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1. INTRODUCTION: CONCERNING THE RELATION
BETWEEN GEOMETRY AND PHYSICS

The real world, into which we have been placed by virtue of our consciousness, is not
there simply and all at once, but is happening; it passes, annihilated and newly born
at each instant, a continuous one-dimensional succession of states in time. The arena
of this temporal happening is a three-dimensional Euclidean space. Its properties are
investigated by geometry, the task of physics by comparison is to conceptually com-
prehend the real that exists in space and to fathom the laws persisting in its fleeting
appearances. Therefore, physics is a science which has geometry as its foundation;
the concepts however, through which it represents reality—matter, electricity, force,
energy, electromagnetic field, gravitational field, etc.—belong to an entirely different
sphere than the geometrical.

This old view concerning the relation between the form and the content of reality,
between geometry and physics, has been overturned by Einstein’s theory of relativ-
ity.1 The special theory of relativity led to the insight that space and time are fused
into an indissoluble whole which shall here be called the world; the world, according
to this theory, is a four-dimensional Euclidean manifold—Euclidean with the modifi-
cation that the underlying quadratic form of the world metric is not positive definite
but is of inertial index  The general theory of relativity, in accordance with the
spirit of modern physics of local action [Nahewirkungsphysik], admits that as valid
only in the infinitely small, hence for the world metric it makes use of the more gen-
eral concept of a metric [Maßbestimmung] based on a quadratic differential form,
developed by Riemann in his habilitation lecture. | But what is new in principle in this
is the insight that the metric is not a property of the world in itself, rather, spacetime
as the form of appearances is a completely formless four-dimensional continuum in

1 I refer to the presentation in my book Raum, Zeit, Materie, Springer 1918 (in the sequel cited as
RZM), and the literature cited there.
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the sense of analysis situs. The metric, however, expresses something real that exists
in the world, which produces physical effects on matter by means of centrifugal and
gravitational forces, and whose state is in turn determined according to natural laws
by the distribution and composition of matter. By removing from Riemannian geom-
etry, which claims to be a purely “local geometry,” [

 

Nahe-Geometrie

 

] an inconse-
quence still currently adhering to it, ejecting one last element of non-local geometry
[

 

ferngeometrisches Element

 

] which it had carried along from its Euclidean past, I
arrived at a world metric from which not only arises gravitation, but also the electro-
magnetic effects, and therefore, as one may assume with good reason, accounts for
all physical processes.

 

2

 

 According to this theory, 

 

everything real that exists in the
world is a manifestation of the world metric

 

; the physical concepts are none other
than the geometric ones. The only difference that exists between geometry and phys-
ics is that geometry fathoms in general what lies in the nature of the metric concepts,

 

3

 

whereas physics has to determine the law by which the real world is distinguished
among all the four-dimensional metric spaces possible according to geometry and
pursue its consequences.

 

4

 

In this note, I want to develop that 

 

purely infinitesimal geometry

 

 which, according
to my conviction, contains the physical world as a special case. The construction of
the local geometry proceeds adequately in three steps. On the first step stands the

 

continuum

 

 in the sense of analysis situs, without any metric—physically speaking,

 

the empty world

 

; on the second the 

 

affinely connected continuum

 

—I so call a mani-
fold in which the concept of infinitesimal parallel displacement of vectors is mean-
ingful; in | physics, the affine connection appears as 

 

the gravitational field

 

—; finally
on the third, the 

 

metric

 

 continuum—physically: 

 

the “aether,” 

 

whose states are mani-
fested in the phenomena of matter and electricity.

2. SITUS-MANIFOLD (EMPTY WORLD)

As a consequence of the difficulty in grasping the intuitive character of the continu-
ous connection by means of a purely logical construction, a completely satisfactory
analysis of the concept of an 

 

-dimensional manifold

 

 is not possible today.

