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ON THE ZEROS OF AN INTEGRAL FUNCTION
REPRESENTED BY FOURIER'S INTEGRAL.

By G. Pdlya.

We do not possess a general method for discussing the
reality of zeros of an integral function represented by Fourier’s
integral (such a method would be available for Riemann’s &-
function.) I present here a special case where the discussion
is not quite trivial, but may be carried out with the help of
kuown results.

Consider the function

(1) F, (g)= .[0 e cosztdt.

If 0<a<1, then F,(z) is defined by this formula only for
real values of 2. We have

1
F@)=rp-
For a>1 we get
1
P G
- 1\ n
(2) Fﬂ(z)—ank;'o( 1) I‘t2u+ 1) Z

This development shows that F,(2) is an integral function of

order

In particular,

(3) F () =4nmed,

Following the method employed by G. H. Hardy* to
prove that Riemann’s £ (¢) has an infinite number of real zeros,
F. Bernsteint proved the same thing for ,(2), F,(2), F,(2),... .
Now it is easy to go further in the case of F£,(z) |though
naturally not in the case of £ ()], and to prove the following
results:

(1) If a=2, then there are no zeros at all.

(1T) If a=4, 6, 8, ..., then there are an infinile number of
rea.l zZeros bu‘ no complex Zeros.

* Comptes Rendus, 6 April, 1914.
t Mathematische Annalen, vol. Jxxix. (1919), pp. 265—268.

For comments on this paper[81], see p. 423.
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(ILI) If a> 1, and s not an even integer, then there arve an
infinite number of complex zeros and a finite number, not less
than 2 [}a], of real zeros.

The statement (I) needs no demonstration: compare (3).
The proof of (LI) is based on the following special case of a
theorem of Laguerre:*

If @ (z) is an integral function of order less than 2 which
assumes real values along the real axis and possesses only real
negative zeros, then the zeros of the integral function

1), 2(2) ., P (n) .
L] (0)-}-—1"!'- z _—2-!—3 +.-.+—;!—z +...
are also all real and negative.
et r (2"2; 1) I(z+1)
4) & (2) = — ;
I'(2z+1)

wlere % is a positive integer, The poles of the numerator
=—14, "".‘12 (2% + 1), ""5 (4k+1)y aony z='g! - %* — 8§ e
are absorbed by those of the denominator
s, =8 = b =% =f o

Thus © (2) is an integral function satisfying the conditions
required by the theorem of Laguerre, and consequently the
zeros of

2 1
T ()T e+)
§ 2" 2k
n=0 2| I'(2rn+1)
are all real and negative ; we infer that the zeros of ¥, (z)
are all real.

=2k F,, (i4/2)

The order of the integral fuuction ¥, (2) is 2%—‘%1 ; if
5 e —
k=2, 3, 4, ..., then 1<2kfc ; <2 Thus F, (z) is not of
integral order and consequently possesses an infinit y of zeros;
they are all real, and thus (11) is completely proved.
Suppose « is positive. L'hen we have, by partial integration,

1. -]
e+l Fy () = o J sinat.ate—t e L.
0

* Qcuvres, vol. i. (Paris, 1898), pp. 200-203.
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Introduce the new variable u =a°"; then we have
(6)  aelF.(2)=F j exp (ulle — uz—a) du,
0

where ¥ 4 denotes the imaginary part of 4. Choose as path
of integration, not the positive real axis, but a straight line
running from 0 to oo in the upper half-plane and making a
sufficiently sinall angle with the positive real axis. With this
path we have

lim et F,(z) = ¥ JD ¢ du,

ax=+0

Rotating the path of integration in the positive direction until
it reaches the position where argz=3wa, we get tinally

(6) lim e+l F, (x)r-fﬂwe'f““ef’frﬂl?dr

=400

=I"(a+1)sin (ra/2).

If the limit (6) is different from 0, that is, if « is different
from 2, 4, 6, ..., then F,(2) possesses

(a) a finite number of real zeros and
(5) an infinite number of zeros.

Of these assertions, () is evident from (6). To prove (3)
we make use of the theorem that an integral function of finite
order having a finite number of zeros is of the form

(7) P(z) 2,

where P(2), Q(z) are polynomials. Now F,(z) is certainly
not of the form (7), since it converges to 0 when z=>+ o in the
same manner as a negative power of 2z, as may be seen from
(6). 'The statements (a), (b) just proved contain the first two
parts of (L11).

From (1) follows, by Fourier’s theorem,

2 [~ '
= H = —‘ﬂ= — see o
= jo F,(2)cosxtdr=e 1 1!+

Differentiating 2m times with respect to ¢, where
(8) 2m<a<2m+2,
and then putting ¢=0, we get

(9) j: Fu (55) x'dr = I: Fu(x)x‘dx =,,.= J‘: Fa (x) 2;”';{3;; 0
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The convergence of the integrals (9) is assured by (6) and (8).
1t follows from (9) that

(10) J’: F(zx)x* P(x*)dx =0,

where P(2) denotes any polynomial in z of degree not ex-
ceeding m—1. Assume now, if possible, that F, (z) changes
sign at most m — 1 times for £> 0, e.g. at the points &, &,, «+ey
x . where 0 <, <&, <...<&,_,; and put

P@)=(x} - o) (x, —2)...(&", . — &)

Then the integrand in (10) is never negative and our assumption
Jeads to a contradiction, Thus F,(x) changes sign at least
m=[3«] times for £>0. We have now proved the whole of
Theorem (LLI).

"The results we have obtained may be completed in many
respects. If =0 and % is an integer not less than 2, then
the zeros of the integral function of 2

-]
J " eat*~t* coszt dt

are all real; the asymptotic distribution of the zeros can be
caleulated by more laborious and more usual methods; and
so on, The function F,(z) has been considered in connection
with questions arising in the theory of errors, especially by
Cauchy*, and P. Lévyt proved that F,(x)=0 for 0<a=2
and for real values of z. More recentiy W. R. Burwell} has
discussed the asymptotic expansion of Fq (2) for a=3, 4, 5, ...,
and has shown in particular that, when a=4, 6, ..., the number
of complex zeros is finite. "Lhis result is included in Theo-
rem (L) above. Finally we may add that F,(2) is of much
importance in Waring’s problem.§

* Comptes Rendus, vol. xx3vii. (1853), pp. 202206, and passint.

t Comptes Itendus, vol. clxxvi. (1923), pp. 1118-1120.

3 Proc. Lond. Matk. Soc. {2), vol. xxii. (1923), pp. 57-72.

§ G. H. Hardy aud J, L. Littlewood, Gottinger Nuchrichten (1920), pp- 83-54.

240 LOCATION OF ZEROS




