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Abstract. We prove that spherically symmetric solutions of the Cauchy problem

for the linear wave equation with the inverse-square potential satisfy a modified

dispersive inequality that bounds the L∞ norm of the solution in terms of certain

Besov norms of the data, with a factor that decays in t for positive potentials. When

the potential is negative we show that the decay is split between t and r, and the

estimate blows up at r = 0. We also provide a counterexample showing that the

use of Besov norms in dispersive inequalities for the wave equation are in general

unavoidable.

1. Introduction. Consider the following linear wave equation


nu + a
|x|2 u = 0

u(0, x) = f(x)
∂tu(0, x) = g(x)

(1.1)

where n = ∂2
t − ∆n is the D’Alembertian in R

n+1 and a is a real number. The
interest in this equation comes from the potential term being homogeneous of degree
-2 and therefore scaling the same way as the D’Alembertian term. This implies that
perturbation methods alone cannot be used in studying the effect of this potential.
In particular, the value of the constant a is important.

In [8] we showed that in the radial case, i.e. when the data – and thus the
solution – are radially symmetric, the solution to (1.1) satisfies generalized space-
time Strichartz estimates as long as a > −(n − 2)2/4. In this paper we continue
the study of the radial case by proving a dispersive estimate, i.e. a decay-in-time
estimate for the L∞ norm of the solution. We note that for non-radial data, the
same estimate can be proven in the same way for each component in the spherical
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harmonics expansion of the solution, but we do not know if it is possible to re-sum
these to obtain the estimate in the general case.

It is well-known that in the free case a = 0 the following dispersive inequality
holds

|u(x, t)| ≤ C

t
n−1

2

(
‖f‖

Ẇ
n+1

2 ,1 + ‖g‖
Ẇ

n−1
2 ,1

)
, (1.2)

where Ẇ k,p(Rn) is the homogeneous Sobolev space on R
n which is defined to be

the closure of C∞
0 (Rn) with respect to the norm

‖u‖Ẇ k,p(Rn) =
∑
|α|=k

‖∂αu‖Lp(Rn).

When n is even, the Ẇ k,1 norms on the right need to be replaced with the Besov
norms Ḃk,1

1 , see [10] for details. Even when n is odd, the estimate

‖u(t)‖L∞(Rn) ≤ C

t(n−1)/2

(
‖(−∆)

n+1
4 f‖L1(Rn) + ‖(−∆)

n−1
4 g‖L1(Rn)

)
is false for all n, as we show in an appendix to this paper. This shows that one
cannot replace the Ẇ k,1 norms with Ḣk,1 in the dispersive inequality.

For the wave equation with a compactly supported potential, Beals [1] has shown
that (1.2) still holds. We would like to show that a similar estimate holds for the
solution of (1.1). Because of the special form of the potential, this equation is scale-
invariant for any a, and thus it is enough to prove the above estimate (which is
also scale-invariant) for t = 1, i.e., boundedness implies the decay. It is important
to note however, that such an estimate is false if a < 0: It was shown in [8]
that, generically, the solution of the wave equation with a negative inverse-square
potential blows up at x = 0 even if the data is smooth.

Since negative potentials do appear in nonlinear applications of the above, we
want to prove a modified dispersive estimate which allows for blowup at the origin.
Let

λ :=
n − 2

2
and for a > −λ2 let

ν :=
√

λ2 + a.

The following is the main result of this paper:

Theorem 1.1. Let n ≥ 3, λ and ν defined as above, and assume ν �= n−1
2 , n−3

2 if
n is even, and ν �= n−3

2 , n−4
2 if n is odd. Let u be the radial solution of (1.1). Then

u satisfies the following dispersive estimate:

|u(r, t)| ≤




C

rλ−νtν+ 1
2

(
‖f‖

Ḃ
n+1

2 ,1
1

+ ‖g‖
Ḃ

n−1
2 ,1

1

)
if − λ2 < a < 0

C

t
n−1

2

(
‖f‖

Ḃ
n+1

2 ,1
1

+ ‖g‖
Ḃ

n−1
2 ,1

1

)
if a ≥ 0.

(1.3)

Here Ḃs,1
1 is the homogeneous Besov space on R

n (see [2]). We note that if
a < −λ2, then no dispersive estimate is possible at all, since the operator −∆n+ a

|x|2
will have negative spectrum in that case, and thus for general data we would expect
exponential growth even in L2.

