)

The relation B · ∇p = 0 follows from the equilibrium equation and is expressed by

−∂ψ

∂z

∂p

∂r
+

∂ψ

∂r

∂p

∂z
= 0.

Accordingly p is a functon of ψ only, i.e.,

p = p(ψ). (6.13)

Similarly, from j · ∇p = 0 and ∇× B = µ0j , we may write

−∂p

∂r

∂(rBϕ)
∂z

+
∂p

∂z

∂(rBϕ)
∂r

= 0.

This means that rBϕ is a function of ψ only and

rBϕ =
µ0I(ψ)
2π

. (6.14)
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Fig.6.1 Magnetic surfaces ψ = rAϕ and I(ψ)

Equation (6.14) indicates that I(ψ) means the current flowing in the poloidal direction through
the circular cross section within ψ = rAϕ (fig.6.1). The r component of j × B = ∇p leads to
the equation on ψ :

L(ψ) + µ0r
2∂p(ψ)

∂ψ
+

µ2
0

8π2

∂I2(ψ)
∂ψ

= 0 (6.15)

where
L(ψ) ≡

(
r
∂

∂r

1
r

∂

∂r
+

∂2

∂z2

)
ψ.

This equation is called Grad-Shafranov equation. The current density is expressed in term of
the function of the magnetic surface as

jr =
−1
2πr

∂I(ψ)
∂z

, jz =
1
2πr

∂I(ψ)
∂r

,

jϕ =
−1
µ0

(
∂

∂r

1
r

∂ψ

∂r
+
1
r

∂2ψ

∂z2

)
= −L(ψ)

µ0r

=
1

µ0r

(
µ0r

2p′ +
µ2

0

8π2
(I2)′

)

or

j =
I ′

2π
B + p′reϕ, (6.16)

L(ψ) + µ0rjϕ = 0.

The functions p(ψ) and I2(ψ) are arbitrary functions of ψ. Let us assume that p and I2 are
quadratic functions of ψ . The value ψs at the plasma boundary can be chosen to be zero
(ψs = 0) without loss of generality. When the values at the boundary are p = ps, I2 = I2

s and
the values at the magnetic axis are ψ = ψ0, p = p0, I2 = I2

0 , then p and I2 are expressed by

p(ψ) = ps + (p0 − ps)
ψ2

ψ2
0

,

I2(ψ) = I2
s + (I2

0 − I2
s )

ψ2

ψ2
0

.

The equilibrium equation (6.15) is then reduced to

L(ψ) + (αr2 + β)ψ = 0,
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α =
2µ0(p0 − ps)

ψ2
0

, β =
µ2

0

4π2

(I2
0 − I2

s )
ψ2

0

.

Since ∫
V

ψ

r2
(αr2 + β)ψdV = 2µ0

∫
V
(p− ps)dV +

µ2
0

4π2

∫
V

(I2 − I2
s )

r2
dV,

∫
V

1
r2

ψL(ψ)dV =
∫

S

1
r2

ψ∇ψ · ndS −
∫

V

1
r2
(∇ψ)2dV = −

∫
V
(B2

r +B2
z )dV

eq.(6.15) of equilibrium equation is reduced to∫
(p− ps)dV =

∫ 1
2µ0

(
B2

ϕv −B2
ϕ + (B2

r +B2
z )
)
dV.

This is the equation of pressure balance under the assumption made on p(ψ) and I(ψ).

The magnetic surface ψ, the magnetic field B and the pressure p in translationally symmetric
system (∂/∂z = 0) are given by

ψ = Az(r, θ),

Br =
1
r

∂ψ

∂θ
, Bθ = −∂ψ

∂r
, Bz =

µ0

2π
I(ψ),

p = p(ψ).

The equilibrium equation is reduced to

1
r

∂

∂r

(
r
∂ψ

∂r

)
+

1
r2

∂2ψ

∂θ2
+ µ0

∂p(ψ)
∂ψ

+
µ2

0

8π2

∂I2(ψ)
∂ψ

= 0,

j =
1
2π

I ′B + p′ez,

∆ψ + µ0jz = 0.

It is possible to drive the similar equilibrium equation in the case of helically symmetric system.

6.3 Tokamak Equilibrium1

The equilibrium equation for an axially symmetric system is given by eq.(6.15). The 2nd and
3rd terms of the left-hand side of the equation are zero outside the plasma region. Let us use
toroidal coordinates (b, ω, ϕ) (fig.6.2). The relations between these to cylindrical coordinates
(r, ϕ, z) are

r =
R0 sinh b

cosh b− cosω
, z =

R0 sinω
cosh b− cosω

.

The curves b = b0 are circles of radius a = R0 sinh b0, centered at r = R0 coth b0, z = 0. The
curves ω =const. are also circles. When the magnetic-surface function ψ is replaced by F ,
according to

ψ =
F (b, ω)

21/2(cosh b− cosω)1/2
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Fig.6.2 Toroidal coordinates.

the function F satisfies

∂2F

∂b2
− coth b

∂F

∂b
+

∂2F

∂ω2
+
1
4
F = 0

outside the plasma region. When F is expanded as

F = Σgn(b) cosnω,

the coefficient gn satisfies

d2gn

db2
− coth b

dgn

db
−
(
n2 − 1

4

)
gn = 0.

There are two independent solutions:
(
n2 − 1

4

)
gn = sinh b

d
db

Qn−1/2(cosh b),
(
n2 − 1

4

)
fn = sinh b

d
db

Pn−1/2(cosh b).

Pν(x) and Qν(x) are Legendre functions. If the ratio of the plasma radius to the major radius
a/R0 is small, i.e., when eb0 	 1, then gn and fn are given by

g0 = eb/2, g1 = −1
2
e−b/2, f0 =

2
π
eb/2(b+ ln 4− 2), f1 =

2
3π

e3b/2.

If we take terms up to cosω, F and ψ are

F = c0g0 + d0f0 + 2(c1g1 + d1f1) cosω,

ψ =
F

21/2(cosh b− cosω)1/2
≈ e−b/2(1 + e−b cosω)F.

Use the coordinates ρ, ω′ shown in fig.6.3. These are related to the cylindrical and toroidal
coordinates as follows:

r = R0 + ρ cosω′ =
R0 sinh b

cosh b− cosω
z = ρ sinω′ =

R0 sinω
cosh b− cosω

.

When b is large, the relations are

ω′ = ω,
ρ

2R0
≈ e−b.
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Fig.6.3 The coordinates r, z and ρ, ω′

Accordingly the magnetic surface ψ is expressed by

ψ =c0 +
2
π
d0(b+ ln 4− 2)

+
[(

c0 +
2
π
d0(b+ ln 4− 2)

)
e−b +

(
4
3π

d1e
b − c1e

−b
)]

cosω

=d′0
(
ln
8R
ρ

− 2
)
+
(
d′0
2R

(
ln
8R
ρ

− 1
)
ρ+

h1

ρ
+ h2ρ

)
cosω.

In terms of ψ, the magnetic-field components are given by

rBr = −∂ψ

∂z
, rBz =

∂ψ

∂r
,

rBρ = − ∂ψ

ρ∂ω′ , rBω′ =
∂ψ

∂ρ
.