 

5

 

 The fol-
lowing is sufficient for us: An -dimensional manifold refers to  coordinates

 of which each possesses at each point of the manifold a particular
numerical value: different sets of values of the coordinates correspond to different

 

2 A first communication about this appeared under the title “Gravitation und Elektrizität” in 

 

Sitzungs-
ber. d. K. Preuß. Akad. d. Wissenschaften

 

 1918, p. 465.
3 Naturally, traditional geometry leaves the path of this, its principal task, and immediately takes on the

less specific one by not making space itself anymore the object of its investigation, but the structures
possible in space, special classes and their properties they are endowed with on the basis of the space-
metric.

4 I am bold enough to believe that the totality of physical phenomena can be derived from a single uni-
versal world law of greatest mathematical simplicity.

5 See also H. Weyl, 

 

Das Kontinuum

 

 (Leipzig 1918), specifically pp. 77 ff.
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points; if  is a second system of coordinates then there exist between the
- and the -coordinates of the same arbitrary point regular relations

where  denote purely logically-arithmetically constructible functions; of these we
presuppose not only that they are continuous, but also that they posses continuous
derivatives

whose determinant does not vanish. The last condition is necessary and sufficient for
the affine geometry to be valid in the infinitely small, namely that there exist invert-
ible linear relationships between the coordinate differentials in the two systems:

(1)

We assume the existence and continuity of higher order differentials where required
during the course of the investigation. In any case, the concept of the continuous and
continuously differentiable point-function, if necessary also the  times con-
tinuously differentiable, has therefore an invariant meaning independent of the coor-
dinate system. The coordinates themselves are such functions. An -dimensional
manifold for which we regard no properties other than those lying within the concept
of an -dimensional manifold, we call—in physical terminology—an ( -dimen-
sional) 

 

empty world

 

. |
The relative coordinates  of a point  infinitely close to the point

 are the components of a 

 

line element

 

 in  or an 

 

infinitesimal displacement

 

 of  In going to a different coordinate system the formulae (1) apply for these
components, the  denoting the corresponding derivatives at the point  More
generally, on the basis of a definite coordinate system in the neighborhood of  any

 numbers   given in a definite order, characterize at the point  a

 

vector

 

 (or a 

 

displacement

 

) at  The components  respectively  of the same vec-
tor in any two coordinate systems, the “unbarred” one and the “barred” one, are
related by the same linear transformation equations (1):

Vectors at  can be added and multiplied by numbers; thus they form a “linear” or
“affine” totality [

 

Gesamtheit

 

]. With each coordinate system are associated  “unit
vectors”  at  namely those vectors which in the coordinate system in question
have the components

x1 x2 … xn
x x

xi f i x1 x2 … xn( )= i 1 2 … n, , ,=( ),
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Any two (linearly independent) line elements at  with the components  and
 respectively span a (two-dimensional) area element at  with the components

 

each three (independent) line elements  at  a (three-dimensional) vol-
ume element with the components

etc. A linear form depending on an arbitrary line- or area- or volume- or ... element at
 is called a linear tensor of order  respectively. By using a particular coor-

dinate system, the coefficients  of this linear form

| can be uniquely normalized through the alternation requirement; e.g., for the case
just written down this implies that the triple of indices  which arise through an
even permutation of itself corresponds to the same coefficient  whereas under
odd permutations the coefficient changes into its negative, that is

The coefficients normalized in this manner are called the components of the tensor in
question. From a scalar field  one obtains through differentiation a linear tensor field
of order  with the components

from a linear tensor field  of order , one of  order:

from one of order  a linear tensor field of order 

e1

e2

..

en

1, 0, 0, ..., 0

0, 1, 0, ..., 0
... ... ... ... ...