For the proof of (1.3) we consider two separate cases: t < 2r, the exterior
region, and t ≥ 2r, the interior one. In the exterior case we use the representation
of the solution of (1.1) in frequency space using the Hankel transform and the
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spectral decomposition of the operator −∆ + ar−2. In the interior case we use
the representation of the solution in physical space via Legendre functions, and
integration by parts using the Legendre operator.

1.1. Estimate in the Exterior Region. A radially symmetric function on R
n

is a function of the form f(x) = F (|x|) where F is a function on the positive
reals R+. Throughout this paper we will follow the standard practice of ignoring the
distinction between f and F . We will, in particular, identify the radially symmetric
subspace Lp

rad(Rn) of Lp(Rn) with the space of functions on R+ for which the norm

||f ||Lp(Rn) =
{

(
∫ ∞
0

f(r)pcnrn−1 dr)1/p if 1 ≤ p < ∞
ess sup f if p = ∞

is finite. Here cn is the surface area of the unit sphere in R
n. Similar remarks apply

to Sobolev and Besov norms, though the explicit representation of these norms for
functions on R+ is more complicated.

For any real ν > 1 we define the Hankel transform of order ν as follows. If f is
continuous and supported between two spheres then

(Hνf)(ω) = c−1
n

∫ ∞

0

(rω)−λJν(rω)f(r)cnrn−1 dr. (1.4)

Here λ is as in the introduction and Jν is the usual Bessel function. Recall that
the Hankel transform thus defined has a unique extension to an isometry of L2,
which we will again denote by Hν . Furthermore, Hν is self-adjoint, and hence an
involution. In [8] we have shown that

∆ − ar−2 = −Hνω2Hν (1.5)

where ω2 denotes the corresponding multiplication operator. We will take (1.5) as
a definition. In other words ∆ − ar−2 is defined on the dense subspace

Dom(∆ − ar−2) = Hν Dom ω2

of L2
rad(Rn) and is given there by the equation above. The domain is clearly dilation-

invariant. It can be shown that these are the only extensions of ∆ − ar−2 from
smooth functions supported in a compact set not containing the origin to a dense,
dilation-invariant domain in L2

rad(Rn). See [8] and the references cited there for a
more extensive discussion.

With these definitions, if u satisfies the initial value problem 1.1 with data f and g
then Hνu satisfies the initial value problem


(
∂2

t + ω2
)Hνu = 0

Hνu(0, x) = Hνf(x)
∂tHνu(0, x) = Hνg(x)

(1.6)

In what follows we are going to assume for simplicity that f ≡ 0. Solving the
ODE in the above we then obtain

u(t, r) = Hν(
sin ωt

ω
(Hνg)(ω))(r) (1.7)

=
∫ ∞

0

∫ ∞

0

(rs)−λJν(rω)Jν(sω) sin ωtg(s) dω sn−1ds. (1.8)

We will use this formula, Littlewood-Paley decomposition in frequency ω, and the
following simple estimate for the Bessel function

|Jν(z)| ≤ Cν min{|z|ν , |z|−1/2},
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to prove the estimate (1.2) in the region t < 2r. To this end, let us fix a function
β ∈ C∞

0 (R) which is supported in [12 , 2] and satisfies
∑∞

j=−∞ β(2jω) = 1 for ω > 0.
For Ω ∈ 2Z we let βΩ(ω) := β(ω/Ω), and define the dyadic parts of a radial function
u as

uΩ = PΩu := HνβΩHνu,

so that u =
∑

Ω uΩ. We also note that, on the support of βΩ, βΩ/2 +βΩ + β2Ω = 1.
From (1.7) we thus have u = u−1 + u0 + u1, where

ui(t, ·) =
∑
Ω

Hν
sinωt

ω
Hνβ2iΩgΩ

and it is enough to estimate u0, the other two being similar. Hence

|u0(t, r)| =

∣∣∣∣∣
∑
Ω

∫ ∞

0

∫ 2Ω

Ω/2

(rs)−λJν(rω)Jν(sω) sin ωt βΩ(ω)gΩ(s)sn−1dωds

∣∣∣∣∣
≤ r−λ

∑
Ω

∫ 2Ω

Ω/2

|Jν(rω)|
∫ ∞

0

|Jν(sω)||gΩ(s)|s−λsn−1dsdω

≤ Cr−λ− 1
2

∑
Ω

{∫ 2Ω

Ω/2

ων− 1
2

∫ 1/ω

0

sν−λ|gΩ(s)|sn−1ds dω

+
∫ 2Ω

Ω/2

ω−1

∫ ∞

1/ω

s−λ− 1
2 |gΩ(s)|sn−1ds dω

}

≤ C min{t−λ− 1
2 , r−λ+νt−ν− 1

2 }
[ ∑

Ω∈2Z

Ω
n−1

2 − n
p′ |gΩ|Lp(Rn)