From the relation

−d′0
ρ

= rBω′ ≈ R
−µ0Ip
2πρ

,

the parameter d′0 can be taken as d′0 = µ0IpR/2π. Here Ip is the total plasma current in the ϕ
direction. The expression of the magnetic surface is reduced to

ψ =
µ0IpR

2π

(
ln
8R
ρ

− 2
)
+
(
µ0Ip
4π

(
ln
8R
ρ

− 1
)
ρ+

h1

ρ
+ h2ρ

)
cosω′ (6.17)

where R0 has been replaced by R. In the case of a/R � 1, the equation of pressure equilibrium
(6.9) is

〈p〉 − pa =
1
2µ0

((B2
ϕv)a + (B2

r +B2
z )a − 〈B2

ϕ〉).

Here 〈 〉 indicates the volume average and pa is the plasma pressure at the plasma boundary.
The value of B2

r + B2
z is equal to B2

ω′ . The ratio of 〈p〉 to 〈B2
ω′〉/2µ0 is called the poloidal beta

ratio βp. When pa = 0, βp is

βp = 1 +
B2

ϕv − 〈B2
ϕ〉

B2
ω′

≈ 1 +
2Bϕv

B2
ω′

〈Bϕv −Bϕ〉. (6.18)

Bϕ and Bϕv are the toroidal magnetic fields in the plasma and the vacuum toroidal fields
respectively. When Bϕ is smaller than Bϕv, the plasma is diamagnetic, βp > 1. When Bϕ is
larger than Bϕv, the plasma is paramagnetic, βp < 1. When the plasma current flows along
a line of magnetic force, the current produces the poloidal magnetic field Bω′ and a poloidal



6.3 Tokamak Equilibrium 53

Fig.6.4 Diamagnetism (βp > 1) and paramagnetism (βp < 1)

Fig.6.5 Displacement of the plasma column.
ψ0(ρ′) = ψ0(ρ)− ψ′

0(ρ)∆ cosω, ρ′ = ρ−∆cosω.

component of the plasma current appears and induces an additional toroidal magnetic field.
This is the origin of the paramagnetism.
When the function (6.17) is used, the magnetic field is given by

Bω′ =
1
r

∂ψ

∂ρ
=

−µ0Ip
2πρ

+
(
µ0Ip
4πR

ln
8R
ρ

+
1
R

(
h2 − h1

ρ2

))
cosω′,

Bρ = − 1
rρ

∂ψ

∂ω′ =
(
µ0Ip
4πR

(
ln
8R
ρ

− 1
)
+

1
R

(
h2 +

h1

ρ2

))
sinω′.



(6.19)

The cross section of the magnetic surface is the form of

ψ(ρ, ω′) = ψ0(ρ) + ψ1 cosω′.

When ∆ = −ψ1/ψ
′
0 is much smaller than ρ, the cross section is a circle whose center is displaced

by an amount (see fig.6.5)

∆(ρ) =
ρ2

2R

(
ln
8R
ρ

− 1
)
+

2π
µ0IpR

(h1 + h2ρ
2).

Let us consider the parameters h1 and h2. As will be shown in sec.6.4, the poloidal component
Bω′ of the magnetic field at the plasma surface (r = a) must be

Bω′(a, ω′) = Ba

(
1 +

a

R
Λcosω′

)
(6.20)

at equilibrium. a is the plasma radius and

Λ = βp +
li
2
− 1 (6.21)

and βp is the poloidal beta ratio

βp =
p

(B2
a/2µ0)

(6.22)
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Fig.6.6 Poloidal magnetic field due to the combined plasma current and vertical magnetic field.

and li is

li =
∫
B2

ω′ρdρdω′

πa2B2
a

. (6.23)

The parameters h1 and h2 must be chosen to satisfy Bρ = 0 and Bω′ = Ba(1 + (a/R)Λ cosω′)
at the plasma boundary, i.e.,

h1 =
µ0Ip
4π

a2
(
Λ+

1
2

)
, h2 = −µ0Ip

4π

(
ln
8R
a

+ Λ− 1
2

)
. (6.24)

Accordingly ψ is given by

ψ =
µ0IpR

2π

(
ln
8R
ρ

− 2
)
− µ0Ip

4π

(
ln

ρ

a
+
(
Λ+

1
2

)(
1− a2

ρ2

))
ρ cosω′. (6.25)

The term h2ρ cosω′ in ψ brings in the homogeneous vertical field

Bz =
h2

R
,

which is to say that we must impose a vertical external field. When we write ψe = h2ρ cosω′ so
that ψ is the sum of two terms, ψ = ψp + ψe, ψe and ψp are expressed by

ψe = −µ0Ip
4π

(
ln
8R
a

+ Λ− 1
2

)
ρ cosω′ (6.26)

ψp =
µ0IpR

2π

(
ln
8R
ρ

− 2
)
+

µ0Ip
4π

((
ln
8R
ρ

− 1
)
ρ+

a2

ρ

(
Λ +

1
2

))
cosω′. (6.27)

These formulas show that a uniform magnetic field in the z direction,

B⊥ = −µ0Ip
4πR

(
ln
8R
a

+Λ− 1
2

)
, (6.28)

must be applied in order to maintain a toroidal plasma in equilibrium (fig.6.6). This vertical
field weakens the inside poloidal field and strengthens the outside poloidal field.
The amount of B⊥ (eq.6.28) for the equilibrium can be derived more intuitively. The hoop

force by which the current ring of a plasma tends to expand is given by

Fh = − ∂

∂R

LpI
2
p

2

∣∣∣∣
LpIp=const.

=
1
2
I2
p

∂Lp

∂R
,

where Lp is the self-inductance of the current ring:

Lp = µ0R

(
ln
8R
a

+
li
2
− 2

)
.



6.4 Poloidal Field for Tokamak Equilibrium 55

Fig.6.7 Equilibrium of forces acting on a toroidal plasma.

Accordingly, the hoop force is

Fh =
µ0I

2
p

2

(
ln
8R
a

+
li
2
− 1

)
.

The outward force Fp exerted by the plasma pressure is (fig.6.7)

Fp = 〈p〉πa22π.

The inward (contractive) force FB1 due to the tension of the toroidal field inside the plasma is

FB1 = −〈B2
ϕ〉

2µ0
2π2a2

and the outward force FB2 by the pressure due to the external magnetic field is

FB2 =
B2

ϕv

2µ0
2π2a2.

The force FI acting on the plasma due to the vertical field B⊥ is

FI = IpB⊥2πR.

Balancing these forces gives

µ0I
2
p

2

(
ln
8R
a

+
li
2
− 1

)
+ 2π2a2

(
〈p〉+ B2

ϕv

2µ0
− 〈B2

ϕ〉
2µ0

)
+ 2πRIpB⊥ = 0,

and the amount of B⊥ necessary is

B⊥ =
−µ0Ip
4πR

(
ln
8R
a

+
li
2
− 1 + βp − 1

2

)
,

where Λ = βp + li/2− 1. Eq.(6.9) is used for the derivation.

6.4 Poloidal Field for Tokamak Equilibrium

The plasma pressure and the magnetic stress tensor are given by2

Tαβ =

(
p+

B2

2µ0

)
δαβ − BαBβ

µ0
.
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Fig.6.8 Volume element of a toroidal plasma.

Let us consider a volume element bounded by (ω, ω + dω), (ϕ,ϕ + dϕ), and (0, a) as is shown
in fig.6.8. Denote the unit vectors in the directions r, z, ϕ and ρ, ω by er,ez,eϕ and eρ,eω,
respectively. The relations between these are

eρ = er cosω + ez sinω, eω = ez cosω − er sinω,
∂eω

∂ω
= −eρ,

∂eρ

∂ω
= eω.