0, 0, 0, ..., 1

P xid
xiδ P

xi xkδd xk xiδd– xik,∆=

xi, xi, dxiδd P,

xid xkd xld

xiδ xkδ xlδ

dxi dxk dxl

xikl ;∆=

P 1 2 3…, ,
a

ai xi,   resp.   
1
2!
----- aik∆xik,

1
3!
----- aikl∆xikl

ikl
∑
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∑d

i
∑ , ... 
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etc. These operations are independent of the coordinate system used.6

A linear tensor of the  order at  we will call a force acting there. Assuming a
definite coordinate system, such a force is thus characterized by  numbers 
which transform contragrediently to the components of the displacement under a
change to another coordinate system:

If  are the components of an arbitrary displacement at  then

 

is an invariant. By a tensor at  one generally understands a linear form of one or
more arbitrary displacements and forces at  For example, if we are dealing with a
linear form of three arbitrary displacements  and two arbitrary forces 

then we speak of a tensor of order 5, with the components  being covariant with
respect to the indices  and contravariant with respect to the indices  A dis-
placement is itself a contravariant | tensor of 1st order, the force a covariant one. The
fundamental operations of tensor algebra are:7

1. Addition of tensors and multiplication by a number;

2. Multiplication of tensors;

3. Contraction.

Accordingly, tensor algebra can already be constructed in the empty world—it does
not presuppose any metric [Maßbestimmung]—of tensor analysis, however, only that
of “linear” tensors.

A “motion” in our manifold is given, if to each value  of a real parameter is
assigned a point in a continuous manner; by using the coordinate system  the
motion is expressed by the formulae  in which the  on the right are to be
understood as function symbols. If we presuppose continuous differentiability, then
we obtain, independently of the coordinate system, for each point  of the
motion a vector at  with the components:

6 RZM, §13.
7 RZM, §6.
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the velocity. Two motions, arising from one another through continuous monotonic
transformation of the parameter  describe the same curve.

3. AFFINELY CONNECTED MANIFOLD 
(WORLD WITH GRAVITATIONAL FIELD)

3.1 The Concept of the Affine Connection

If  is infinitely close to the fixed point  then  is affinely connected with  if
for each vector at  it is determined into which vector at  it will transform under
parallel displacement from  to  The parallel displacement of all vectors at 
from there to  must evidently satisfy the following requirement.

A. The transfer of the totality of vectors from  to the infinitely close point  by
means of parallel displacement produces an affine transformation of the vectors at 
to the vectors at  

If we use a coordinate system in which  has the coordinates   the coordi-
nates  an arbitrary vector at  the components  and the vector at  that
results from it through parallel displacement to  the components  then

 must therefore depend linearly on the  | 

 are infinitesimal quantities which depend only on the point  and the displace-

ment  with the components  but not on the vector  subject to parallel dis-
placement. From now on, we consider affinely connected manifolds; in such a mani-
fold, each point  is affinely connected to all its infinitely close points. A second
requirement is still to be imposed on the concept of parallel displacement, that of
commutativity.

B. If   are two points infinitely close to  and if the infinitesimal vector

 becomes  under parallel displacement from  to  and  becomes

 under parallel displacement to  then the points  and  coincide.

(An infinitely small parallelogram results.)

If we denote the components of  by  and those of  by  then the
requirement in question obviously implies that

(2)

ui
xid

sd
-------,=

s

P′ P, P′ P,
P P′

P P′. P
P′

P P′
P
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P xi, P′
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ξid ξi:[390]
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is a symmetric function of the two line elements  and  Consequently,  must
be a linear form of the differentials 

and the coefficients  the “components of the affine connection,” which depend only
on the location of  must satisfy the symmetry condition

Because of the way in which the infinitesimal quantities are dealt with in the for-
mulation of the requirement B, it could be objected that the latter lacks a precise
meaning. Therefore, we want to determine explicitly through a rigorous proof that the
symmetry of (2) is a condition independent of the coordinate system. For this pur-
pose, we make use of a (twice differentiable) scalar field  From the formula for the
total differential

we infer, that if  are the components of an arbitrary vector at  |

 

is an invariant independent of the coordinate system. We form its variation under a
second infinitesimal displacement  in which the vector  shall be displaced paral-
lel to itself from  to  and obtain

 