]
(1.9)

This last inequality is valid for n ≥ 2, t < 2r, ν > − 1
2 and for conjugate exponents

p and p′ such that

max{1,
2n

n + 2 + 2ν
} < p <

2n

n + 1
. (1.10)

The bracketed expression in (1.9) is nothing but the homogeneous Besov norm based
on the dyadic decomposition relative to the operator −∆+ar−2. We need to use the
almost orthogonality of projections, proved in the next section, in order to compare
this with the standard Besov norm, which is based on the dyadic decomposition
with respect to −∆. For Λ ∈ 2Z, Let ∆Λ denote the standard projection operator
onto functions with Fourier transform supported in the annulus Λ/2 ≤ |ξ| ≤ 2Λ.
We then have, using the embedding theorem for homogeneous Besov spaces,

max{tλ+ 1
2 , rλ−νtν+ 1

2 }|u0(r, t)| ≤ C
∑
Λ∈2Z

Λ
n−1

2 − n
p′ |∆Λg|Lp(Rn)

= C‖g‖
Ḃ

n−1
2 − n

p′ ,1

p

≤ C‖g‖
Ḃ

n−1
2 ,1

1

,

which is the desired result.

1.2. Almost orthogonality of projections. The goal of this section is to prove
that, at least for radial functions, one may replace frequency localization with
respect to the operator −∆ + a/r2 by the usual (Fourier) frequency localization.
For this we rely heavily on properties of the operator Kλ,ν introduced in [8] (and
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denoted there by K0
λ,ν). Recall that this operator intertwines the usual Laplacian

and our modified Laplacian with a potential:

−∆Kλ,ν = Kλ,ν(−∆ +
a

r2
).

Recall also that we defined Kλ,ν as being HλHν . Hence we very easily obtain

Lemma 1.2. Let ∆Ω be the usual frequency localization operator, which in our
context is nothing but HλβΩHλ. Then we have

PΩ = Kν,λ∆ΩKλ,ν , (1.11)

and PΩ is continuous on Lp
rad provided that

max{0,
λ − ν

n
} <

1
p

< min{1,
λ + ν + 2

n
}, (1.12)

and the continuity is uniform with respect to Ω.

The first part follows directly from the definitions of the operators. The conti-
nuity property in turn follows from the continuity property of Kλ,ν and its inverse
Kν,λ (see corollary 1 in [8]). It follows from the above Lemma that

‖PΩ∆Λf‖Lp ≤ C‖∆Λf‖Lp ≤ C‖f‖Lp , (1.13)

where C is independent of Ω and Λ.
Now we would like to obtain almost-orthogonality between ∆Λ and PΩ for Λ and

Ω well separated. In order to achieve this we will use the continuity properties of
the K·,· on the Sobolev spaces Ḣσ. Theorem 3.2 in [8] gives us ε > 0 such that
both K·,· are continuous on Ḣ±ε. Then we obtain

Lemma 1.3. The operators PΩ and ∆Λ are almost orthogonal in the L2 sense, and

‖PΩ∆Λf‖L2 � inf(
Ω
Λ

,
Λ
Ω

)ε‖f‖L2 . (1.14)

Let f, g be two (radial) test functions. Suppose that Λ < Ω (the other case would
be obtained by switching the sign of ε). Then we can write∫

(PΩ∆Λf)g dx =
∫

∆ΛfPΩg dx

≤ ‖∆Λf‖Ḣε‖PΩg‖Ḣ−ε

� Λε‖∆Λf‖L2‖Kν,λ∆ΩKλ,νg‖Ḣ−ε

� Λε‖∆Λf‖L2‖∆ΩKλ,νg‖Ḣ−ε

� ΛεΩ−ε‖∆Λf‖L2‖∆ΩKλ,νg‖L2

� ΛεΩ−ε‖f‖L2‖g‖L2 ,

which is the desired result by duality. We are then in a position to state the desired
result, which follows by interpolating between (1.13) and (1.14):

Proposition 1.4. The operators PΩ and ∆Λ are almost orthogonal in the Lp sense,
for p satisfying (1.12), and we have

‖PΩ∆Λf‖Lp � inf(
Ω
Λ

,
Λ
Ω

)ε̃‖f‖Lp . (1.15)
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As a corollary we obtain the estimate used in the previous section∑
Ω∈2Z

Ω
n−1

2 − n
p′ |gΩ|Lp(Rn) �

∑
Λ∈2Z

Λ
n−1

2 − n
p′ |∆Λg|Lp(Rn). (1.16)

Indeed, one may write

gΩ =
∑
Λ

∆ΛPΩg,

use the above proposition, switch the sums and sum the exponentially decaying
tails in Ω, provided that the range of p given by the proposition and by (1.10)
overlap, which is true since the upper restriction on 1/p is the same in both cases.