(Here ω is the same as ω′ of sec.6.3). Let dSρ, dSω, dSϕ be surface-area elements with the normal
vectors eρ,eω,eϕ. Then estimate the forces acting on the surfaces dSϕ(ϕ), dSϕ(ϕ+dϕ) ; dSω(ϕ),
dSω(ω+dω); and dSρ(a). The sum F ϕ of forces acting on dSϕ(ϕ) and dSϕ(ϕ+dϕ) is given by

F ϕ = −dωdϕ
∫ a

0

(
Tϕϕ

∂eϕ

∂ϕ
+ Tϕω

∂eω

∂ϕ
+ Tϕρ

∂eρ

∂ϕ

)
ρdρ

= −dωdϕ
∫ a

0

(
T 0

ϕϕ (eω sinω − eρ cosω)− T 0
ϕωeϕ sinω

)
ρdρ.

When the forces acting on dSω(ω) and dSω(ω + dω) are estimated, we must take into account
the differences in eω, Tωα, dSω = (R+ ρ cosω) dρ dϕ at ω and ω +dω. The sum F ω of forces is

F ω = −dωdϕ
∫ a

0

(
Tωω

∂

∂ω
(eω (R+ ρ cosω))

+Tωϕ
∂

∂ω
(eϕ (R+ ρ cosω)) + Tωρ

∂

∂ω
(eρ (R+ ρ cosω))

+
∂Tωω

∂ω
Reω +

∂Tωϕ

∂ω
Reϕ +

∂Tωρ

∂ω
Reρ

)
dρ

= dωdϕ
(
Reρ

∫ a

0
T 0

ωωdρ
)
+ dωdϕ

[
eρ

(
cosω

∫
T 0

ωωρdρ+R

∫
T (1)

ωω dρ
)

+eω

(
sinω

∫
T 0

ωωρdρ−R

∫
∂T

(1)
ωω

∂ω
dρ

)]

+dωdϕeϕ

(
sinω

∫
T 0

ωϕρdρ−R

∫
∂T

(1)
ωϕ

∂ω
dρ

)

+dωdϕ

(
−eωR

∫
T (1)

ωρ dρ− eρR

∫
∂T

(1)
ωρ

∂ω
dρ

)

= dωdϕ
(
Reρ

∫ a

0
T 0

ωωdρ
)

+dωdϕeρ

(
cosω

∫
T 0

ωωρdρ+R

∫ (
T (1)

ωω − ∂T
(1)
ωρ

∂ω

)
dρ

)

+dωdϕeω

(
sinω

∫
T 0

ωωρdρ−R

∫ (
T (1)

ωρ +
∂T

(1)
ωω

∂ω

)
dρ

)
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+dωdϕeϕ

(
sinω

∫
T 0

ωωρdρ−R

∫
∂T

(1)
ωϕ

∂ω
dρ

)
.

As Bρ(a) = 0, the force F ρ acting on dSρ(a) is

F ρ = −eρTρρ(R+ a cosω)adϕdω = eρ(−T 0
ρρRa− (T (1)

ρρ Ra+ T 0
ρρa

2 cosω)).

The equilibrium condition F ϕ + F ω + F ρ = 0 is reduced to∫
T 0

ωωdρ = T 0
ρρ(a)a,

∂

∂ω

∫
T (1)

ωϕdρ =
2 sinω
R

∫
T 0

ωϕρdρ, (6.29)

∫ (
T (1)

ωρ +
∂T

(1)
ωω

∂ω

)
dρ =

sinω
R

∫ (
T 0

ωω − T 0
ϕϕ

)
ρdρ, (6.30)

cosω
∫
(T 0

ϕϕ + T 0
ωω)ρdρ+R

∫ (
T (1)

ωω − ∂T
(1)
ωρ

∂ω

)
dρ− T 0

ρρa
2 cosω − T (1)

ρρ Ra = 0. (6.31)

From T (1) ∝ sinω, cosω, it follows that ∂2T (1)/∂ω2 = −T (1). So eq.(6.30) is

∫ (
∂T

(1)
ωρ

∂ω
− T (1)

ωω

)
dρ =

cosω
R

∫
(T 0

ωω − T 0
ϕϕ)ρdρ.

Using this relation, we can rewrite eq.(6.31) as

T (1)
ρρ (a) =

a

R
cosω

(
−T 0

ρρ(a) +
2
a2

∫ a

0
T 0

ϕϕ.ρdρ
)
. (6.32)

Tρρ and Tϕϕ are given by

Tρρ = p+
B2

ω

2µ0
+

B2
ϕ

2µ0
, Tϕϕ = p+

B2
ω

2µ0
− B2

ϕ

2µ0
. (6.33)

From eq.(6.14), Bϕ is

Bϕ =
µ0I(ψ)
2πr

=
µ0I(ψ)
2πR

(
1− ρ

R
cosω + · · ·

)
= Bϕ(ρ)

(
1− ρ

R
cosω + · · ·

)
. (6.34)

When Bω(a) is written as Bω(a) = Ba +B
(1)
ω , eqs.(6.33) and (6.34) yield the expression

T (1)
ρρ (a) =

BaB
(1)
ω

µ0
− B2

ϕv(a)
2µ0

2
a

R
cosω.

On the other hand, eqs.(6.9) and (6.32) give T
(1)
ρρ (a) as

T (1)
ρρ (a) =

a

R
cosω

(
−pa − B2

a

2µ0
− B2

ϕv(a)
2µ0

+ 〈p〉+ 〈B2
ω〉

2µ0
− 〈B2

ϕ〉
2µ0

)

=
a

R
cosω

(
B2

a

2µ0
li + 2(〈p〉 − pa)− B2

a

µ0
− B2

ϕv(a)
µ0

)
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where li is the normalized internal inductance of the plasma per unit length (the internal induc-
tance Li of the plasma per unit length is given by µ0li/4π). Accordingly, B

(1)
ω must be

B(1)
ω =

a

R
Ba cosω

(
li
2
+
2µ0(〈p〉 − pa)

B2
a

− 1
)
.

Ba is ω component of the magnetic field due to the plasma current Ip, i.e.,

Ba = −µ0Ip
2πa

.

When the poloidal ratio βp (recall that this is the ratio of the plasma pressure p to the magnetic
pressure due to Ba) is used, B

(1)
ω is given by

B(1)
ω =

a

R
Ba cosω

(
li
2
+ βp − 1

)
. (6.35)

6.5 Upper Limit of Beta Ratio

In the previous subsection, the value of Bω necessary for equilibrium was derived. In this
derivation, (a/R)Λ < 1 was assumed, i.e.,(

βp +
li
2

)
<

R

a
.

The vertical field B⊥ for plasma equilibrium is given by

B⊥ = Ba
a

2R

(
ln
8R
a

+ Λ− 1
2

)
.

The direction of B⊥ is opposite to that of Bω produced by the plasma current inside the torus, so
that the resultant poloidal field becomes zero at some points in inside region of the torus and a
separatrix is formed. When the plasma pressure is increased and βp becomes large, the necessary
amount of B⊥ is increased and the separatrix shifts toward the plasma. For simplicity, let us
consider a sharp-boundary model in which the plasma pressure is constant inside the plasma
boundary, and in which the boundary encloses a plasma current Ip. Then the pressure-balance
equation is

B2
ω

2µ0
+

B2
ϕv

2µ0
≈ p+

B2
ϕi

2µ0
. (6.36)

The ϕ components Bϕv, Bϕi of the field outside and inside the plasma boundary are proportional
to 1/r, according to eq.(6.14). If the values of Bϕv, Bϕi at r = R are denoted by B0

ϕv, B0
ϕi

respectively, eq.(6.36) may be written as

B2
ω = 2µ0p− ((B0

ϕv)
2 − (B0

ϕi)
2)
(
R

r

)2

.

