www.riemann-hypothesis.de
July 30, 2022 6. The Courant conjecture(CoR) p. 763: Families
of spherical waves for arbitrary time-like lines exist only in the case
of two or four variables, and then only if the differential equation is
equivalent to the wave equation.B. The distribution of prime numbers and the behavior of subatomic particles(DeJ)p. 295: „The
non-trivial zeros of the Riemann Zeta function arise from inquiries
into the distribution of prime numbers. The eigenvalues of a random
Hermitian matrix arise from inquiries into the behavior of systems of
subatomic particles under the laws of quantum mechanics. What on earth does the distribution of prime numbers have to do with the behavior of subatomic particles?“C. The Riemann Hypothesis and the zeta function 1. The connection between the zeta function and the primes The Euler product formula is an application of the sieve of Eratosthenes to the Riemann Zeta function for Re(s)>1. The Dirichlet series of zeta(s) defined for Re(s)>1 (running through all the positive whole numbers n) is equal to Euler’s (infinite) product formula (running through all prime numbers). This is sometimes called the „golden key“, (DeJ) 7.2. Turning this key is enabled by Riemann’s density function J(x); its the Mellin transform is given by log(zeta(s))/s for Re(s)>1, (EdH) 1.12. The combination of the latter term with the Riemann duality equation then gives Riemann‘ s famous formula for J(x); the principle term of J(x) is derived from the term -log(s-1) leading to the li(x) density function, (EdH) 1.14. 2. The entire Zeta function and the Riemann duality equation The Riemann duality equation is given by Z(s)=Z(1-s) with an appropriately defined entire Zeta function Z(s). One proof of the Riemann functional equation of the Zeta function evaluates first the contour integral for negative real values, (EdH) 1.6. The extention for all s (except s=0,1,2,.. where one or more of the Terms of the functional equation have poles) is based on the relationship of the zeta function at the values (2n-1) and the Bernoulli numbers, (EdH) 1.6. Another proof of the functional equation is based on the equivalent functional equation of Jacobi’s theta function, which is basically the Poisson summation formula for the Gaussian function, (EdH) 1.7. The Riemann duality equation is given by Z(s)=Z(1-s) with an appropriately defined entire Zeta function Z(s). One proof of the Riemann functional equation of the Zeta function evaluates first the contour integral of zeta(s) for negative real values, (EdH) 1.6. The extention for all s (except s=0,1,2,.. where one or more of the Terms of the functional equation have poles) is based on the relationship of the zeta function at the values (2n-1) and the Bernoulli numbers, (EdH) 1.6. Another proof of the functional equation is based on the equivalent functional equation of Jacobi’s theta function, which is the Poisson summation formula for the Gaussian function, (EdH) 1.7. 3. The Dirichlet series and the (contour) integral representation of the zeta functionFor
Re(s)>1,Riemann’s integral formula representation of the Dirichlet
series representation of the zeta function is built on the Mellin
transform of the Poisson sum of the Gaussian function (resp., by
variable substitution, of the Poisson sum of the exponential function
for x<0). Riemann’s contour integral representation of the zeta
function (primarily defined for Re(s)<1)) is analytic at all points
of the complex s-plane except for a simple pole at s=1.This function
coincides with the Dirichlet series representation of the Zeta function
for Re(s)>1, (EdH) 1.4.D. Conceptual challenges1. The Gaussian function based zeta function theoryRiemann's
work to develop this the theory is based on Fourier analysis. All known
integral representations of the entire Zeta function Z(s) are Fourier
integrals defined in the classical "bounded" function metric space
framework. The natural form of representation to prove A2. and A3. are
convolutions integral. In quantum mechanics those integrals are
accompanied by the concept of self-adjoint operators with corresponding
Hilbert space domain framework. In other words, there is no common
framework enabling a common domain definition for the operators A1. and
A2.The not vanishing constant Fourier term of the Gaussian function in the Poisson summation Formula (which is equivalent to the functional equation of the entire Zeta function) is the root of evil to build a self-adjoint operator with transform Zeta(s), (EdH) 10.3. At the same time the spectrum of a hermitian operator, whose inverse operator is not compact, is not purely discrete. 2. The Hardy-Littlewood circle methodApplying the Hardy-Littlewood circle method to prove the binary Goldbach conjecture failed due to insufficient (purely Weyl sum based, w/o any data from the problem under study) bounds for the minor arcs. The
Schnirelmann density of the odd integers is ½, while the S-density of
the even integers is zero. However, conceptually the Hardy-Littlewood
circle method does not distinguish between odd and even integer.By appealing to a heuristic form of the circle method Patterson‘s heuristic fell short of a proof of his conjecture explaining the suspected bias of the Kummer conjecture (DuA). This was also due to insufficent bounds for the minor arcs. We note that the
Patterson conjecture is confirmed conditionally on the assumption of the
Generalized Riemann Hypothesis, (DuA). We further note that there is
also are refinement from the Patterson conjecture that features an error
term capturing square root cancellation, (DuA). We also note that that
the cubic large sieve cannot improved relying on the GRH based on a
dispersion estimate for cubic Gauss sums, (DuA).E. The proposed "common denominator" frameworkAll
orthonormal bases of a Hilbert space H with an orthogonal basis e(n)
are characterized in terms of unitary operators U acting on this
orthogonal basis, U(e(n)). The spectrum of self-adjoint operators in a
separable Hilbert space framework, whose inverse operator is a compact,
is discrete. The considered Kummer function are the solution of an underlying self-adjoint Whittaker partial differential equation. The discrete spectrum in case of the Hardy-Littlewood circle method is the set of integers, which are the zeros of the orthonormal basis functions (1,sin(n*), cos(n*)). The imaginary parts a(n) of the zeros of the considered Kummer function enjoys similar appropriate properties than the Zeros of the Digamma function. This property enables the definitions of corresponding Hilbert scales and „retarded/condensed“sequences b(n):=(3*a(n)+a(n+1))/4 with „density“ ½ fulfilling the Kadec condition, (YoR) p. 36. We mention the related Kummer "distribution" conjecture of the cubic exponential sums with p = 1 mod 3. The definition of a Riesz basis appears by weakening the „unitary“ condition of U to bounded bijective operators, ChO)3.6. It is the central concept in the theory of non-harmonicFourier series accompanied with the concept of a Riesz basis. Therefore, the mapping (1, sin(n*),cos(n*)) to (sin(b(n)*),cos((b(n)*) enables a transfer from harmonic Fourier series analysis to non-harmonic Fourier series analysis, whereby the underlying indices domain has Schnirelmann density 1/2.
Supporting papers
April 18, 2021
July 31, 2019
March 27, 2017 | ||||||||||||||