1.3. Estimate in the Interior Region. In the radial case, there is an integral
formula for the solution to the Cauchy problem (1.1) which goes back to Lamb [5]:
Let

µ :=
r2 + s2 − t2

2rs
, ν :=

√
λ2 + a. (1.17)

Then

u(r, t) =
∫ ∞

0

1

(rs)
n−1

2

{
Lν(µ)g(s) +

d

dt
Lν(µ)f(s)

}
sn−1ds (1.18)

where

Lν(µ) :=




0 if 1 < µ
1
2Pν− 1

2
(µ) if − 1 < µ < 1

cos πν
π Qν− 1

2
(−µ) if µ < −1

(1.19)

Here Pm and Qm denote the Legendre functions of degree m of the first and second
kind respectively. They can be defined for any m ∈ C in terms of the hypergeometric
function F :

Pm(µ) := F (−m,m + 1, 1,
1 − µ

2
) (1.20)

Qm(µ) := B(
1
2
,m + 1)

1
(2µ)m+1

F (
m + 1

2
,
m + 2

2
,m +

3
2
,

1
µ2

) (1.21)

Formula (1.18) can be obtained by performing a (not quite justifiable) change of
order of integration in (1.8) and using MacDonald’s formula [6]. For a rigorous
derivation see [3].

Legendre functions of degree m of the first and second kind are solutions of the
Legendre’s equation of degree m:

d

dµ
((1 − µ2)

df

dµ
) + m(m + 1)f = 0 (1.22)

They satisfy many recurrence relations, one of which will be used here:

(2m + 1)(µ2 − 1)P ′
m = m(m + 1)(Pm+1 − Pm−1) (1.23)

(2m + 1)(µ2 − 1)Q′
m = m(m + 1)(Qm+1 − Qm−1) (1.24)

We note that the function Lν defined above is in fact a weak solution of Legendre’s
equation, i.e. it satisfies the equation (1.22), with m = ν − 1

2 , on the intervals
(−∞,−1) and (−1, 1), while (1−µ2)dLν

dµ is continuous across µ = −1 and vanishes
at µ = 1 and µ = −∞. This allows us to integrate by parts in (1.18) using the
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Legendre operator without getting boundary terms. It is therefore convenient to
define, for κ �= ± 1

2 and µ �= ±1,

Aκ(µ) :=
1

κ2 − 1
4

(µ2 − 1)L′
κ(µ) (1.25)

The following properties of Aκ are then not hard to deduce from the properties of
Legendre functions:

Proposition 1.5. 1. For κ �= ± 1
2 ,

Lκ(µ) = A′
κ(µ). (1.26)

2. Aκ extends as a continuous function to (−∞,∞), i.e.,

lim
µ→−1+

Aκ(µ) = lim
µ→−1−

Aκ(µ) =
− cos νπ

πκ2 − π/4
, lim

µ→1
Aκ(µ) = 0. (1.27)

Moreover, Aκ ∈ Cα(R) for any 0 < α < 1.
3. Aκ has the following asymptotic behavior:

Aκ(µ) = O(|µ|−κ+ 1
2 ) as µ → −∞. (1.28)

In particular, Aκ is bounded for κ ≥ 1
2 .

4. For κ �= 0,± 1
2 ,

Aκ =
1
2κ

(Lκ+1 − Lκ−1) (1.29)

Proof. (1.26) is the Legendre equation (1.22). (1.27) follows from the known ex-
pansions of P and Q near µ = 1 and µ = −1 (See [4, §3.9.2, pp. 163–164]). Hölder
continuity of Aκ is assured since its derivative, Lκ has a logarithmic singularity at
µ = −1. (1.28) is a consequence of (1.21), and (1.29) follows from the recurrence
formulae for P and Q, (1.23), (1.24).

The idea for obtaining the dispersive estimate (1.3) is to integrate by parts in
(1.18), first using (1.26) and then the recursion (1.29), to put the required number
of derivatives on the data, before estimating the resulting kernel in L∞.