The upper limit of the plasma pressure is determined by the condition that the resultant poloidal
field at r = rmin inside the torus is zero,

2µ0pmax
r2
min

R2
= (B0

ϕv)
2 − (B0

ϕi)
2. (6.37)

As r is expressed by r = R+ a cosω, eq.(6.37) is reduced (with (rmin = R− a)) to

B2
ω = 2µ0pmax

(
1− r2

min

r2

)
= 8µ0pmax

a

R
cos2

ω

2
.
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Here a/R � 1 is assumed. From the relation
∮
Bωadω = µ0Ip, the upper limit βc

p of the poloidal
beta ratio is

βc
p =

π2

16
R

a
≈ 0.5

R

a
. (6.38)

Thus the upper limit of βc
p is half of the aspect ratio R/a in this simple model. When the

rotational transform angle ι and the safety factor qs = 2π/ι are introduced, we find that

Bω

Bϕ
=

a

R

(
ι

2π

)
=

a

Rqs
,

so that

β =
p

B2/2µ0
≈ p

B2
ω/2µ0

(
Bω

Bϕ

)2

=
(

a

Rqs

)2

βp. (6.39)

Accordingly, the upper limit of the beta ratio is

βc =
0.5
q2
s

a

R
. (6.40)

6.6 Pfirsch-Schlüter Current3

When the plasma pressure is isotropic, the current j in the plasma is given by eqs.(6.1) and
(6.4) as

j⊥ =
b

B
×∇p

∇ · j‖ = −∇ · j⊥ = −∇ ·
(

B

B2
×∇p

)
= −∇p · ∇ ×

(
B

B2

)
.

Then j‖ is

∇ · j‖ = −∇p ·
((

∇ 1
B2

× B

)
+

µ0j

B2

)
= 2∇p · ∇B × B

B3
(6.41)

∂j‖
∂s

= 2∇p · (∇B × b)
B2

, (6.42)

where s is length along a line of magnetic force. In the zeroth-order approximation, we can
put B ∝ 1/R, p = p(r), and ∂/∂s = (∂θ/∂s)∂/∂θ = (ι/(2πR))∂/∂θ, where ι is the rotational
transform angle. When s increases by 2πR, θ increases by ι. Then eq.(6.42) is reduced to

ι

2πR
∂j‖
∂θ

= −∂p

∂r

2
RB

sin θ

i.e.,

∂j‖
∂θ

= −4π
ιB

∂p

∂r
sin θ, j‖ =

4π
ιB

∂p

∂r
cos θ. (6.43)

This current is called the Pfirsch-Schlüter current (fig.6.9). These formulas are very important,
and will be used to estimate the diffusion coefficient of a toroidal plasma. The Pfirsch-Schlüter
current is due to the short circuiting, along magnetic-field lines, of toroidal drift polarization
charges. The resultant current is inversely proportional to ι.
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Fig.6.9 Pfirsch-Schlüter current j‖ in a toroidal plasma.

Let us take the radial variation in plasma pressure p(r) and ι to be

p(r) = p0

(
1−

(
r

a

)m)
,

ι(r) = ι0

(
r

a

)2l−4

respectively; then j‖ is

j‖ = −4πmp0

Bι0a

(
r

a

)m−2l+3

cos θ.

Let us estimate the magnetic field Bβ produced by j‖. As a/R is small, Bβ is estimated from
the corresponding linear configuration of fig.6.9. We utilize the coordinates (r, θ′, ζ) and put
θ = −θ′ and j‖ ≈ jζ (ι is assumed not to be large). Then the vector potential Aβ = (0, 0, Aβ

ζ )
for Bβ is given by

1
r

∂

∂r


r

∂Aβ
ζ

∂r


+

1
r2

∂2Aβ
ζ

∂θ′ 2
= −µ0jζ .

When Aβ
ζ (r, θ

′) = Aβ(r) cos θ′, and parameters s = m − 2l + 3, α = 4πmp0µ0/(Bι0) =
mβ0B/(ι0/2π) (β0 is beta ratio) are used, we find

1
r

∂

∂r

(
r
∂Aβ

∂r

)
− Aβ

r2
=

α

a

(
r

a

)s

.

In the plasma region (r < a), the vector potential is

Aβ
in =

(
αrs+2

((s+ 2)2 − 1)as+1
+ δr

)
cos θ′

and Aβ
out outside the plasma region (r > a) is

Aβ
out =

γ

r
cos θ′,
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where δ and γ are constants. Since Bβ
r , Bβ

θ′ must be continuous at the boundary r = a, the
solution for Bβ inside the plasma is

Bβ
r = − α

(s+ 2)2 − 1

((
r

a

)s+1

− s+ 3
2

)
sin θ′,

Bβ
θ′ = − α

(s+ 2)2 − 1

(
(s+ 2)

(
r

a

)s+1

− s+ 3
2

)
cos θ′




(6.44)

and the solution outside is

Bβ
r =

α

(s+ 2)2 − 1
s+ 1
2

(
a

r

)2

sin θ′,

Bβ
θ =

−α

(s+ 2)2 − 1
s+ 1
2

(
a

R

)2

cos θ′

(Br = r−1∂Aζ/∂θ
′, Bθ′ = −∂Aζ/∂r). As is clear from eq.(6.44), there is a homogeneous

vertical-field component

Bz =
−(s+ 3)α

2((s+ 2)2 − 1)
=

−(m− 2l + 6)m
2((m− 2l + 5)2 − 1)

β

(ι0/2π)
B = −f (m, l)

β

(ι0/2π)
B.

This field causes the magnetic surface to be displaced by the amount ∆. From eq.(3.42), ∆ is
given by

∆

R
=

−2πBz

ι(∆)B
= f(m, l)

(2π)2β
ι(∆)ι0

≈ f(m, l)
β

(ι0/2π)2
.

f(m, l) is of the order of 1 and the condition ∆ < a/2 gives the upper limit of the beta ratio:

βc <
1
2
a

R

(
ι

2π

)2

.

This critical value is the same as that for the tokamak.

6.7 Virial Theorem

The equation of equilibrium j × B = (∇× B)× B = ∇p can be reduced to

∑
i

∂

∂xi
Tik − ∂p

∂xk
= 0 (6.45)

where

Tik =
1
µ0

(BiBk − 1
2
B2δik). (6.46)

This is called the magnetic stress tensor. From the relation (6.45), we have

∫
S

((
p+

B2

2µ0

)
n − B(B · n)

µ0

)
dS = 0 (6.47)

where n is the outward unit normal to the closed surface surrounding a volume V.
Since the other relation

∑
i

∂

∂xi
(xk (Tik − pδik)) = (Tkk − p) + xk

∑
i

∂

∂xi
(Tik − pδik) = (Tkk − p)
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holds,it follows that

∫
V

(
3p+

B2

2µ0

)
dV =

∫
S

((
p+

B2

2µ0

)
(r · n)− (B · r)(B · n)

µ0

)
dS. (6.48)

This is called the virial theorem. When a plasma fills a finite region with p = 0 outside the
region, and no solid conductor carries the current anywhere inside or outside the plasma, the
magnitude of the magnetic field is the order of 1/r3, so the surface integral approaches zero as
the plasma surface approaches infinity (r → 0). This contradicts that the volume integral of
(6.48) is positive definite. In other words, a plasma of the finite extent cannot be in equilibrium
unless there exist solid conductors to carry the current.
Let us apply the virial theorem (6.48) and (6.47) to a volume element of an axisymmetric

plasma bounded by a closed toroidal surface St formed by the rotation of an arbitrary shaped
contour lt. We denote the unit normal and tangent of the contour lt by n and l respectively and
a surface element of the transverse cross section by dSϕ. The volume and the surface element
are related by

dV = 2πrdSϕ.