If we replace in this expression  again by  and subtract from this equation the
one obtained by interchanging  and  then the invariant

results. The relations

contain the necessary and sufficient condition that for any scalar field  the equation
 is satisfied.
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In physical terms, an affinely connected continuum is to be described as a world
in which a gravitational field exists. The quantities  are the components of the
gravitational field. The formulae, according to which these components transform in
changing from one coordinate system to another, we need not state here. Under linear
transformations the  behave with respect to  and  like the covariant compo-
nents of a tensor and with respect to  like the contravariant components, but lose this
character under non-linear transformations. However, the changes  which are
experienced by the quantities  if one arbitrarily varies the affine connection of the
manifold, form the components of a generally-invariant tensor of the given character.

What is to be understood by parallel displacement of a force at  from there to
the infinitely close point  results from the requirement that the invariant product of
this force and an arbitrary vector at  is preserved under parallel displacement. If 
are the components of the force,  those of the displacement, then8

yields the formula

| At each point  one can introduce a coordinate system  of a kind—I call it
geodesic at —such that in it, the components of the affine connection  vanish
at the point  If  are initially arbitrary coordinates that vanish at  and  des-
ignate the components of the affine connection at the point  in this coordinate sys-
tem, then one obtains a geodesic coordinate system  via the transformation

(3)

Namely, if we consider the  as independent variables and their differentials  as
constants, then one has in the sense of Cauchy at 

therefore,

Because of their invariant nature, the last equations in the coordinate system 
become:

8 In the following we will use Einstein’s convention that summation is always to be carried out over
indices which occur twice in a formula without our finding it necessary to always place a summation
sign in front of it.
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For arbitrary constant  these are, however, satisfied only if all the  vanish.
Therefore, through an appropriate choice of the coordinate system, the gravitational
field can always be made to vanish at a single point. Through the requirement of
“geodesy” at  the coordinates in the neighborhood of  are determined up to linear
transformation excluding terms of third order; i.e., if   are two coordinate sys-
tems geodesic at  and if the  as well as the  vanish at  then by neglecting
terms in  of order  and higher, linear transformation equations 
with constant coefficients  apply.

3.2 Tensor Analysis, Straight Line

Only in an affinely connected space can tensor analysis be fully established. If for
example  are the components of a order tensor field, covariant in  and con-
travariant in  then with the aid of an arbitrary displacement  and a force  at the
point  we form the invariant 

and its change under an infinitely small displacement  of the point  in which 
and  are displaced parallel with respect to themselves. We have

| and therefore

are the components of  order tensor field, covariant in  and contravariant in 
which arises from the given  order tensor field in a coordinate independent manner.

In the affinely connected space, the concept of straight or geodesic line gains a
definite meaning. The straight line arises as the trajectory of the initial point of the
vector which is displaced in its own direction keeping it parallel to itself; it can there-
fore be described as that curve the direction of which remains unchanged. If  are
the components of that vector, then during the course of the motion the equations

should always hold. The parameter  used in describing the curve can thus be nor-
malized in such a way that
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identically along  and the differential equations of the straight line are then

For each arbitrary motion  the left hand sides of these equations are the
components of a vector invariantly linked to the motion at the point  the accelera-
tion. Actually, if  is an arbitrary force at that point, which during the transition to
the point  is displaced parallel to itself, then

A motion, whose acceleration vanishes identically is called a translation. A straight
line—this is another way of grasping our above explanation—is to be understood as
the trajectory of a translation.

3.3 Curvature

If  and  are two points connected by a curve, and a vector is given at the first
point, then one can displace this vector parallel to itself along the curve from  to

 The resulting vector transfer is however in general not integrable; i.e. the vector |
which one ends up with at  depends on the path along which the transport takes
place. Only in the special case of integrability does it make sense to speak of the
same vector at two different points  and  these are understood to be vectors
which arise from one another under parallel transport. In this case, the manifold is
called Euclidean. In such a manifold, special “linear” coordinate systems can be
introduced which are distinguished by the fact that equal vectors at different points
have equal components. Any two such linear coordinate systems are related by linear
transformation equations. In a linear coordinate system the components of the gravi-
tational field vanish identically.