Remark 1.6. We note that the requirement κ not being zero or ± 1
2 means that

there are some exceptional cases that need a separate argument, in particular the
dispersive estimate for the wave equation without a potential cannot be obtained in
this way! It is possible to treat these exceptional cases by other methods, such as
using the fact that in the even dimensional case the Legendre functions involved for
the exceptional values of ν are in fact polynomials. We have chosen not do so here
in the interest of brevity.

To do the integration by parts, the variable of integration in (1.18) should first be
changed to µ. From (1.17) we have s(µ, r, t) = rµ+

√
r2(µ2 − 1) + t2 and therefore

∂s

∂µ
= r +

r2µ√
r2(µ2 − 1) + t2

=
rs√

r2(µ2 − 1) + t2

For simplicity we first assume f ≡ 0. Then letting

G(µ, r, t) := g(s)s
n−1

2
∂s

∂µ
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we have from (1.18) and the above Proposition that

r
n−1

2 u(r, t) =
∫ ∞

−∞
Lν(µ)G(µ, r, t) dµ

= −
∫

Aν(µ)
∂G

∂µ
dµ

=
1
2ν

∫
{Aν+1(µ) − Aν−1(µ)}∂2G

∂µ2
dµ

=
(−1)3

4ν

∫
{Aν+2(µ)

ν + 1
− 2νAν(µ)

ν2 − 1
+

Aν−2(µ)
ν − 1

}∂3G

∂µ3
dµ

= . . .

=
∫

∂jG

∂µj
Bj(µ)dµ

where

Bj(µ) :=
j∑

i=1

(−1)i+1cjiAν+j+1−2i(µ)

where cji are constants depending on ν. Thus B1 = Aν and B′
j = Bj−1. As a

result, Bj ∈ Cj−1,α for all 0 < α < 1. We also note that the above integration by
parts is valid as long as

ν − j + 1 /∈ {1
2
, 0,−1

2
}. (1.30)

This gives us the exceptional cases mentioned in Theorem 1.1.
For k = 1, 2, . . . let

sk :=
∂ks

∂µk
.

Then we have, by repeated application of Leibniz and chain rule, that

∂jG

∂µj
=

j∑
i=0

{
∂j−i

s g s
n−1

2 −i
∑
α∈A

ci
αsα0sα1

1 . . . s
αj+1
j+1

}
, (1.31)

where α = (α0, α1, . . . , αj+1) is a multi-index with non-negative integer compo-
nents,

A := {α|
j+1∑
k=0

αk =
j+1∑
k=0

kαk = j + 1}, (1.32)

and ci
α are numerical constants that can be determined recursively. In particular,

we note for future use that the first term i = 0 in (1.31), which contains the highest
order derivative, is simply

∂j
sg s

n−1
2 sj+1

1 (1.33)
Now setting

τ :=
t

r
,

we have that

s1 =
∂s

∂µ
= (µ2 + τ2 − 1)−1/2s, (1.34)

so that s1/s is a function of (µ, τ). By differentiating the above with respect to µ
we see that the same holds for sk/s, k ≥ 2. Moreover,

|sk| ≤ C(µ2 + τ2 − 1)−k/2s. (1.35)
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Set
δ := min{ν, λ} +

1
2
.

Thus δ is the amount of t-decay in (1.3). We have, using (1.32), that

r
n−1

2 −δtδu(r, t) = τ δ

∫
∂jG

∂µj
Bj(µ)s−1

1 ds (1.36)

=
j∑

i=0

∫
s−i ∂j−i

s g sj−n−1
2 hi,j(τ, µ) sn−1ds, (1.37)

where

hi,j := τ δ(µ2 + τ2 − 1)1/2Bj(µ)
∑
α∈A

ci
α

(s1

s

)α1

. . .
(sj+1

s

)αj+1

.

We then have the following

Lemma 1.7. For all integers j ≥ δ, there is a constant C (depending on n and ν)
such that

sup
2 ≤ τ < ∞
−∞ < µ ≤ 1

|hi,j(τ, µ)| ≤ C.

for all 0 ≤ i ≤ j.

Proof. We have, by virtue of (1.32) and (1.35), that

|hi,j | ≤ Cτ δBj(µ)(µ2 + τ2 − 1)−j/2.

From (1.28) and the definition of Bj we have that |Bj(µ)| ≤ C for µ ≥ −2, while
Bj(µ) = O(|µ|−ν+j− 1

2 ) as µ → −∞. Hence, for µ ≥ −2 the result follows from
j ≥ δ, while for µ < −2,

|hi,j | ≤ Cτ δ(µ2 + τ2 − 1)−δ/2(µ2 + τ2 − 1)−j/2+δ/2|µ|−ν+j−1/2

≤ C|µ|min{λ,ν}−ν

≤ C

again using j ≥ δ.