The magnetic field B is expressed by

B = Bϕeϕ + Bp

where Bp is the poloidal field and Bϕ is the magnitude of the toroidal field and eϕ is the unit
vector in the ϕ direction.
Let us notice two relations∫

rα(r · n)dSt = (α+ 3)
∫

rαdV (6.49)

∫
rα(er · n)dSt =

∫
∇ · (rαer)dV =

∫ 1
r

∂

∂r
rα+1dV

= (α+ 1)
∫

r(α−1)dV = 2π(α+ 1)
∫

rαdSϕ (6.50)

where er is the unit vector in the r direction. Applying (6.48) to the full torus surrounded by
St, we get

∫ (
3p+

B2
ϕ +B2

p

2µ0

)
dV =

∫ ((
p+

B2
ϕ +B2

p

2µ0

)
(n · r)− Bn(B · r)

µ0

)
dSt

=
∫ ((

p+
B2

l −B2
n

2µ0

)
(n · r)− BnBl

µ0
(l · r)

)
dSt +

∫
Bϕ

2

2µ0
(n · r) dSt, (6.51)

because of Bp = Bll+Bnn (see fig.6.10a). When the vacuum toroidal field (without plasma) is
denoted by Bϕ0, this is given by Bϕ0 = µ0I/(2πr), where I is the total coil current generating
the toroidal field. By use of (6.50), (6.51) reduces to4

∫ (
3p+

B2
p +B2

ϕ −B2
ϕ0

2µ0

)
2πrdSϕ

=
∫ ((

p+
B2

l −B2
n

2µ0

)
(n · r)− BnBl

µ0
(l · r)

)
dSt. (6.52)

Applying eq.(6.47) to the sector region surrounded by ϕ = 0, ϕ = ∆ϕ and St (see fig.6.10b)
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Fig.6.10 Integral region of Virial theorem (a) (6.48) and (b) (6.47).

and taking its r component gives4

−∆ϕ

∫ (
p+

B2

2µ0
− B2

ϕ

µ0

)
dSϕ +

∆ϕ

2π

∫ ((
p+

B2

2µ0

)
(n · er)− (B · er)(B · n)

µ0

)
dSt = 0

2π
∫ (

p+
B2

p −B2
ϕ +B2

ϕ0

2µ0

)
dSϕ =

∫ ((
p+

B2
l −B2

n

2µ0

)
(n · er)− BlBn

µ0
(l · er)

)
dSt = 0.

(6.53)

Eqs. (6.52) and (6.53) are used to measure the poloidal beta ratio (6.18) and the internal plasma
inductance per unit length (6.23) of arbitrary shaped axisymmetric toroidal plasma by use of
magnetic probes surrounding the plasma.
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Ch.7 Diffusion of Plasma, Confinement Time

Diffusion and confinement of plasmas are among the most important subjects in fusion re-
search, with theoretical and experimental investigations being carried out concurrently. Al-
though a general discussion of diffusion and confinement requires the consideration of the vari-
ous instabilities (which will be studied in subsequent chapters), it is also important to consider
simple but fundamental diffusion for the ideal stable cases. A typical example (sec.7.1) is clas-
sical diffusion, in which collisions between electrons and ions are dominant effect. The section
7.2 describe the neoclassical diffusion of toroidal plasmas confined in tokamak, for both the
rare-collisional and collisional regions. Sometimes the diffusion of an unstable plasma may be
studied in a phenomenological way, without recourse to a detailed knowledge of instabilities. In
this manner, diffusions caused by fluctuations in a plasma are explained in secs.7.3 and 7.4.
The transport equation of particles is

∂

∂t
n(r, t) +∇ · (n(r, t)V (r, t)) = 0 (7.1)

provided processes of the ionization of neutrals and the recombination of ions are negligible (see
ch.5.1). The particle flux Γ = nV is given by

n(r, t)V (r, t) = −D(r, t)∇n(r, t)

in many cases, where D is diffusion coefficient. (Additional terms may be necessary in more
general cases.)

Diffusion coefficient D and particle confinement time τp are related by the diffusion equation
of the plasma density n as follows:

∇ · (D∇n(r, t)) =
∂

∂t
n(r, t).

Substitution of n(r, t) = n(r) exp(−t/τp) in diffusion equation yields

∇ · (D∇n(r)) = − 1
τp
n(r).

When D is constant and the plasma column is a cylinder of radius a, the diffusion equation is
reduced to

1
r

∂

∂r

(
r
∂n

∂r

)
+

1
Dτp

n = 0.

The solution satisfying the boundary condition n(a) = 0 is

n = n0J0

(
2.4r
a

)
exp

(
− t

τp

)

and the particle confinement time is

τp =
a2

2.42D
=

a2

5.8D
, (7.2)

where J0 is the zeroth-order Bessel function. The relationship (7.2) between the particle con-
finement time τp and D holds generally, with only a slight modification of the numerical factor.
This formula is frequently used to obtain the diffusion coefficient from the observed values of
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the plasma radius and particle confinement time.

The equation of energy balance is given by eq.(A.19), which will be derived in appendix A,
as follows:

∂

∂t

(
3
2
nκT

)
+∇ ·

(
3
2
κTnv

)
+∇ · q = Q− p∇ · v −

∑
ij

Πij
∂vi

∂xj
. (.)

The first term in the right-hand side is the heat generation due to particle collisions per unit
volume per unit time, the second term is the work done by pressure and the third term is viscous
heating. The first term in the left-hand side is the time derivative of the thermal energy per
unit volume, the second term is convective energy loss and the third term is conductive energy
loss. Denoting the thermal conductivity by κT, the thermal flux due to heat conduction may be
expressed by

q = −κT∇(κT ).
If the convective loss is neglected and the heat sources in the right-hand side of eq.(7.3) is zero,
we find that

∂

∂t

(
3
2
nκT

)
−∇ · κT∇(κT ) = 0.

In the case of n = const., this equation reduces to

∂

∂t

(
3
2
κT

)
= ∇ ·

(
κT

n
∇(κT )

)
.

When the thermal diffusion coefficient χT is defined by

χT =
κT

n
,

the same equation on κT is obtained as eq.(7.1). In the case of χT = const., the solution is

κT = κT0J0

(
2.4
a
r

)
exp

(
− t

τE

)
, τE =

a2

5.8(2/3)χT
. (7.4)

The term τE is called energy confinement time.

7.1 Collisional Diffusion (Classical Diffusion)

7.1a Magnetohydrodynamic Treatment
A magnetohydrodynamic treatment is applicable to diffusion phenomena when the electron-

to-ion collision frequency is large and the mean free path is shorter than the connection length
of the inside regions of good curvature and the outside region of bad curvature of the torus; i.e.,

vTe

νei

<∼
2πR
ι

,

νei >∼ νp ≡ 1
R

ι

2π
vTe =

1
R

ι

2π

(
κTe

me

)1/2

where vTe is electron thermal velocity and νei is electron to ion collision frequency. From Ohm’s
law (5.28)

E + v × B − 1
en

∇pi = ηj,

the motion of plasma across the lines of magnetic force is expressed by

nv⊥ =
1
B

((
nE − κTi

e
∇n

)
× b

)
− meνei

e2

∇p

B2
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Fig.7.1 Electric field in a plasma confined in a toroidal field. The symbols ⊗ and � here show the
direction of the Pfirsch-Schlüter current.

