PREFACE
OVERVIEW
RIEMANN HYPOTHESIS
supplements
RH 2015-2016, concept
RH 2015-2016
RH 2013-2014
RH 2010-2012
RH 2011
RH 2010
Distributional PNT
NAVIER-STOKES EQUATIONS
YANG-MILLS EQUATIONS
GROUND STATE ENERGY
WHO I AM
LITERATURE


A. An alternative entire Zeta function representation and its related duality equation

   

Braun K., An alternative entire Zeta function representation and its related duality equation


B. The alternative Ei(x)-function, Farey series and the Goldbach conjectures

Two central concepts in the proposed Kummer function based Zeta function theory are

- an appropriate distributional framework for Ramanujan's generalized distributional Fourier series representation of cot(x) with its relationship to the -ln(2sin(x))-function (e.g. lemmata 2.4, 3.3, lemma H4, supporting lemmata 44-47, opportunity lemmata O5-7, O22, O27, O37, note O7)

- an alternative Ei(x) function (and its corresponding alternative li(x)-function) defined by the special Kummer function F(1/2,3/2,x) (e.g. lemmata K2, CF1, S7) with identical convergence behavior as Ei(x), e.g. remark 2.3

The zeros of F(1/2,3/2,z) (whereby Re(z)>1/2, note O5, lemma A4) enable the definition of a corresponding Hilbert scale framework in line with the domain of the generalized distributional Fourier series representation of the cot(x)-function. This framework is proposed to be applied to answer both Goldbach conjectures positively, whereby the modified Farey series (not building on Weyl sums) builds a central concept; we note that Vinogradov's  solution concept provides the required estimates for the major arcs, while the corresponding minor arcs estimates (based on Weyl sums) are not sufficient to prove both Goldbach conjectures; the fundamental issue for the minor arcs estimates is the fact that there is no information taken into account from the Goldbach problem itself; Vinograd's minor arcs estimates are purely based on Weyl sums properties, i.e they are valid independently from the to be solved problem and, at the same time, jeopardizing Vinograd's solution idea.

Regarding the above the following references (Nachrichten der Gesellschaft der Wissenschaften zu Göttingen) are appended:

1932,  

Landau E., Ueber die Fareyreihe und die Riemannsche Vermutung

1928, p. 21-24, 

Landau E., Ueber eine trigonometrische Reihe


C. Transcendental numbers and Kummer functions

         

Braun K., Transcendental numbers and Kummer functions


Literature

 

Belogrivov I. I., On transcendence and algebraic independence of the values of Kummer s functions

                  

Hurwitz A., Ueber einen Satz des Herrn Kakeya

  

Nopper Th., Walliser R., Two theorems on meromorphic functions used as a principle for proofs on irrationality

  

Schneider Th., Ein Satz über ganzwertige Funktionen als Prinzip für Transzendenzbeweis


Schneider Th., Zur Theorie der abelschen Funktionen und Integrale

  

Schur J., Affektlose Gleichungen in der Theorie der Laguerrschen und Hermitschen Polynome


Schulz W., Ueber die Galoissche Gruppe der Hermiteschen Polynome

  

Stäckel P., Ueber arithmetische Eigenschaften analytischer Functionen

   

Waldschmidt M., Irrationality and transcendence of values of special functions

  

Whittaker J. M., On the Cardinal Function of Interpolation Theory
  

   

Whittaker J. M., The Fourier Theory of the Cardinal Funxtion

D. A Whittaker function based characterization of the alternative Ei(x) function

With respect to the supporting lemma S15 (note O1) we note that corresponding Whittaker functions (and their corresponding relationships to the erf(x)-function) provide a characterization of the alternative Ei(x)-function in the form

                                  M(z) * N(z) = x * F(1/2,3/2,z)

whereby M(z) resp. N(z) denote the Whittaker functions with the parameters (l,m)=(1/4,1/4) resp. (l,m)=(-1/4,-1/4).


E. Music melodies and Ramanujan's generalized distributional Fourier series domain

Music and mathematics might be seen as two different sides of the same coin; and "yes", there is such a coin which is about the music melodies; those lie exactly between the red (Brownian motion) and the white (derivative of the Brownian motion) noise resp. its motion domain lies exactly between the two integer scaled Hilbert space domains of the red and the white noise:

               

Music melodies between red and white noise