From (1.36) and by the above lemma, we have that, if n is odd, and thus j = n−1
2 ,

r
n−1

2 −δtδ|u(r, t)| ≤
∣∣∣∣
∫

∂j
sg h0,js

n−1ds

∣∣∣∣ +
j∑

i=1

∣∣∣∣
∫

s−ihi,j∂
j−i
s g sn−1ds

∣∣∣∣
≤ C‖g‖Ḃj,1

1 (Rn) + C

j∑
i=1

‖s−i‖Ln/i,∞(Rn)‖∂j−i
s g‖Ln/(n−i),1(Rn)

≤ C‖g‖Ḃj,1
1 (Rn),

where we have used the Hölder inequality for Lorenz spaces due to O’Neil [7] and
the embedding of Besov into Lorenz spaces [2]. This establishes the dispersive
estimate (1.3) for n odd and at least 3, in the region τ ≥ 2.

Suppose now that n is even and at least 4, and set j = n
2 , and note that j ≥ δ+ 1

2 .
From (1.36) we then have

r
n−1

2 −δtδ|u(r, t)| ≤ C

j∑
i=0

∣∣∣∣
∫ ∞

0

s−i hi,js
1/2 ∂j−i

s g sn−1ds

∣∣∣∣ (1.38)
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Consider first the term i = 0:

I0 =
∫ t+r

0

h0,j(µ, τ)s1/2∂j
sg(s)sn−1ds.

From (1.33) we have that

h0,j = τ δ(µ2 + τ2 − 1)−j/2Bj(µ),

and by Lemma 1.7, h0,j is bounded uniformly in τ .
Let φ0 : R

+ → [0, 1] be a smooth cut-off function which is zero for x ≥ 1
and φ0(x) ≡ 1 for 0 ≤ x ≤ 1

2 . Let φ(s) := φ0(s/s0), where s0 is the value of s

corresponding to µ = −τ , i.e. s0 := r(
√

2τ2 − 1 − τ). Thus we have

I0 =
∫ t+r

0

(1 − φ)h0,j

√
s∂j

sgsn−1ds +
∫ s0

0

φh0,j

√
s∂jgsn−1ds := I1 + I2.

Consider first I1. We need to shave half a derivative off the data. The idea is to
exploit the duality of Besov spaces Ḃ

1
2 ,∞
∞ (which is the same as Ċ

1
2 ) and Ḃ

− 1
2 ,1

1 .
We thus need the 1

2 -Hölder norm of (1 − φ)h0,j
√

s to be bounded on the interval
[s0/2, t+ r], uniformly in τ for τ ≥ 2. An additional complication is that the radial
derivative ∂s is not well-behaved on negative regularity Besov spaces, so we need
to rewrite it in terms of the gradient operator. For the other piece I2, the plan is
to first integrate by parts back in s once to reduce the number of derivatives on
the data by one, and then use the duality between Ḃ

1
2 ,1
1 and Ḃ

− 1
2 ,∞

∞ to put half a
derivative more on the data.

We begin by observing

‖(1 − φ)h0,j

√
s‖Ċ1/2 ≤ ‖h0,j‖L∞

{‖√s‖Ċ1/2 + ‖1 − φ‖Ċ1/2‖
√

s‖L∞
}

+ ‖h0,j‖Ċ1/2‖
√

s‖L∞

:= J1 + J2,

where all the norms are on the annular region s0/2 ≤ s ≤ t + r. We obviously have
‖√s‖Ċ1/2 ≤ C, ‖1 − φ‖Ċ1/2 ≤ C/

√
s0 ≤ Cr−1/2τ−1/2, and ‖√s‖L∞ =

√
t + r ≤

Cr1/2τ1/2. Thus from Lemma 1.7 we have that J1 < C. On the other hand

‖h0,j‖Ċ1/2 ≤ τ δ
{
‖Bj(µ)‖Ċ1/2‖(µ2 + τ2 − 1)−j/2‖L∞

+ ‖Bj(µ)‖L∞‖(µ2 + τ2 − 1)−j/2‖Ċ1/2

}
:= τ δ(K1 + K2).