=
1
B

((
nE − κTi

e
∇n

)
× b

)
− (ρΩe)2νei

(
1 +

Ti

Te

)
∇n (7.5)

where ρΩe = vTe/Ωe, vTe = (κTe/me)1/2 and η = meνei/e
2ne (see sec.2.8).

If the first term in the right-hand side can be neglected, the particle diffusion coefficient D is
given by

D = (ρΩe)2νei

(
1 +

Ti

Te

)
. (7.6)

The classical diffusion coefficient Dei is defined by

Dei ≡ (ρΩe)2νei =
nTe

σ⊥B2
=

βeη‖
µ0

, (7.7)

where σ⊥ = nee
2/(meνei), η‖ = 1/2σ⊥.

However the first term of the right-hand side of eq.(7.5) is not always negligible. In toroidal
configuration, the charge separation due to the toroidal drift is not completely cancelled along
the magnetic field lines due to the finite resistivity and an electric field E arises (see fig.7.1).
Therefore the E × b term in eq.(7.5) contributes to the diffusion. Let us consider this term.
From the equilibrium equation, the diamagnetic current

j⊥ =
b

B
×∇p, j⊥ =

∣∣∣∣ 1B ∂p

∂r

∣∣∣∣
flows in the plasma. From ∇ · j = 0, we find ∇ · j‖ = −∇ · j⊥. By means of the equation
B = B0(1− (r/R) cos θ), j‖ may be written as (see eq.(6.43))

j‖ = 2
2π
ι

1
B0

∂p

∂r
cos θ. (7.8)

If the electric conductivity along the magnetic lines of force is σ‖, the parallel electric field is
E‖ = j‖/σ‖. As is clear from fig.7.1, the relation

Eθ

E‖
≈ B0

Bθ

holds. From Bθ/B0 ≈ (r/R)(ι/2π), the θ component of the electric field is given by

Eθ =
B0

Bθ
E‖ =

R

r

2π
ι

1
σ‖

j‖ =
2
σ‖

R

r

(
2π
ι

)2 1
B0

∂p

∂r
cos θ. (7.9)

Accordingly eq.(7.5) is reduced to

nVr = −n
Eθ

B
− (ρΩe)2νei

(
1 +

Ti

Te

)
∂n

∂r
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Fig.7.2 Magnetic surface (dotted line) and drift surfaces (solid lines).

= −
(
R

r
· 2
(
2π
ι

)2 nκTe

σ‖B2
0

cos θ
(
1 +

r

R
cos θ

)

+
nκTe

σ⊥B2
0

(
1 +

r

R
cos θ

)2
)
×
(
1 +

Ti

Te

)
∂n

∂r
.

Noting that the area of a surface element is dependent of θ, and taking the average of nVr over
θ, we find that

〈nVr〉 = 1
2π

∫ 2π

0
nVr

(
1 +

r

R
cos θ

)
dθ

= − nκTe

σ⊥B2
0

(
1 +

Ti

Te

)(
1 +

2σ⊥
σ‖

(
2π
ι

)2
)
∂n

∂r
. (7.10)

Using the relation σ⊥ = σ‖/2, we obtain the diffusion coefficient of a toroidal plasma:

DP.S. =
nTe

σ⊥B2
0

(
1 +

Ti

Te

)(
1 +

(
2π
ι

)2
)
. (7.11)

This diffusion coefficient is (1 + (2π/ι)2) times as large as the diffusion coefficient of eq.(7.2).
This value is called Pfirsch-Schlüter factor1. When the rotational tranform angle ι/2π is about
0.3, Pfirsch-Schlüter factor is about 10.

7.1b A Particle Model

The classical diffusion coefficient of electrons

Dei = (ρΩe)2νei

is that for electrons which move in a random walk with a step length equal to the Larmor radius.
Let us consider a toroidal plasma. For rotational transform angle ι, the displacement ∆ of the
electron drift surface from the magnetic surface is (see fig.7.2)

∆ ≈ ±ρΩe
2π
ι
. (7.12)

The ± signs depend on that the direction of electron motion is parallel or antiparallel to the
magnetic field (see sec.3.5). As an electron can be transferred from one drift surface to the other
by collision, the step length across the magnetic field is

∆ =
(
2π
ι

)
ρΩe. (7.13)
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Consequently, the diffusion coefficient is given by

DP.S. = ∆2νei =
(
2π
ι

)2

(ρΩe)2νei, (7.14)

thus the Pfirsch-Schlüter factor has been reduced (|2π/ι| � 1 is assumed).

7.2 Neoclassical Diffusion of Electrons in Tokamak

The magnitude B of the magnetic field of a tokamak is given by

B =
RB0

R(1 + εt cos θ)
= B0(1− εt cos θ), (7.15)

where

εt =
r

R
. (7.16)

Consequently, when the perpendicular component v⊥ of a electron velocity is much larger than
the parallel component v‖, i.e., when

(
v⊥
v

)2

>
R

R+ r
,

that is,

v⊥
v‖

>
1

ε
1/2
t

, (7.17)

the electron is trapped outside of the torus, where the magnetic field is weak. Such an electron
drifts in a banana orbit (see fig.3.9). In order to complete a circuit of the banana orbit, the
effective collision time τeff = 1/νeff of the trapped electron must be longer than one period τb of
banana orbit

τb ≈ R

v‖

(
2π
ι

)
=

R

v⊥ε
1/2
t

(
2π
ι

)
. (7.18)

The effective collision frequency νeff of the trapped electron is the frequency in which the con-
dition (7.17) of trapped electron is violated by collision. As the collision frequency νei is the
inverse of diffusion time required to change the directon of velocity by 1 radian, the effective
collision frequency νeff is given by

νeff =
1
εt
νei. (7.19)

Accordingly, if νeff < 1/τb, i.e.,

νei < νb ≡ v⊥ε
3/2
t

R

(
ι

2π

)
= ε

3/2
t

1
R

(
ι

2π

)(
κTe

me

)1/2

(7.20)

the trapped electron can travel the entire banana orbit. When the trapped electron collides, it
can shift its position by an amount of the banana width (see sec.3.5(b))

∆b =
mv‖
eBp

≈ mv⊥
eB

v‖
v⊥

B

Bp
≈ ρΩeε

1/2
t

R

r

2π
ι
=
(
2π
ι

)
ε
−1/2
t ρΩe. (7.21)
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Fig.7.3 Dependence of the diffusion coefficient on collision frequency in a tokamak. νp = (ι/2π)vTe/R,
νb = ε

3/2
t νp.

