" The overall concept is about a mass generating
non-zero "vacuum" energy with respect to an extended Hilbert (energy) space H(1/2), where the concepts of "time", "space", "light" and
"action/causality" occur after the first "symmetry break down" of a
purely "dark energy" model "situation"
The current quantum state Hilbert space
L(2)=H(0) is extended to the Hilbert space H(-1/2) including
„fluid, plasma, fermion, photon, boson“ states. Its dual space
H(1/2) provides
the corresponding quantum energy space, whereby the „mass-less EPs“ (hot
plasma) are (meta-physical, ground state (dark) energy) „elements“ of the
closed orthogonal subspace
of
H(1/2) with respect to the H(1/2) inner product. The standard (variational) energy
space
H(1) is defined by the selfadjoint Friedrichs
extension of the Laplacian operator in the standard
H(0)=L(2) variational (statistics) framework. It keeps
being valid for the quantum energy of the EPs
An antisymmetric form is also related to Hamilton's quaternions. " In physics, quaternions are correlated to the nature
of the universe at the level of quantum mechanics. They lead to elegant
expressions of the Lorentz transformations, which form the basis of the
modern theory of relativity. A quaternion is a 4-tuple, which is a more concise representation than a rotation matrix. Its geometric meaning is also more obvious as the rotation axis and angle can be trivially recovered. The quaternion algebra to be introduced will also allow us to easily compose rotations. This is because quaternion composition takes merely sixteen multiplications and twelve additions" (Yan-Bin Jia, "Quaternions and Rotations"). The algebra of quaternions can be equipped with a scalar product to build a Hilbert space. With respect to the relationship of quaternions to modular forms we refer to Stankewicz J., " Quarternion algebras and modular forms".
The Kummer function of the proposed alternative entire Zeta funtion theory is the Hilbert transform of the Gaussian function. The Hilbert transform of a Fourier series has always a vanishing constant Fourier term. Consequently, the corresponding Kummer function based alternative "Theta" function has a vanishing constant Fourier term. We also note that a function with vanishing constant Fourier term defines a wavelet function. In the context of a modular form (a modular function, where its Fourier series is a Taylor series) we note that this modular form is a cuspidal modular form (cusp form with the related Petersson inner product, (CoG) pp. 76, 81), if the constant Fourier term is vanishing. Therefore, the counterpart of Hilbert transform property is about the restriction of the Hilbert space of entire module functions (Hecke-Petersson theory with its underlying Petersson inner product based on the hyperbolic volume element) to its ("wavelet H(1/2)-sub-space" corresponding) cusp-sub-space of cusp forms. For an introduction to spectral theory on hyperbolic surfaces we refer to (**). (*) Cornell G., Silverman J. H., Stevens G., Modular Forms and Fermat's Last Theorem, Springer, 1997 (**) Borthwick D., Introduction to Spectral Theory on Hyperbolic Surfaces. We further note that the H(1/2) space as first cohomology is fundamental to explain the properties of period mapping on the universal Teichmüller space. We also note that a vector space and any linear subspace are convex cones, i.e. the tool „convex analysis and general vector spaces“ can be applied.
We mention the relationship of the H(1/2) Hilbert space to the winding number around zero of a continuous cycle f in C-(0):" The solution of many problems in hydrodynamics requires a thorough understanding of the structure of the solutions of the divergence problem with homogeneous Dirichlet data", where the Bogovskii operator in Sobolev spaces of negative order plays a key role (GeM).The proposed quantum gravity model overcomes current handicaps to unite the quantum field theory and the (classical, differentiable manifolds based) Einstein field equations, e.g. (1) a missing quantum theory with a non-zero zero point energy of the quantum vacuum containing the full information about all kinds of dynamic energies (2) current quantum theory with a zero point energy radiation, while the Casimir effect shows a non-zero radiation (3) the mass gap problem of the classical Yang-Mills field theory with solutions which travel at the speed of light so that its quantum version should describe massless particles/gluons; the problem is to establish rigorously the existence of the quantum Yang-Mills theory and a mass gap (4) the rough shortcoming of the Higgs mechanism of particle mass generation that the origin of the Higgs mechanism itself is not elaborated leading to a vicious circle (see below) (5) no current model of the (extended) definition of "dark energy", which is called "dark", because it does not appear to interact with observable "electro"-waves. This dark energy then covers >4.6%+23%+72%=99.6% of the total universe energy, being modelled by the H(1, ortho) Hilbert space; at the same point in time hydrogen and helium represent 99.9% of all atoms in the universe (6) a quantum gravity theory must be a time-asymmetric (differential form based (BrK), (DrT)) quantum theory and the classical Weyl tensor (vector valued 1-form) should be zero at "Big Bang" and infinite for later dark wholes (R. Penrose). (DrT) Dray T., Differential Forms and the Geometry of General Relativity, CRC Press, Taylor & Francis Group, 2015 The new quantum gravity model also addresses the dilemma as pointed out by E. Schrödinger: "Since in the Bose case we seem
to be faced, mathematically, with simple oscillator of Planck type, we may ask
whether we ought not to adopt for half-odd integers quantum numbers rather than
integers. Once must, I think, call that an open dilemma. From the point of view
of analogy one would very much prefer to do so. For, the „zero-point energy“ of
a Planck oscillator is not only borne out by direct observation in the case of
crystal lattices, it is also so intimately linked up with the Heisenberg
uncertainty relation that one hates to dispense with it“.