On the infinitely small parallelogram constructed above (§3, I., B.), we attach at
the point  an arbitrary vector with components  and in the first case displace it
parallel to itself to  and from there to  and in the second case first to  and
from there to  Since  and  coincide, we can form the difference of these
two vectors at this point and through this obviously obtain there a vector with the
components

From

it follows that

s,
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and because of the symmetry of 

Therefore, we obtain

where the  are linear forms of the two displacements  and  or rather of the
area element spanned by them, independent of the vector  and with the components

(4)

(5)

If  are the components of an arbitrary force at  then  is | an invariant; con-
sequently,  are the components of a order tensor at  covariant in  and
contravariant in  the curvature. That the curvature vanishes identically is the neces-
sary and sufficient condition for the manifold to be Euclidean. In addition to the con-
dition of “skew” symmetry given beside (4), the curvature components satisfy the
condition of “cyclic” symmetry:

By its nature, the curvature at a point  is a linear map or transformation 
which assigns to each vector  there another vector  this transformation itself
depends linearly on an element of area at 

Accordingly, the curvature is best described as a “linear transformation-tensor of
order.”

In order to counter objections to the proof of the invariance of the curvature ten-
sor, which could be raised against the above considerations involving infinitesimals,
one uses a force field  and forms the change  of the invariant product 
in such a way that under the infinitely small displacement  the vector  is displaced
parallel to itself. Replacing in the expression obtained the infinitesimal displacement
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 with an arbitrary vector  at  one obtains an invariant bilinear form of two
arbitrary vectors  and  at  From this one forms the change which corresponds
to a second infinitely small displacement  by parallely taking along the vectors 
and  and replacing thereafter the second displacement by a vector  at  One
obtains the form

Through the interchange of  and  and subsequent subtraction, this yields, because
of the symmetry of  the invariant

and thus the desired proof has been completed.

4. METRIC MANIFOLD (THE AETHER)

4.1 The Concept of The Metric Manifold

A manifold carries at the point  a metric, if the line elements at  can be com-
pared with respect to their lengths. For this purpose, we assume the validity of the
Pythagorean-Euclidean | laws in the infinitely small. Hence, to any two vectors 
at  shall correspond a number  the scalar product, which is a symmetric
bilinear form with respect to the two vectors. This bilinear form is certainly not abso-
lute, but is only determined up to an arbitrary non-zero factor of proportionality.
Hence, it is actually not the form  that is given but only the equation

 two vectors which satisfy this equation are called perpendicular to one
another. We presuppose that this equation is non-degenerate, i.e. that the only vector
at  to which all vectors at  can be perpendicular is the vector. We do not how-
ever presuppose that the associated quadratic form  is positive definite. If it has
the index of inertia  and if  then we say in brief, the manifold at the
point considered is -dimensional. As a result of the arbitrary factor of propor-
tionality, the two numbers  are only determined up to their order. We now
assume that our manifold carries a metric [Maßbestimmung] at each point  For the
purpose of analytic representation, we consider (1) a definite coordinate system, and
(2) the factor of proportionality appearing in the scalar product and which can be
arbitrarily chosen at each point as fixed; with this, a “frame of reference”9 for the ana-
lytic representation is obtained. If the vector  at the point  with the coordinates 
has the components  and  the components  then one has

9 I thus differentiate between “coordinate system” and “frame of reference.”
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where the coefficients  are functions of the  The  should not only be contin-
uous, but also be twice continuously differentiable. Since they are continuous and
their determinant  by assumption does not vanish anywhere, the quadratic form

 has the same index of inertia  at all points; therefore, we can describe the
manifold in its entirety as -dimensional. If we retain the coordinate system,
but make a different choice for the undetermined factor of proportionality, then
instead of the  we obtain for the coefficients of the scalar product the quantities

where  is a nowhere vanishing continuous (and twice continuously differentiable)
function of position.