Therefore J2 ≤ Cr1/2τ δ+1/2(K1 + K2). We have

‖Bj(µ(·, r, t))‖Ċ1/2([s0/2,t+r]) ≤ ‖µ(·, r, t)‖1/2

Ċ1([s0/2,t+r])
‖Bj(·)‖Ċ1/2([−τ,1])

≤ Cr−1/2 max{1, τ−ν+j−1},
and thus K1 < Cr−1/2τ−j max{1, τ−ν+j−1}, while similarly

‖(µ2(·, r, t) + τ2 − 1)−j/2‖Ċ1/2([s0/2,t+r]) ≤
Cr−1/2‖(µ2 + τ2 − 1)−j/2‖Ċ1/2([−τ,1]) ≤ Cr−1/2τ−j−1/2,

and
‖Bj(µ)‖L∞ ≤ C max{1, τ−ν+j−1/2}
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so that K2 ≤ Cr−1/2τ−j−1/2 max{1, τ−ν+j−1/2}. Hence

J2 ≤ Cτ δ+1/2−j max{1, τ−ν+j−1} ≤ C max{τ δ−λ−1/2, τ δ−ν−1/2} ≤ C.

and we have shown that

‖(1 − φ)h0,j

√
s‖

Ḃ
1/2,∞
∞ (At+r

s0/2)
≤ C

where At+r
s0/2 is the annular region s0/2 ≤ s ≤ t + r in R

n. We note that t+r
s0/2 ≤ 10

and thus in the following we can use scaling to compute the norms on a fixed
annulus A = A10

1 . Therefore,

|I1| ≤ Cs
(n+1)/2
0 ‖∂j

sg‖
Ḃ

−1/2,1
1 (A)

= Cs
(n+1)/2
0 ‖xi

s
∂i∂

j−1
s g‖

Ḃ
−1/2,1
1 (A)

≤ Cs
(n+1)/2
0 ‖∂i∂

j−1
s g‖

Ḃ
−1/2,1
1 (A)

≤ Cs
(n+1)/2
0 ‖∂j−1

s g‖
Ḃ

1/2,1
1 (A)

≤ C‖g‖
Ḃ

n−1
2 ,1

1 (Rn)
.

Here we have used that multiplication by xi/s is a bounded operator on the Besov
space Ḃ

−1/2,1
1 (A), as can be easily checked by duality.

We next consider I2. Integrating by parts once, we have

I2 =
∫ s0

0

∂j
sg(s)φh0,js

n−1/2ds

=
∫ s0

0

∂j−1
s g(s)

1√
s
H(τ, µ)sn−1ds

where

H(τ, µ) := −τ δ(µ2 + τ2 − 1)−j/2+1/2

{
[−jφµ(µ2 + τ2 − 1)−1

+ ((n − 1
2
)φ + sφ′)(µ2 + τ2 − 1)−1/2]Bj(µ) + φBj−1(µ)

}
.

On the region of integration, µ ≤ −τ , and the expression inside the braces is
O(|µ|−ν+j−3/2). We thus have that

|H(τ, µ)| ≤ Cτ δ(µ2 + τ2 − 1)−j+1/2|µ|−ν+j−3/2

≤ Cτ1/2|µ|δ−ν−1 ≤ C.

Since s−1/2 ∈ L2n,∞(Rn) and H ∈ L∞, we have s−1/2H ∈ L2n,∞, and hence

|I2| ≤ C‖∂j−1
s g‖L2n/(2n−1),1(Rn)

≤ C‖∂j−1
s g‖

Ḃ
1/2,1
1 (Rn)

≤ C‖g‖
Ḃ

n−1
2 ,1

1 (Rn)
.

Finally, for the terms i ≥ 1 in (1.38) we again make use of the O’Neil inequality
to bound them by the same right hand side as above. This establishes the dispersive
estimate in the n ≥ 4 even case, and concludes the proof of Theorem 1.1.
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Appendix: A counterexample for the free wave equation. The dispersive
estimate is quite sensitive to the choice of norms. In particular the estimate

‖u(t)‖L∞(Rn) ≤ C

t(n−1)/2

(
‖(−∆)

n+1
4 f‖L1(Rn) + ‖(−∆)

n−1
4 g‖L1(Rn)

)
is false in all dimensions n for the free wave equation initial value problem

−∂2
t u + ∆u = 0, u(0) = f, ∂tu(0) = g.

In fact the estimate is false even in the case of radial symmetry. In order to construct
a counter-example we will use the function

hδ(r) :=




0 if 0 < r < 1 − 2δ,
r 1

cnδrn−1 if 1 − 2δ ≤ r ≤ 1 − δ,

0 if 1 − δ < r < ∞.