As the number of trapped electrons is ε1/2
t times the total number of electrons, the trapped-

electron contribution to diffusion is

DG.S. = ε
1/2
t ∆2

bνeff = ε
1/2
t

(
2π
ι

)2

ε−1
t (ρΩe)2

1
εt
νei

= ε
−3/2
t

(
2π
ι

)2

(ρΩe)2νei. (7.22)

This diffusion coefficient, introduced by Galeev-Sagdeev,2 is ε−3/2
t = (R/r)3/2 times as large as

the diffusion coefficient for collisional case. This derivation is semi-quantitative discussion. The
more rigorous discussion is given in ref.2.
As was discussed in sec.7.1, MHD treatment is applicable if the electron to ion collision

frequency is larger than the frequency νp given by

νp =
1
R

ι

2π
vTe =

1
R

(
ι

2π

)(
κTe

me

)1/2

. (7.23)

When the electron to ion collision frequency is smaller than the frequency

νb = ε
3/2
t νp, (7.24)

the electron can complete a banana orbit. The diffusion coefficients are witten by

DP.S. =
(
2π
ι

)2

(ρΩe)2νei, νei > νp, (7.25)

DG.S. = ε
−3/2
t

(
2π
ι

)2

(ρΩe)2νei, νei < νb = ε
3/2
t νp. (7.26)

If νei is in the region νb < νei < νp , it is not possible to treat the diffusion phenomena of
electrons in this region by means of a simple model. In this region we must resort to the drift
approximation of Vlasov’s equation. The result is that the diffusion coefficient is not sensitive
to the collision frequency in this region and is given by2,3

Dp =
(
2π
ι

)2

(ρΩe)2νp, νp > νei > νb = ε
3/2
t νp. (7.27)

The dependence of the diffusion coefficient on the collision frequency is shown in fig.7.3. The
region νei > νp is called the MHD region or collisional region. The region νp > νei > νb is
the platau region or intermediate region; and the region νei < νb is called the banana region or
rare collisional region. These diffusion processes are called neoclassical diffusion. There is an
excellent review3 on neoclassical diffusion.

The reason that the electron-electron collison frequency does not affect the electron’s particle
diffusion coefficient is that the center-of-mass velocity does not change by the Coulomb collision.
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The neoclassical thermal diffusion coefficient χTe is the same order as the particle diffusion
coefficient (χTe ∼ De). Although ion collision with the same ion species does not affect the
ion’s particle diffusion coefficient, it does contribute thermal diffusion processes, if temperature
gradient exists. Even if the ions are the same species with each other, it is possible to distinguish
hot ion (with high velocity) and cold ion. Accordingly the ion’s thermal diffusion coefficient in
banana region is given by χTi ∼ ε

−3/2
t (2π/ι)2ρ2

Ωiνii, and χTi ∼ (mi/me)1/2Die (Die ∼ Dei).
Therefore ion’s thermal diffusion coefficient is about (mi/me)1/2 times as large as the ion’s
particle diffusion coefficient.

7.3 Fluctuation Loss, Bohm Diffusion, and Stationary Convective Loss

In the foregoing sections we have discussed diffusion due to binary collision and have derived
the confinement times for such diffusion as an ideal case. However, a plasma will be, in
many cases, more or less unstable, and fluctuations in the density and electric field will induce
collective motions of particles and bring about anomalous losses. We will study such losses here.
Assume the plasma density n(r, t) consists of the zeroth-order term n0(r, t) and 1st-order

perturbation terms ñk(r, t) = nk exp i(kr − ωkt) and

n = n0 +
∑
k

ñk. (7.28)

Since n and n0 are real, there are following relations:

ñ−k = (ñk)∗, n−k = n∗
k, ω−k = −ω∗

k.

where ∗ denotes the complex conjugate. ωk is generally complex and ωk = ωkr + iγk and

ω−kr = −ωkr, γ−k = γk.

The plasma is forced to move by perturbation. When the velocity is expressed by

V (r, t) =
∑
k

Ṽ k =
∑
k

V k exp i(k · r − ωkt) (7.29)

then V −k = V ∗
k and the equation of continuity

∂n

∂t
+∇ · (nV ) = 0

may be written as

∂n0

∂t
+
∑
k

∂ñk

∂t
+∇ ·

(∑
k

n0Ṽ k +
∑
k,k′

ñkṼ k′

)
= 0.

When the first- and the second-order terms are separated, then

∑ ∂ñk

∂t
+∇ ·

∑
n0Ṽ k = 0, (7.30)

∂n0

∂t
+∇ ·

(∑
k,k′

ñkṼ k′

)
= 0. (7.31)

Here we have assumed that the time derivative of n0 is second order. The time average of the
product of eq.(7.30) and ñ−k becomes

γk|nk|2 +∇n0 · Re(nkV −k) + n0k · Im(nkV −k) = 0,
ωkr|nk|2 +∇n0 · Im(nkV −k)− n0k · Re(nkV −k) = 0.

}
(7.32)
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If the time average of eq.(7.31) is taken, we find that

∂n0

∂t
+∇ ·

(∑
Re(nkV −k) exp(2γkt)

)
= 0. (7.33)

The diffusion equation is

∂n0

∂t
= ∇ · (D∇n0)

and the outer particle flux Γ is

Γ = −D∇n0 =
∑
k

Re(nkV −k) exp 2γkt. (7.34)

Equation (7.32) alone is not enough to determine the quantity ∇n0 ·Re(nkV −k) exp 2γkt. Denote
βk = n0k · Im(nkV −k)/ ∇n0 · (Re(nkV −k)); then eq.(7.34) is reduced to

D|∇n0|2 =
∑

γk|nk|2 exp 2γkt

1 + βk

and

D =
∑
k

γk
|ñk|2
|∇n0|2

1
1 + βk

. (7.35)

This is the anomalous diffusion coefficient due to fluctuation loss.

Let us consider the case in which the fluctuation Ẽk of the electric field is electrostatic and
can be expressed by a potential φ̃k. Then the perturbed electric field is expressed by

Ẽk = −∇φ̃k = −ik · φk exp i(kr − ωkt).

The electric field results in an Ẽk × B drift, i.e.,

Ṽ k = (Ẽk × B)/B2 = −i(k × b)φ̃k/B (7.36)

where b = B/B. Equation (7.36) gives the perpendicular component of fluctuating motion. The
substitution of eq.(7.36) into eq.(7.30) yields

ñk = ∇n0 ·
(

b × k

B

)
φ̃k

ωk
. (7.37)

In general ∇n0 and b are orthogonal. Take the z axis in the direction of b and the x axis in
the direction of −∇n, i.e., let ∇n = −κnn0x̂, where κn is the inverse of the scale of the density
gradient and x̂ is the unit vector in the x direction. Then eq.(7.37) gives

ñk

n0
=

κn

B

ky

ωk
φ̃k = kyκn

κTe

eBωk

eφ̃k

κTe
=

ω∗
k

ωk

eφ̃k

κTe

where ky the y (poloidal) component of the propagation vector k. The quantity

ω∗
k ≡ kyκn

(κTe)
eB

.

is called the drift frequency. If the frequency ωk is real (i.e., if γk = 0), ñk and φ̃k have the
same phase, and the fluctuation does not contribute to anomalous diffusion as is clear from
eq.(7.35). When γk > 0, so that ω is complex, there is a phase difference between ñk and φ̃k
and the fluctuation in the electric field contributes to anomalous diffusion. (When γk < 0, the
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amplitude of the fluctuation is damped and does not contribute to diffusion.) Using the real
parameters Ak, αk of ωk = ωkr+iγk = ω∗

kAk exp iαk (Ak > 0, αk are both real), Ṽ k is expressed
by

Ṽ k = −i(k × b)
κTe

eB

φ̃k

κTe
= −i(k × b)

κTe

eB

ñk

n0

ωkr + γki

ω∗
k

= −i(k × b)
κTe

eB

ñk

n0
Ak exp iαk

Ṽkx = ky
ñk

n0

κTe

eB

γk − ωkri

ω∗
k

= ky
ñk

n0

κTe

eB
(−iAk exp iαk).