According to the previous assumption, the manifold is only equipped with an
angle-measurement; the geometry which is solely based on this, would be described
as “conformal geometry”; it has, | as is well known, in the realm of two-dimensional
manifolds (“Riemannian surfaces”) experienced extensive development, because of
its importance for complex function theory. If we make no further assumptions, then
the individual points of the manifold remain completely isolated from one another
with respect to metrical properties. The manifold becomes endowed with a metric
connection from point to point, only when a principle exists for the transfer of the
unit of length from a point  to an infinitely close one. Instead, Riemann made the
much farther reaching assumption, that line elements can be compared not only at the
same location, but that they can be compared as to their lengths at two finitely distant
locations. But the possibility of such a “non-local geometric” comparison definitely
cannot be admitted in a purely infinitesimal geometry. Riemann’s assumption has
also entered the Einsteinian world geometry of gravitation. Here, this inconsequence
shall be removed.

Let  be a fixed point and  an infinitely close point obtained from  through
the displacement with the components  We assume a definite frame of reference.
In relation to the unit of length thus defined at  (as well as at all other points in the
space), the square of the length of an arbitrary vector  at  is given by

Now, if we transfer the unit of length chosen at  to  which we presuppose as
possible, the square of the length of an arbitrary vector  at  is given by

where  is a factor of proportionality deviating infinitesimally from  
must be a homogeneous function of degree  of the differentials  Namely, if we
transplant the unit of length chosen at  from point to point along a curve leading
from  to a finitely distant point  then on the basis of the unit of length so

gik xi. gik

g
ξ ξ⋅( ) q

p q+( )

gik

g′ik λ gik,⋅=

λ

[397]

P

P P* P
xi.d

P
ξ P

gikξiξk.
ik
∑

P P*,
ξ* P*

1 ϕd+( ) gik gikd+( )ξ
*
i ξ

*
k ,

ik
∑

1 ϕd+ 1; ϕd
1 xi.d

P
P Q,



1102 HERMANN WEYL

obtained at  we obtain for the square of the length of an arbitrary vector at  the
expression  multiplied by the factor of proportionality which results from the
product of the infinitely many individual factors of the form  which arise
each time that we move from one point on the curve to the next.

| In order that the integral appearing in the exponent makes sense,  must be a func-
tion of the differentials of the kind asserted.

If one replaces  by  then in place of  a different quantity 
will appear. If  denotes the value of this factor at the point  one must have

and this yields

(6)

Of the initially possible assumptions about  that it is a linear differential form, or
the root of a quadratic one, or the cubic root of a cubic one etc., only the first, as we
can now see from (6), has an invariant meaning. We have thus arrived at the following
result.

The metric of a manifold is based on a quadratic and on a linear differential form

(7)

However, conversely these forms are not absolutely determined by the metric, but
each pair of forms  and  which arise from (7) according to the equations

(8)

is equivalent to the first pair in the sense that both express the same metric. In this 
is an arbitrary, nowhere vanishing continuous (more precisely: twice continuously
differentiable) function of position. Into all quantities or relations which represent
metric relations analytically, the functions   must thus enter in such a way that
invariance holds (1) with respect to an arbitrary coordinate transformation (“coordi-
nate-invariant”), and (2) with respect to the replacement of (7) by (8) (“measure-
invariance”).

is a total differential. Hence, whereas in the quadratic form  a factor of propor-
tionality remains arbitrary at each location, the indeterminacy of  consists of an
additive total differential.

Q Q
gikξiξk,

1 ϕ,d+
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A metric manifold we describe physically as a world filled with aether. The par-
ticular metric existing in the manifold represents a particular state of the world filling
aether. This state is thus to be described relative to a frame of reference through the
specification (arithmetic construction) of the functions   |

From (6) it follows that the linear tensor of  order with the components

is uniquely determined by the metric of the manifold; I call it the metric vortex. It is
the same, I believe, as what in physics one calls the electromagnetic field. It satisfies
the “first system of Maxwell’s equation”

Its vanishing is the necessary and sufficient condition for the transfer of length to be
integrable, i.e., for those conditions which Riemann placed at the foundations of met-
ric geometry to prevail. We understand from this how Einstein through his world
geometry, which mathematically follows Riemann, could only account for gravitation
but not for the electromagnetic phenomena.

