"Every of the three prime residue classes p=1 mod 3 contains an infinite number of primes and the three classes have the densities 1/2, 1/3, and 1/6", (HaH) S. 453 H. Hasse referred to it as "it would be probably more productive for number theory to work on it (cubic Gaussian sums with prime modul p=1mod.3) than working on Fermat's Last Theorem", (HaH), S. 453. Derbysire's question Related papers
(CoR) Courant R., Hilbert D., Methods of Mathematical Physics, Volume II, Wiley Classics Edition, 1989 (DeJ) Derbysire, Prime Obsession, Bernhard Riemann and the Greatest Unsolved Problem in Mathematics, Joseph Henry Press, Washington, D. C., 2003 (GiJ)
(HaH) Hasse H., Vorlesungen über Zahlentheorie, Springer-Verlag, Belin, Göttingen, Heidelberg, 1950
(KaS)
| |||||||||||||||