Here cn = 2πn/2Γ(n
2 )−1 is the volume of the unit sphere in Rn. We note that

‖hδ‖L1(Rn) = 1.

The construction of a counterexample depends on the congruence class of n mod-
ulo 4. If n �≡ 3 then we set

fδ := (−∆)−
n+1

4 hδ, g = 0.

Then
‖(−∆)

n+1
4 fδ‖L1(Rn) = 1, ‖(−∆)

n−1
4 gδ‖L1(Rn) = 0

We will now show that for any C there is a δ > 0 such that

‖uδ(1, ·)‖L∞(Rn) > C

We begin by observing that

uδ(t, r) =
∫ ∞

0

∫ ∞

0

r−λs−λω−n+1
2 cos(ωt)Jλ(rω)Jλ(sω)hδ(s)sn−1dsω dω

satisfies the given initial value problem.1 We claim that uδ(1, r) is continuous, and
in fact smooth, for r < δ. Indeed by elliptic regularity fδ is smooth except on the
spheres of radius 1−2δ and 1−δ. By propagation of singularities uδ(1, ·) is smooth
except possibly on the spheres of radius δ, 2δ, 2 − 2δ, and 2 − δ. It then follows
that

‖uδ(1, ·)‖L∞(Rn) > |u(1, 0)|.
Since

lim
r→0+

r−λJλ(rω) = 2−λΓ(
n

2
)−1ωλ,

we find that

uδ(1, 0) = 2−λΓ(
n

2
)−1

∫ ∞

0

∫ ∞

0

s−λω−1/2 cos(ω)Jλ(sω)hδ(s)sn−1ds dω

or, since

cos(ω) =
√

πω

2
J−1/2(ω),

uδ(1, 0) = 2−λ+ 1
2 π1/2Γ(

n

2
)−1

∫ ∞

0

∫ ∞

0

s−λJ−1/2(ω)Jλ(sω)hδ(s)sn−1ds dω.

1This will satisfy the wave equation only in the sense of distributions. It is not a classical

solution. It is possible, by choosing a more complicated h, to construct a counterexample which
is a classical solution.
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We now switch the order of integration and recall the definition of hδ,

uδ(1, 0) =
1

(2π)
n−1

2

1
δ

∫ 1−δ

1−2δ

∫ ∞

0

s−λJ−1/2(ω)Jλ(sω) ds dω.

We then use the following special case of Schafheitlin’s integral [9]∫ ∞

0

J−1/2(ω)Jn−2
2

(sω) dω =
Γ(n−1

4 )
Γ(1 − n+1

4 )Γ(n
2 )

s
n−2

2 F (
n − 1

4
,
n + 1

4
;
n

2
; s2)

for s2 < 1 and standard identities for the Gamma function to obtain the represen-
tation

uδ(1, 0) =
1

(2π)
n−1

2

Γ(
n

2
)−1 sin((n + 1)

π

4
)
1
δ

∫ 1−δ

1−2δ

∫ ∞

0

F (
n − 1

4
,
n + 1

4
;
n

2
; s2) ds.

Using the singular case of the transit relations for hypergeometric functions we
obtain the representation

uδ(1, 0) =
1

(2π)
n−1

2

sin((n + 1)
π

4
)
1
δ

∫ 1−δ

1−2δ

∞∑
k=0

(n−1
4 )k(n+1

4 )k

(k!)2

[
log(1 − s2)

+ ψ(k +
n − 1

4
) + ψ(k +

n + 1
4

) − 2ψ(k + 1)
]

ds

(ψ(z) is the logarithmic derivative of the Gamma function). All the terms other
than k = 0 contribute nothing to the limit δ → 0 and we see that

lim
δ→0

{
uδ(1, 0) − 1

(2π)
n−1

2

sin((n + 1)
π

4
)
[

log δ + 3 log 2

− 1 + ψ(
n − 1

4
) + ψ(

n + 1
4

) − 2ψ(1)
]}

= 0.

It follows that
lim
δ→0

‖u(1, ·)‖L∞(Rn) = ∞.

A similar argument applies to the case n �≡ 1 modulo 4. In this case we take
initial conditions

fδ = 0, gδ = (−∆)−
n−1

4 h,

and proceed as above.
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[2] Jöran Bergh and Jörgen Löfström. Interpolation spaces. An introduction. Springer-Verlag,
Berlin, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223.

[3] Jeff Cheeger and Michael Taylor. On the diffraction of waves by conical singularities. I. Comm.
Pure Appl. Math., 35(3):275–331, 1982.
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