The proposed distributional quantum
state H(-1/2) with corresponding inner product admits and requires infinite linear
combinations of LQT "loop states" (which we "promoted"
becoming "quantum fluid / quantum element / fermion & boson / rotating differential / ideal point / monad" states). The physical LQT
space (which is a quantum superposition of the QLT "spin
networks") corresponds to an orthogonal projection of H(-1/2) onto
H(0). This othogonal projection can be interpreted as a general model for a
"spontaneous symmetry break down". In this sense the orthogonal projection is the "manifestation" operator of the statement:
"mass is essentially the manifestation of the vacuum energy".The orthogonal (mass manifestation) projector provides also a (H(1/2) wave (-let) compatible, see below) model of the Einstein photoelectric effect.From the original famous paper of Higgs we
recall the following sentences:...." the idea, that the apparently approximate nature of the internal
symmetries of elementary-particle physics is the result of asymmetries in the
stable solution of exactly symmetric dynamical equations .... is an attractive
one. .... Within the framework of quantum field theory such a
"spontaneous" breakdown of symmetry occurs if a Lagrangian, fully
invariant under the internal symmetry group, has a structure that the physical
vacuum is a member of a set of (physically equivalent) states which transform
according the a nontrivial representation of the group. .... That vacuum
expectation values of scalar fields, .... might play such a role in the
breaking of symmetries.... in a theory of this type the breakdown of symmetry
occurs already at the level of classical field theory...." The Higgs mechnism is about an ether like field pervading the whole universe. Its Lagrange density is given by Klein-Gordon equation determined by the electro-weak interaction and the Higgs potential. Its motivation is the Lagrange density of the union of all electro-weak interacting particles with its group theoretical model SU(2)xU(1). The mass term in the Lagrange density prevents the neccessary invariance under local phase tranformations of SU(2). In other words, not only fermions but also all interaction "particles" need to be massless. The Higgs mechnism overcomes this contradiction. The expectation value of its ground state energy is greater than zero (~246,2 GeV/(c*c)). "A rough shortcoming of the Higgs mechanism of particle mass generation is that the origin of the Higgs mechanism itself is not elaborated and this leads to a vicious circle." The approach in "Physics of Transcendental Numbers" (Müller Hartmut, progress in Physics, Vol. 15, 2019) "allows deriving the mass ratios of the fundamental elementary particles electron, proton, W(+/-), Z(0) and H(0)-boson as well as the temperature of the cosmic microwave background from Euler's number and its rational powers."The Higgs boson combines the existence of mass together with the action of the weak force. But why it provides especially to the quarks that much mass, is still a mystery. The SMEP is about the group theoretical model SU(3)xSU(2)xU(1) of the one electro-strong and the two electro-weak interaction particles. The abelian group U(1) is about the interaction of photon particles only. It is isomorph to the set of complex numbers with length 1. The non-abelian group SU(2) is isomorph to SO(3) and S(3), whereby S(3) denotes the set of quaternions with length 1. We note that S(3)xS(3) is isomorph to SO(4). The generalization of SO(n) is about the orthogonal sub-group of all orthogonal projections in an Euclidean vector space framework (Koecher M., Remmert R., "Hamilton's Quaternions" in Ebbinghaus H.-D. et. al., "Numbers", Springer-Verlag New York, 1991).Our proposed model does not require the "adding mechanism" of the SMEP (i.e. the "sum" of the Lagrange "force" concepts SU(3)xSU(2)xU(1), plus a still missing fourth one for the " graviton"), but use the same concept of an ether like field, pervading the whole universe while generating two types of particles, attractive and repulsive particles with mass. Each generation "event" (modelled as a orthogonal projection operator) "generates" the forms of the observed universe like "time", "space", "continuity", "velocity", "forces", "causality", "entropy".... The corresponding observed "forces" are modelled/defined/represented by corresponding phenomenon specific PDE, which are (even in its weak (Langrange formalism based variational representations) only approximations to a common underlying Hilbert space based Hamiltonian "energy/action" minimization /variational representation.
With respect to the two parameters characterizing a spin network we refer to a corresponding wavelet properties (BrK6): The (Calderón) wavelet reproducing
("duality") formula provides
an additional (second) degree of freedom (compared to a Fourier
| |||||||||||||||||||||