Then the diffusion coefficient may be obtained from eq.(7.34) as follows:

D =
1

κnn0
Re(ñkṼ−kx) =

(∑
k

kyγk

κnω∗
k

∣∣∣∣ ñk

n0

∣∣∣∣2
)
κTe

eB
=

(∑
k

ky

κn
Ak sinαk

∣∣∣∣ ñk

n0

∣∣∣∣2
)
κTe

eB
. (7.38)

The anomalous diffusion coefficient due to fluctuation loss increases with time (from eqs. (7.35)
and (7.38)) and eventually the term with the maximum growth rate γk > 0 becomes dominant.
However, the amplitude |ñk| will saturate due to nonlinear effects; the saturated amplitude will
be of the order of

|ñk| ≈ |∇n0|∆x ≈ κn

kx
n0.

∆x is the correlation length of the fluctuation and the inverse of the propagation constant kx in
the x direction. Then eqs.(7.35) or (7.38) yield

D =
γk

κ2
n

∣∣∣∣ ñk

n0

∣∣∣∣2 ≈ γk

k2
x

. (7.39)

When the nondimensional coefficient inside the parentheses in eq.(7.38) is at its maximum of
1/16, we have the Bohm diffusion coefficient

DB =
1
16

κTe

eB
. (7.40)

It appears that eq.(7.40) gives the largest possible diffusion coefficient.

When the density and potential fluctuations ñk, φ̃k are measured, Ṽ k can be calculated,
and the estimated outward particle flux Γ and diffusion coefficient D can be compared to the
values obtained by experiment. As the relation of ñk and φ̃k is given by eq.(7.37), the phase
difference will indicate whether ωk is real (oscillatory mode) or γk > 0 (growing mode), so that
this equation is very useful in interpreting experimental results.

Let take an example of the fluctuation driven by ion-temperature-gradient drift instability4,5

(refer sec.8.6). The mode is described by

φ(r, θ, z) =
∑

φmn(r) exp(−imθ + inz/R).

The growth rate of the fluctuation has the maximum at around kθ = −i/r∂/∂θ = −m/r of 4

|kθ| = m

r
∼ αθ

ρi
, αθ = 0.7 ∼ 0.8.

Then the correlation length ∆θ in θ direction is ∆θ ∼ ρi/αθ (ρi is ion Larmor radius).
The propagation constant k‖ along the magnetic line of force near the rational surface q(rm) =

m/n is
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Fig.7.4 In the upper figure, the radial width of eigenmode ∆r is larger than the radial separation of
the rational surfaces ∆rm. A semi-global eigenmode structure ∆rg takes place due to the mode
couplings. In the lower figure, the radial width of eigenmode ∆r is smaller than the radial separation of
the rational surfaces ∆rm. The modes with the radial width ∆r are independent with each other.

k‖ = −ib ·∇ =
Bθ

B

(−m

r

)
+

Bt

B

(
n

R

)
≈ 1

R

(
n− m

q(r)

)
=

m

rR

rq′

q2
(r− rm) =

s

Rq
kθ(r− rm)

where q(r) ≡ (r/R)(Bt/Bθ) is the safety factor (Bθ and Bt are poloidal and toroidal fields
respectively) and s is the shear parameter s ≡ rq′/q.

|k‖| is larger than the inverse of the connection length qR of torus and is less than the inverse
of -say- the pressure gradient scale Lp, that is

1
qR

< |k‖| <
1
Lp

.

The radial width ∆r = |r−rm| of the mode near the rational surface r = rm is roughly expected
to be

∆r = |r − rm| = Rq

s

k‖
kθ
=

ρi

sαθ
∼ O

(
ρi

s

)
.

The estimated radial width of the eigenmode of ion-temperature-gradient driven drift turbulence
is given by5

∆r = ρi

(
qR

sLp

)1/2 (
γk

ωkr

)1/2

.

The radial separation length ∆rm of the adjacent rational surface rm and rm+1 is

q′∆rm = q(rm+1)− q(rm) =
m+ 1

r
− m

n
=
1
n
, ∆rm =

1
nq′

=
m/n

rq′
r

m
∼ 1

skθ
.

When the mode width ∆r is larger than the radial separation of the rational surface ∆rm,
the different modes are overlapped with each other and the toroidal mode coupling takes place
(see Fig.7.4). The half width ∆rg of the envelope of coupled modes is estimated to be6,7,8

∆rg =
(
ρiLp

s

)1/2

.
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Fig.7.5 Magnetic surface ψ = const. and electric-field equipotential φ = const. The plasma moves
along the equipotential surfaces by virtue of E × B.

The radial correlation length becomes large value of ∆rg (∆rg/∆r ∼ (Lp/ρi)1/2) and the radial
propagation constant becomes kr ∼ 1/∆rg. In this case, the diffusion coefficient D is

D = (∆rg)2γk ∼ ρiLp

s
ω∗

k ∼ κT

eB

αθ

s
.

where ω∗
k is the drift frequency. This coefficient is of Bohm type.

When the mode width ∆r is less than ∆rm (weak shear case), there is no coupling between
different modes and the radial correlation length is

∆r = ρi

(
qR

sLp

)1/2

.

The diffusion coefficient D in this case is

D ∼ (∆r)2ω∗
k ∼ ρ2

i

(
qR

sLp

)(
kθκT

eBLp

)
∼ κT

eB

ρi

Lp

(
αθqR

sLp

)
∝ κT

eB

ρi

Lp
. (7.41)

This is called by gyro Bohm type diffusion coefficient. It may be expected that the transport
in toroidal systems becomes small in the weak shear region of negative shear configuration near
the minimum q position (refer sec.16.7).

Next, let us consider stationary convective losses across the magnetic flux. Even if fluctuations
in the density and electric field are not observed at a fixed position, it is possible that the plasma
can move across the magnetic field and continuously escape. When a stationary electric field
exists and the equipotential surfaces do not coincide with the magnetic surfaces φ = const., the
E ×B drift is normal to the electric field E, which itself is normal to the equipotential surface.
Consequently the plasma drifts along the equipotential surfaces (see fig.7.5) which cross the
magnetic surfaces. The resultant loss is called stationary convective loss. The particle flux is
given by

Γk = n0
Ey

B
. (7.42)

The losses due to diffusion by binary collision are proportional to B−2; but fluctuation or
convective losses are proportional to B−1. Even if the magnetic field is increased, the loss due
to fluctuations does not decrease rapidly.

7.4 Loss by Magnetic Fluctuation

When the magnetic field in a plasma fluctuates, the lines of magnetic force will wander
radially. Denote the radial shift of the field line by ∆r and the radial component of magnetic
fluctuation δB by δBr respectively. Then we find

∆r =
∫ L

0
brdl,
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where br = δBr/B and l is the length along the line of magnetic force. The ensemble average of
(∆r)2 is given by

〈(∆r)2〉 =
〈∫ L

0
br dl

∫ L

0
br dl′

〉
=

〈∫ L

0
dl
∫ L

0
dl′ br(l) br(l′)

〉

=

〈∫ L

0
dl
∫ L−l

−l
ds br(l) br(l + s)

〉
≈ L

〈
b2r

〉
lcorr,

where lcorr is

lcorr =

〈∫∞
−∞ br(l) br(l + s) ds

〉
〈b2r〉

.

If electrons run along the lines of magnetic force with the velocity vTe, the diffusion coefficient
De of electrons becomes9

De =
〈(∆r)2〉
∆t

=
L

∆t
〈b2r〉lcorr = vTelcorr

〈(
δBr

B

)2
〉
. (7.43)

We may take lcorr ∼ R in the case of tokamak and lcorr ∼ a in the case of reverse field pinch
(RFP, refer sec.17.1).
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