4.2 Affine Connection of a Metric Manifold

In a metric space, in place of the requirement A imposed on the concept of paral-
lel displacement in §3, I., we have the more specific one

A*: that the parallel displacement of all vectors at a point  to an infinitely close
point  must not only be an affine but also a congruent transfer of the totality of
these vectors.

Using the previous notation, this requirement yields the equation

(9)

For all quantities  which carry an upper index  we define the “lowering” of the
index through the equations

(and the reverse process of raising an index through the inverse equations). Using this
symbolism, for (9) we can write

The last term is

gik, ϕi.
[399]2nd
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--------–=
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| and therefore
(10)

This equation can certainly be satisfied only if  is a linear differential form; an
assumption to which we were already driven above as the only reasonable one. From
(10) or

(10*)

follows, as a consequence of the symmetry property 

(11)

It turns out that on a metric manifold the concept of the infinitesimal parallel dis-
placement of a vector is uniquely determined through the requirements put for-
ward.10 I consider this as the fundamental fact of infinitesimal geometry, that with the
metric also the affine connection of a manifold is given, that the principle of transfer
of length inherently carries with it that of transfer of direction, or expressed physi-
cally, that the state of the aether determines the gravitational field.

If the quadratic form  is indefinite, then among the geodesic lines, the
null lines are distinguished as those along which the form vanishes. They depend
only on the ratios of the  but not at all on the  they are thus structures of con-
formal geometry.11

We had imposed certain axiomatic requirements on the concept of parallel trans-
port and shown that they can be satisfied on a metric manifold in one and only one
way. However, it is also possible to define that concept explicitly in a simple manner.
If  is a point in our metric manifold, then we call a frame of reference geodesic in

 if upon its use the  vanish at  and the  assume stationary values:

| D. For each point  there exist geodesic frames of reference. If  is a given vec-
tor at  and  is an infinitely close point to  then we understand by the vector
which arises from  through parallel transport to  that vector at  which has
the same components as  in the geodesic coordinate system belonging to  This
definition is independent of the choice of the geodesic frame of reference.

10 See also Hessenberg, “Vektorielle Begründung der Differentialgeometrie,” Math. Ann. vol. 78 (1917),
p. 187–217, especially p. 208.

11 With this comment, I would like to correct a mistake on page 183 of my book Raum, Zeit, Materie.
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It is not difficult to demonstrate the assertion contained in this explanation inde-
pendently of the train of thought followed here through direct calculation, and to
show by the same means that the process of parallel transport so defined is, in an arbi-
trary coordinate system, described by the equation

(12)

with the coefficients  to be taken from (11).12 But here, where the invariant mean-
ing of equation (12) is already established, we conclude more simply as follows.
According to (11), the  vanish in a geodesic frame of reference and the equations
(12) reduce to  Hence, the concept of parallel transfer that we derived from
the axiomatic requirements agrees with the one defined in D. Only the existence of a
geodesic frame of reference is left to be shown. For this purpose, we choose a coordi-
nate system , geodesic at  having the point  as its origin  If the unit
of length at  and in its vicinity is for the time being chosen arbitrarily, and if fur-
thermore the  denote the value of these quantities at  then one only needs to
complete the transition from (7) to (8) with

in order to obtain that, besides the  the  also vanish at  From this then fol-
lows—see (10*)—the geodesic nature of the frame of reference so obtained. The
coordinates of a frame of reference geodesic at  are in the immediate vicinity of 
determined up to terms of  order, leaving aside linear transformation, and the unit
of length up to terms of  order, leaving aside the addition of a constant factor.

12 In this one could follow the approach I have taken in RZM, §14.
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